
1

Sockets: 1

Berkeley Sockets

Prof. Indranil Sen Gupta

Department of Computer Science & Engg.

I.I.T. Kharagpur

Sockets: 2

What is a socket?

• The socket is the BSD method for accomplishing

inter-process communication (IPC).

• It is used to allow one process to speak to another

(on same or different machine).

– Analogy: Like the telephone is used to allow one

person to speak to another.

• Works very similar to files.

– Socket descriptor � very similar to file descriptor.

– Read/write on a socket and file are very similar.

2

Sockets: 3

Basic Idea

• When two processes located on the same or different

machines communicate, we define association and socket.

– Association: basically a 5-tuple

• Protocol

• Local IP address

• Local port number

• Remote IP address

• Remote port number

– Socket: also called half-association (a 3-tuple)

• Protocol, local IP address, local port number

• Protocol, remote IP address, remote port number

Sockets: 4

More about sockets

• Creating a socket is the first step in network
programming using BSD socket interface.

– Using the socket() system call.

• Two main addressing formats of a socket:

– AF_UNIX: uses Unix pathnames to identify sockets,
and are very useful for IPC between processes on the
same machine.

– AF_INET: uses IP addresses.
• In addition to machine address, there is also a port number that

allows more than one AF_INET socket on each machine.

3

Sockets: 5

Types of socket

• Two most common types:

– SOCK_STREAM: Stream sockets, which provide

reliable, two-way, connection-oriented communication

streams. <Uses TCP>

– SOCK_DGRAM: Datagram sockets, which provide

connectionless, unreliable service, used for packet-by-

packet transfer of information. <Uses UDP>

• Other types like SOCK_RAW also exist.

– Beyond the scope of the present discussion.

Sockets: 6

Systems calls for using sockets

• socket()

• bind()

• connect()

• listen()

• accept()

• send() & recv()

• sendto() & recvfrom()

• close() & shutdown()

• getpeername()

• gethostname()

• gethostbyname()

4

Sockets: 7

socket() :: Get the Socket Descriptor

• General syntax:

– domain: should be set to AF_INET (typically)

– type: should be set to SOCK_STREAM or SOCK_DGRAM

– protocol: set to zero (typically)

• Returns: socket descriptor; -1 on error

#include <sys/types.h>

#include <sys/socket.h>

int socket (int domain, int type, int protocol)

Sockets: 8

bind():: What Port am I on?

• Used to associate the socket with an address

• General syntax:

– sockfd: socket file descriptor returned by socket()

– my_addr: pointer to a structure that contains information about the
local IP address and port number.

– addrlen: typically set to sizeof(struct sockaddr)

• Returns: -1 on error

#include <sys/types.h>

#include <sys/socket.h>

int bind (int sockfd, struct sockaddr *my_addr, int addrlen);

5

Sockets: 9

The sockaddr Structure

struct sockaddr

{

unsigned short sa_family;

char sa_data[14];

}

struct sockaddr_in

{

short int sin_family;

unsigned short int sin_port;

struct in_addr sin_addr;

unsigned char sin_zero[8];

}

sockaddr_in is a parallel structure to

sockaddr which a programmer uses

in the program for convenience.

struct in_addr

{

unsigned long s_addr;

}

Sockets: 10

connect(): Connect to a Remote Socket

• General syntax:

– sockfd: socket file descriptor returned by socket()

– serv_addr: pointer to a structure that contains the destination IP

address and the port number

– addrlen: typically set to sizeof(struct sockaddr)

• Returns: -1 on error

#include <sys/types.h>

#include <sys/socket.h>

int connect (int sockfd, struct sockaddr *serv_addr, int addrlen);

6

Sockets: 11

listen(): Get Set for Incoming Connections

• Here, we wish to wait for incoming connections and
handle them in some way.
– Two steps, first you listen(), then you accept().

• General syntax:

– sockfd: socket file descriptor returned by socket().

– backlog: used to set the maximum number of requests (up to a
maximum of about 20) that will be queued up before requests start
being denied.

• Returns: -1 on error

int listen (int sockfd, int backlog);

Sockets: 12

accept(): Waiting for Incoming Connections

• Basic concept:

– Someone far away will try to connect() to your machine
on a port that you are listen()’ing on.

– Such connections will be queued up waiting to be
accept()’ed.

– accept() returns a brand new socket file descriptor to
use for every single connection.

• Two socket file descriptors!!

– The original one is still listening on your port.

– Newly created one is finally ready to send() and recv().

7

Sockets: 13

accept(): contd..

• General syntax:

– sockfd: listen()’ing socket descriptor

– addr: pointer to a local struct sockaddr_in (This is

where the information about the incoming connection

will go)

– addrlen: local integer variable that should be set to

sizeof(struct sockaddr_in) before accept() is called.

• Returns: -1 on error

#include <sys/socket.h>

int accept (int sockfd, void *addr, int *addrlen);

Sockets: 14

send() and recv(): Sending/receiving Data

• Used for communicating over stream sockets or connected datagram
sockets.

• General syntax:

– mesg: a pointer to the data you want to send

– len: length of the data in bytes

– buf: buffer to read the information into

– flags: typically set to 0

• send() returns the number of bytes actually sent out, and recv() returns
the number of bytes actually read into the buffer.

int send (int sockfd, const void *mesg, int len, int flags);

int recv (int sockfd, void *buf, int len, unsigned int flags);

8

Sockets: 15

sendto() and recvfrom()

• Used to transmit and receive data packets over unconnected
datagram sockets.

• General syntax:

• If you connect() a datagram socket, you can then simply use
send() and recv() for all your transactions.

int sendto (int sockfd, const void *msg, int len, unsigned int flags,

const struct sockaddr *to, int tolen);

int recvfrom (int sockfd, void *buf, int len, unsigned int flags,

struct sockaddr *from, int *fromlen);

Sockets: 16

close() and shutdown()

• Used to close the connection on the socket descriptor.

• This prevents any more reads and writes to the socket.

• how=0 � further receives are disallowed

• how=1 � further sends are disallowed

• how=2 � further sends and receives are disallowed (like close())

close (sockfd);

int shutdown (int sockfd, int how);

9

Sockets: 17

getpeername()

• This function will tell you who is at the other end of a

connection stream socket.

– sockfd: descriptor of the connected stream socket

– addr: pointer to a structure that will hold the information about the

other side of the connection

– addrlen: pointer to an int that should be initialized to

sizeof(struct sockaddr)

#include <sys/socket.h>

int getpeername (int sockfd, struct sockaddr *addr, int *addrlen);

Sockets: 18

gethostname()

• This function returns the name of the computer that your

program is running on.

– This name can be used by gethostbyname() to determine the IP

address of the local machine.

– hostname: pointer to an array of chars that will contain the host

name upon the function’s return.

– size: length in bytes of the hostname array.

#include <unistd.h>

int gethostname (char *hostname, size_t size);

10

Sockets: 19

gethostbyname()

• Returns the IP address of a host given its name.

– Invokes the Domain Name Server (DNS).

– Returns a pointer to a struct hostent:

#include <netdb.h>

struct hostent *gethostbyname (const char *name);

struct hostent

{

char *h_name; /* official name of the host */

char **h_aliases; /* NULL terminate array of alternate names */

int haddrtype; /* Type of address being returned (AF_INET) */

int h_length; /* Length of the address in bytes */

char **h_addr_list; /* Zero terminated array of network addresses */

};

#define h_addr h_adr_list[0];

Sockets: 20

Client-server Model

• Standard model for network applications.
– A server is a process that is waiting to be contacted by a client

process so as to provide some service.

• Typical scenario:
– The server process is started on some computer system.

• Initializes itself, then goes to sleep waiting for a client request.

– A client process is started, either on the same system or on some
other system.

• Client sends a request (across the network) to the server.

– When the server process has finished providing its service to the
client, the server goes back to sleep, waiting for the next client
request to arrive.

11

Sockets: 21

Client-server Model (contd.)

• Roles of the client and the server processes are

asymmetric.

• Two types of servers:

– Iterative servers: Used when the server process knows in advance

how long it takes to handle each request and it handles each

request itself.

– Concurrent servers: Used when the amount of work required to

handle a request is unknown; the server starts another process to

handle each request.

Sockets: 22

System Calls for Connection-oriented Protocol

socket()

bind()

listen()

accept()

connect()

read()
write()

write()

socket()

read()

Block until client

request arrives

Connection establishment

SERVER

CLIENT

12

Sockets: 23

System Calls for Connectionless Protocol

socket()

bind()

recvfrom()

bind()

sendto()

sendto()

socket()

recvfrom()

Block until client

request arrives

SERVER

CLIENT

Data (request)

Data (reply)

Sockets: 24

References

• Unix Network Programming

W.R.Stevens, Prentice-Hall of India, 1992.

• Internetworking with TCP/IP (Volume I,II,III)

D.E.Comer and D.L.Stevens, Prentice-Hall of India, 1995.

• http://www.ecst.csuchico.edu/~beej/guide/net

