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A b s t r a c t  

In the past decade significant effort has been devoted to the 
development of methodologies for design at the register- 
transfer level. However, effective and versatile procedures are 
still not available. This paper presents an efficient procedure 
for the automated synthesis of data paths at the register- 
transfer level. The procedure minimizes the numbers of 
storage elements, data operators, and interconnection units. 
In addition, the procedure has the capability of exploring 
alternatives in the design space. In some preliminary 
experiments the procedure produced designs nearly identical 
to commercially produced designs. 

1 In t roduct ion  

The Carnegie-Mellon University Design Automation (CMU- 
DA) system has been developed over the past six years [6]. 
Using the ISPS description [3] as input, the CMU-DA system 
proceeds through global optimization, design style selection, 
data-memory allocation, physical module binding, control 
allocation, chip partitioning, and mask generation phases. This 
paper describes the result of some research in the data- 
memory allocation phase. 

The problem of data-memory allocation includes five 
subpro~)tems. They are the specification of data flow and 
control flow, the allocation of storage elements, the allocation 
of data operators~ the allocation of interconnection units, and 
the exploration of the design space. The issues of specifying 
the initial operation sequences are described in Section 2. 
Given a list of operation sequences (in some sense, this means 
the performance is specified), the problem of design 
improvement is concerned with the minimization of the 
numbers of storage elements, data operators, and 
interconnection units. These three minimization problems can 
be formulated into the clique.partitioning problem. The clique- 
partitioning pro~lem will be detailed in Section 3. Section 4, 5, 
and 6 describe the formulations and present algorithms for 
generating solutions for each of these three problems. 
Exploring the design space is the topic of Section 7. Section 8 
contains conclusions and suggestions for future work. 

1This research has been supported by the National Science Foundat ion 

under Grant  ENG 78-25755. The procedure is mainly concerned with the 
search of cl iques in graphs. The similiarity in shape for  a facet and a cl ique 
stimulated us to use "Facet "  as the name of the procedure.  

2 Specification of Initial Code 
Sequences 

The input to the data-memory allocator is the value trace 
(VT) [7, 12]. A VT preserves all the data flow and control flow 
information in the original ISPS description. This section 
presents a procedure for specifying the initial code sequences. 

A basic block is a linear sequence of operation codes having 
one entry point (the first operation executed) and one exit point 
(the last operation executed)[1]. A VT basic block is first 
converted into a two-dimensional list of operation sequences. 
To preserve the maximum parallelism in a VT, a specific name 
is assigned to each value in the VT. Taking advantage of the 
data dependency relationships among different operations, the 
operation sequences are compacted in an as early as possible 
(AEAP) manner. The AEAP strategy (or the First-come First- 
serve strategy) has been applied in microcode compaction and 
proved to generate near-optimal solutions [5]. 

Using the AEAP strategy, an operation is moved forward to 
the horizontal list just behind the horizontal list where (at least) 
one of its operands is defined. Starting from the entry point of 
a basic block, the statements are processed one by one. Each 
time a triple statement (a statement which consists of one 
operation, one or two sources, and one destination) is 
processed, its operands are compared with the names defined 
in the previous line. If one of its operands is defined in the 
previous line, the operation is located there. Once the location 
of a statement is specified, its destination name is compared 
with the destination names of the other statements in the 
horizontal list. If some statement has the same destination 
name, then the original one is a redundant statement. The 
redundant statement can be eliminated. Table 1 is a VT-like 
data flow specification which will be used as a running example 
throughout the paper. Table 2 is the code sequence obtained 
by using the AEAP strategy. The statement enclosed by 
parentheses is a redundant statement and should be 
eliminated. 

V3 = V1 + VZ 
V5 = V3 - V4 
V7 = V3 * V6 
V8 = V3 + V5 
V9 = V1 + V7" 
V l l  = VIO / V5 
V12 = 100 
V13 = V3 
V12 = V l  
V14 = V l l  and V8 
V15 = V12 o r  V9 
V1 = V14 
V2 = V15 

Table 1 : A VT-like Data Flow Specification 
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V3 = V l  + VZ ; ( V l Z  = 1 0 0 )  ; 
V5 = V3 - V4 ; V7 = V3 * V6 ; 

V8 = V3 + V5 ; Vg = V1 + V7 ; 
V 1 4  = V l l  a n d  V8  ; V15  = V 1 2  o r  V9 
V1 = V 1 4  ; V2 = V 1 5  

V I Z  = V1 

V 1 3  = V3 
V l l  = V I O  / V5 

Table 2: Compacted Code Sequences 

3 Some Procedures  for Part i t ioning a 
Graph into Disjoint Cliques 

Let G be a graph consisting of a finite number of nodes and 
a set of undirected edges connecting pairs of nodes. A non- 
empty collection C of nodes of G forms a complete graph if 
each node in (3 is connected to every other node of C. A 
complete graph C is said to be a c l ique [11] with respect to G 
if C is not contained in any other complete graph contained in 
G. The clique-partitioning problem is to partition the nodes 
in G into a number of disjoint clusters such that each node 
appears in one and only one cluster. Furthermore, each of 
these clusters itself forms a complete graph (clique). 

Many applications require the partitioning of a graph into the 
minimum number of disjoint cliques. Minimization is consistent 
with finding the cliques in the graph one by one. However, the 
search for cliques in a graph has been proved to be 
NP-comp/ete. Related research can be found in 
[2, 4, 8, 9, 10, 15]. A procedure which partitions a graph into a 
near minimum number of cliques is given in this section. The 
procedure uses the neighborhood proloerty (as described in 
the next subsection) among nodes to partition a graph into a 
set of disjoint cliques. The time complexity of the procedure is 
a polynomial function of the numbers of nodes and edges in 
the graph [14]. The procedure has been applied to several 
graphs and found to generate optimal partitionings. However, 
the neighborhood" property is not a sufficient condition for 
finding the clique in a graph and sometimes a suboptimal 
solution is generated. 

3.1 The A lgor i thm 

Let G be an undirected graph and its nodes be indexed by 
integers. Assume nodes i and j are connected and i is smaller 
than j. The edge which joins nodes i and j is represented by the 
integer.pair (i,j). Each of these nodes is the neighbor of the 
other node. If a third node is connected to the other two 
nodes, it is said to be a common neighbor of the pair. Two data 
structures are used to represent the graph. NodeList is used to 
store the nodes in the graph. It is a two-dimensional data 
structure. Each horizontal list contains a number of nodes 
which form a clique. Initially, each node of the graph occupies 
a horizontal list. When several nodes are grouped into a 
clique, they are coalesced into the same horizontal list. 
EdgeList is used to store the edges in the graph. All the edges 
which have the same "left node" (the node with the smaller 
index) are linked in a horizontal list. The indices in a horizontal 
list are sorted in an increasing order. The "left nodes" of all 
the horizontal lists are vertically linked together. Again, they 
are sorted in an increasing order. 

Given a sorted list of edges of a graph, the following 
algorithm partitions the nodes of a graph into disjoint clusters. 
Each cluster forms a clique. 

A lgor i thm 1 : 

1. Scan through the list of edges (EdgeList). For each (i,j), 
i< j ,  compute its number of common neighbors. 

2. Pick the edge (p,q) which has the maximum number of 
common neighbors. Combine the lists of nodes headed 
by p and q. The smaller one of p and q is used as the head 
of the resulting clique. 2 Update the list of edges of G (as 
described in Algorithm 2). If the list of edges is empty, the 
graph partitioning is completed. 

3. Assume p is the head of the resulting clique. Pick an edge 
which joins node p and other nodes and has the maximum 
number of common neighbors. Let the edge be (p,r), or 
(r,p) if r is smaller than p. Save r, or p if r is smaller than p. 
Update the list of edges of G (as described in Algorithm 2). 
If node p (or r if r is smaller than p) no longer appears in 
the EdgeList, go to Step 2 and start to collect the next 
cluster. Otherwise, repeat Step 3. 

In Step 2 and Step 3, if there is more than one pair having the 
maximum number of common neighbors, the numbers of 
edges which would be excluded are computed. The pair which 
excludes the least number of edges is selected. If more than 
one pair excludes the same number of edges, we choose one 
arbitrarily. 

The number of common neighbors for each pair  of 
connected nodes can be calculated by inspecting the list of 
edges. How is the number of edges to be excluded computed 
if a pair of nodes is grouped together?. A node k which is 
connected to only one of i and j is no longer connected to the 
composite node (i,j). Thus the edge (i,k) or O,k) must be 
deleted. A node k which is connected to both i and j is still 
connected to the composite node (i.j). Only one of edges (i,k) 
and (j,k) needs to be deleted. For consistency, each time one 
of these two edges needs to be deleted, the edge (j,k) is 
deleted. Therefore, the numbers of edges to be excluded can 
also be computed by inspecting the list of edges. 

Once a pair of nodes is picked, the edge list needs to be 
updated in the following ways. 

A lgor i thm 2: 

1. Delete those edges which need to be deleted. 

2. Recompute the numbers of common neighbors and the 
numbers of edges to be deleted for those pairs of 
connected nodes which remain in the list of edges. 

3.2 An Illustrative Example 

Let the graph depicted in Figure t (a) be given. The list of 
edges, the number of common neighbors and the edges to be 
deleted for each pair of connected nodes are depicted in 
Figure 1 (b). For example, the number of common neighbors 
and the number of edges to be excluded for (1,2) can be 
computed in the following way.. Node 3 is the only node wich is 
connected to both nodes 1 and 2. The number of common 
neighbors for (1,2) is thus one. If nodes 1 and 2 are grouped 
together, the edges (1,2), (2,3), and (2,4) need to be deleted. 
Therefore, the number of edges to be excluded is three. 

2 
Us ing  ,he  s m a l l e r  n o d e  as t h e  h e a d  of t h e  r e s u l t i n g  c l i q u e  is j u s t  a m a t t e r  of  

c o n v e n i e n c e ,  It  d o e s  n o t  i n f l u e n c e  the  f ina l  resu l t ,  
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As indicated in Figure 1 (b), the pairs of nodes (2,3) and (3,4) 
have the maximum number of common neighbors and exclude 
the same number of edges if either pair is combined. Let nodes 
2 and 3 be the first pair to be grouped together. Nodes 1 and 4 
are connected to both nodes 2 and 3. They are connected to 
the composite node in the reduced graph. Node 5 is only 
connected to one of these two nodes, it is not connected to the 
composite node in the reduced graph. The list of edges of the 
reduced graph is depicted in Figure 1 (c). 

To reduce the graph in Figure 1 (c), the numbers of common 
neighbors of the edges which consist of the composite node 
are compared. Both the edges (1,2) and (2,4) have the same 
number of common neighbors. Choosing the edge (1,2), the 
number of edges to be excluded from the graph is less than 
choosing the edge (2,4). Therefore, the edge (1,2) is selected. 
The composite node which contains the nodes 1, 2, and 3 is no 
longer connected to other nodes. They belong to a cluster. 

Repeatedly applying the procedure to the reduced graph, 
the nodes in the original graph are partitioned into six clusters. 
They are { 1, 2, 3} ,  {4, 5},  {6, 7} ,  { 8 } ,  { 9 }, and { 10}. 

1 ~/Common Neighbors 

i 6 (1,2) 1 -3 (1,2) 0 -2 

\ ,  (1,3) 1 -3 (2,4) 0 -3 
(2,3) 2 -3 (4,5) 0 -2 
(2,4) 1 -4 (6,7) 0 -3 

3 / -  = 9 (3,4) 2 -3 (7,8) 0 -3 

/ (3,5) 1 -3 (7,9) 0 -3 
(4,5) 1 -3 ~' 
(6,7) 0 -3 ~ Edges Deleted 

8 • 10  (7,8) 0-3 
5 (7,9) 0 -3 

(a)  (b )  (c)  

Figu re 1 : Graph Used by the Example 

3.3 Modify ing Algor i thm 1 to Meet Demands of the Real 
World 

Naive application of the clique-partitioning algorithm to the 
data-memory allocation problem does not generate good 
solutions. In this subsection two other notions are introduced 
to direct the application of the clique-partitioning procedure. 
One is divide and conquer. The other is the transitive property. 
The interpretation of these two notions on data-memory 
allocation will be detailed in Sections 4, 5, and 6. 

Given a graph G, each edge of G represents some kind of 
relationship between the two nodes. When Algorithm 1 is 
applied, it is quite possible that several pairs of nodes have the 
same number of common neighbors and exclude the same 
number of edges if any pair is combined. It is also possible that 
the profit of grouping some set of nodes overrides the profit of 
grouping other sets of nodes. Assume that the edges of the 
graph can be classified into several categories according to 
the profit measure of grouping each pair of connected nodes. 
Then a subgraph can be constructed from those edges which 
belong to the same category. The modifying clique-partitioning 
algorithm uses these subgraphs to direct the task of clique. 
partitioning and avoid grouping pairs of nodes randomly. 

Let (p,q), (p,r) [or (r,p) if r is smaller than p], and (q,r) [or (r,q) 
if r is smaller than q] be three edges in G, where p is smaller 
than q. As indicated in Algorithm 1, if p and q are combined, 
then the composite node is represented by the smaller node p. 
Furthermore, the edge (q,r) is deleted from G. 

Let (p,r), (q,r), and (p,q) belong to three different categories, 
which are represented by i, j, and k. Assume the profits of 
grouping a pair of nodes in categories i, j, and k are ordered in 
an increasing manner. In addition, these three edges have the 
following form of transitive property (named the generalized 
transitive property). If the nodes p and q are grouped together, 
then nodes p and r can be included in a new category/, where I 
is the lower case of L. The edges in category / have a profit 
measure better than edges in category i. The algorithm is 
given below. 

Algor i thm 3: A generalized clique-partitioning algorithm. 

1. 

2. 

3. 

Scan through the list of edges for category k (Gk). For 
each (i,j), compute its number of common neighbors. 
Pick the edge (p,q) which has the maximum number of 
common neighbors from Gk. 
Instead of directly applying Algorithm 2 to G and Gk, 
update G and Gk in the following way. For each node r 
which is only connected to one of the nodes p and q in the 
graph G, the edge is deleted from G. If the edge is also an 
edge of category k, it is deleted from Gk. For each node r 
which is connected to both p and q in G, the edge (q,r) is 
deleted from G. If this edge is contained in Gk, it is also 
deleted. Assume that (p,r) is an edge of category i and 
(q,r) is in the list of edges for category j. Due to the 
combination or grouping of p and q, the edge (p,r) 
becomes an edge of category/. The category identifier of 
(p,r) is changed to /. If the profit of combining pairs of 
nodes in category / is the same as or better than that of 
combining pairs of nodes in category k, the edge is 
included in Gk. Meanwhile, the number of common 
neighbors and the number of edges to be excluded for 
each of the edges remaining in Gk are updated. 

Tile subgraph in which pairs of nodes have the best profit 
measure is reduced first. Then the pairs of nodes having the 
next level of profit measure are collected and reduced. 
Repeatedly applying the procedure to the other subgraphs, the 
process is stopped when a subgraph of a specified category or 
the original graph G becomes empty. 

The transitive properties defined in Sections 4, 5, and 6 
assume that the category identifiers j, k, and I refer to the same 
category. This is actually a special case of the generalized 
transitive property. It is named the loose form transitive 
property. 

Illustrative examples for the modified clique-partitioning 
algorithm are provided in Sections 4, 5, and 6. 

4 Allocat ion of S t o r a g e  E l e m e n t s  

As indicated in [14], it is generally beneficial to assign more 
than one variable to the same physical location. This section 
discusses the issues of minimizing the number of storage 
elements. 
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4 . 1  Sufficient Conditions for Combining Two Variables 

Given a set of variables, the problem is to combine those 
variables which can share a storage element. What are the 
sufficient conditions for combining two variables? A variable is 
five between the time of its definition and last use. A variable is 
dead between the time of its last use and the next definition. If 
the live periods of two variables are not overlapped, they have 
disjoint lifetimes. Obviously, two variables can be combined if 
they have disjoint lifetimes. In reality this constraint can be 
relaxed. Two variables A and B can be combined if their 
lifetimes are overlapped in such a way that one of them is used 
as a source and the other is used as the destination or vice 
versa in the same statement. In addition, the variable which is 
used as the source is dead in the next time interval, i.e., the use 
is a "last use." Pure data transfers are special cases. 

4.2 A Procedure for Compacting Variables 

If there are n variables and each pair of variables are proved 
to be combinable (there are n(n-1)/2 different pairs), then 
these n variables can be assigned to the same physical 
location. Let the nodes of a graph be the variables and each 
pair of nodes which can be cdmbined be joined by an edge. 
Then a graph which contains the lifetime relationships among 
all the variables can be constructed. Since the goal is to assign 
these variables to the minimum number of physical locations, 
this is actually the clique-partitioning problem. 

The combination of each pair of variables which are related 
by pure data transfers would cause these operations to be 
eliminated. This improvement reduces the number of control 
functions. If a horizontal list in the code sequence is occupied 
by pure data transfers, it further results in a faster 
implementation. To take this property into account, the 
reduction of the original graph is separated into two phases. In 
the first phase the edges which are associated with pure data 
transfers in some time intervals are collected to form a 
subgraph. Let the original graph and the subgraph be 
represented by G and G1 respectively. The edges in G and G1 
satisfy the loose form transitive property. Algorithm 3 in 
Subsection 3.3 can be applied. Having completed the 
partitioning of the subgraph, Algorithm 1 is then applied to the 
remaining edges of the original graph. 

Once the variables have been compacted, the list of 
operation sequences is updated. The names which are 
grouped together are assigned to the same name. Operations 
of moving the content of a variable to itself are deleted. It is 
then possible that the code sequences can be further 
compacted. Therefore, the AEAP compaction is repeated once 
to make the final refinement for the operation sequences. 

4.3 Lifetime Analysis 

According to the previous discussion, it is concluded that 
the lifetime analysis is an essential process for the minimization 
of the number of storage elements. The problem of lifetime 
analysis is well understood in the area of compiler design. 
Details can be referred to [1]. 

4.4 Const ruct ion of the L i fe t ime Compat ib le  Graph 

Let the l ive/dead status of all the variab!es be represented 
by a lifetime list. The compatible graph is the graph consisting 
of ail the ~dges which join combinable pairs of nodes. To 
construct a compatible graph, a complete graph which 
consists of all the nodes is first created. The lifetime list and 
the list of code sequences are then traced and inspected. 
Unless the conditions given in Subsection 4.1 are satisfied, the 
edges which join those variables which are live in the same 
time interval are deleted from the graph. If an edge has already 
been deleted, this step is ignored. Those edges which 
associate with pure data transfers in some time intervals are 
marked. 

4.5 Grouping Registers into Scratch Pad Memor ies 

Having assigned all the variables to suitable physical 
locations, the next step is to investigate the possibility of 
grouping several registers into sets of scratch pad memories. 
Those variables which have disjoint access time can be 
grouped together. This problem can also be formulated into 
the clique-partitioning problem. 

4.6 An Example 

Let the compacted code sequences in Table 2 be given. 
Assume that the program is itself a loop. Having executed the 
statements in the.last line, the control flow is passed back to 
the statements in the first line. Applying the lifetime analysis 
algorithm to the example, the status of these variables in each 
time interval is indicated in Table 3. 

Having derived the live/dead history of each variable, the 
compatible graph can be constructed. As mentioned before, a 
complete graph is first constructed. Using Table 3, the conflict 
graph can be constructed in the following way. Considering 
the time interval defined as "1 ", the variables V1, V2, V3, V4, 
V6, VI0, and V12 are live. Each edge formed by these live 
variables must be deleted from the graph. The nodes V2 and 
V3 are used as a source and destination in the same statement. 
In addition, the source variable is dead in the next time interval. 
Therefore, the edge (2,3) is not deleted. Repeatedly applying 
the procedure to the entire lifetime, the resulting compatible 
graph is given in Table 4. 

Time Vl V2 V3 V4 V5 V6 ~ V8 V9 ;VIO Vl l  V12 V13 V14 VlS 

Entry L L D L D L D D D L D D D D D  

1 L L L L D L D D D L D L D D D  

2 L D L L L L L D D L D L D D D  

3 L D L L L L L L L L L L D D O  

4 D D D L D L D L L L L L D L L  

5 L L D L D L D D D L D D D L L  

Exi t  L L D L D L D D D L D D D D O  

Table 3: Result of Lifetime Analysis 
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(1,9) (1,13) (1,14)- (2,3) (2,5) (z,7) 
(2,8) (2,9) (2,11) (2,13) (2,15)* (3,8) 

(3,13)* (3,14) (3,15) (4,13) (5,8) (5,11) 
(5.13) (5,14) (5,15) (6,13) (7,9) (7,13) 
(7,14) (7,15) (8,13) (8,14) (9,13) (9,15) 

(10,13) (11,13) (11,14) (12,13) (12,15) (13,14) 
(13,15) 

Table 4: The Compatible Variable-pairs 

Among these combinable variable-pairs, those edges which 
are accompanied by " * "  are associated with pure data 
transfers in some time intervals. They are used to construct the 
second graph. Algorithm 3 is used to reduce these two graphs. 
It results in the following composite nodes: { 1, 14 }, { 2, 15 }, 
and {3,  13}. 

Applying Algorithm 1 to the reduced graph, the variables are 
finally partitioned into eight clusters. They are { 1, 14 }, 
{ 2 , 7 , 9 , 1 5 } , { 3 , 8 , 1 3 } , { 4 } , { 5 , 1 1 } , { 6 } , { 1 0 } a n d { 1 2 } .  
The variables in each of these clusters can be assigned to the 
same physical location. The code sequences in Table 2 can be 
refined into the form in Table 5. 

V3 = Vl  + V2 ; V12 = V l  
V5 = V3 - V4 ; V2 = V3 * V6 
V3 = V3 + V5 ; V2 = V1 + V2 ; 
V1 = V5 and V3 ; V2 = V12 or  V2 

Table 5: 

V5 = V10 / V5 

Improved Code Sequences 

5 Allocation of Data Operators 

The allocation of data operators consists of two tasks. One 
is the combination of the same kind of operators. The other is 
the grouping of various kinds of operators into arithmetic and 
logic units. The goal is to assign these data operations to the 
minimum number of clusters. The problem is again formulated 
into the clique.partitioning problem. 

5.1 The Formulat ion 

A data operator is called an isolated opgrator if it is 
exclusively assigned to a triple statement. What is the effect of 
grouping two isolated data operators into one unit. If these two 
operations are the same, the number of operators is reduced 
by one. In addition, depending on the corresponding source 
operands and the destination variables are the same or not, the 
numbers of multiplexers and wired.broadcast trees may be 
increased or decreased. What is the effect of merging an 
isolated operator into an ALU or combining two ALU's? First, 
the buses and the gating elements connected to the input and 
output ports of the ALU can be shared. If the operations have 
common sources or destination, the original gating elements 
for the input or output ports of these modules can also be 
shared. Therefore, it is generally beneficial to merge an 
isolated data operator into an ALU or to-combine two ALU's 
[14]. An important issue for the allocation of data operators is 

choosing an appropriate set of operators to group together. 

Let two isolated operations be given. Inspecting the 
relationship between these two operations, there are sixteen 
cases [14]. These sixteen cases can be classified into eight 
categories. They are listed below. 

1. G8: The operations and the three pairs of variables are all 
the same. 

2. GT: The operations are different but the three pairs of 
variables are the same. 

3. G6: The operations and two pairs of variables are the 
same. The third pair of variables is different. 

4. G5: Two pairs of the variables are the same. The 
operations and one pair of variables are different. 

5. G4: The operations and one pair of variables are the 
same. The other two pairs of variables are different. 

6. G3: One pair of the variables is the same. The operations 
and the other two pairs of variables are different. 

7. G2: The operations are the same. All three pairs of 
variables are different. 

8. GI :  The operations and all three pairs of variables are 
different. 

All of these subgraphs satisfy the generalized transitive 
property. For simplicity, the loose form transitive property is 
assumed for them. The algorithm for allocating data operators 
can be described as follows: 

1. Create a complete graph whose nodes are indices of all 
the data operators. Trace through the code sequences 
and delete those edges connecting nodes which are used 
simultaneously. Identify the category of each edge. 

2. Collect edges of Category 8. Use Algorithm 3 to reduce G 
and G8. 

3. Having reduced the subgraph of Category 8, the graph G 
together with the subgraphs of Categories 7, 6, 5, 4, 3, 2, 
and 1 are reduced one by one. 

5.2 An Example 

Let each operation in Table'5 be assigned to a specific 
name. An assignment is given in Table 6. Using the code 
sequence and operator assignment, the compatible graph G is 
depicted in Table 7. The superscript integer at the right side of 
each edge is the category identifier of the edge. 

V3 = V l  +1 V2 ; V12 = V1 

V5 : V3 -1 V4 ; V2 = V3 *1 V6 

V3 = V3 +2 V5 ; V2 : Vt  +3 V2 ; V5 : V l0  /1  V5 

V1 = V5 and I V3 ; V2 = V12 or  1 V2 

Operator I d e n t i f i e r s :  

+1 -1 "1 +2 +3 /1  and1 ° r l  

Indices:  1 2 3 4 5 6 7 8 

Table 6: Assigning Operator Identifiers 

( 1 , 2 )  1 ( 1 , 3 )  1 

Table 7: 

( 1 , 4 )  4 - (1 ,5)  6 ( 1 , 6 )  1 ( 1 , 7 )  1 ( 1 , 8 )  3 

( 2 , 4 )  3 ( 2 , 5 )  1 ( 2 , 6 )  1 ( 2 . 7 )  3 ( 2 , 8 )  1 

( 3 , 4 )  3 ( 3 , 5 )  3 ( 3 , 6 )  1 ( 3 , 7 )  3 ( 3 , 8 )  3 

( 4 . 7 )  3 ( 4 , 8 )  1 

( 5 , 7 )  1 ( 5 , 8 )  5 

( 6 , 7 )  3 ( 6 , 8 )  1 

G: The Edges of the Original Compatible Graph 
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The edge of Category 6 in G is retrieved to form the 
subgraph G6. G6 only consists of one edge. It is (1,5). The 
original graph G and the subgraph G6 are first reduced. The 
nodes 1 and 5 are combined. In the reduced graph the 
categories of the edges (1,3) and (1,8) are updated to 3 and 5 
respectively. The reduction procedure is continued until the 
list of edges becomes empty. The data operators are finally 
grouped into three clusters. They are { 1,3, 5, 8 }, { 2, 4, 7 }, 
and { 6 }. 

6 Al locat ion of In te rconnec t ion  Uni ts 

This section discusses the issues in the allocation of 
interconnection units. 

6.1 A l ignment  of Operands 

An operation may be either Commutative or 
noncommutative. For those commutative operations, the 
designer has the freedom of flipping the position of the two 
operands. If the operands of all the operations are suitably 
aligned, the number of interconnection units can be 
decreased. Let the operands of unary and noncommutative 
operations be collected in two sets. The operands of th6 
commutative operations can be suitably aligned by comparing 
the operands with variables in these two sets. 

6.2 The Formulation 

Interconnection variables which are never used 
simultaneously can be grouped together to fGrm buses. The 
g0al is to group the interconnection variables into the minimum 
number of clusters. The problem is again formulated into the 
clique-partitioning problem. 

To obtain a good bus style design, it is essential to minimize 
both the number of buses and the total number of drivers and 
r ece i ve rs [13 ] .  There is no profit in combining two 
interconnection variables which originate from different 
sources and destine to different sinks. On the other hand, it is 
generally beneficial to group those interconnection variables 
which originate from the same source or destine to the same 
sink to share a common bus. The details of the formulation are 
given below. 

A complete graph in which nodes consist of all the 
interconnection variables is first constructed. Then the code 
sequence is traced through. In each time interval, if two 
interconnection variables are used simultaneously, the edge 
formed by these two nodes is deleted. Those interconnection 
variables which are associated with the same source, even 
when they are used concurrently, can still share a common 
interconnection. Therefore, when we construct the compatible 
graph, these entries are not deleted. 

Let the compatible graph be represented by G. When the 
compatible graph is constructed, if two interconnection 
variables originate from the same source or destine to the 
same sink, the edge which joins these two vaiables is marked. 
All the marked edges are collected to form the second graph 
(named G1). The loose form transitive property is applicable to 
G and G1. Algorithm 3 in Subsection 3.3 can be applied. 

Refining the In i l ia l  A l locat ion 

An initial design might have a "join-node" in which more 
than one bus is connected to a single input port. It is 
necessary to insert a multiplexer in front of the input port. The 
"join-node" caP. easily be found by checking the data paths 
connected to an input port. If an input port is connected to 
more than one bus, ~hen the node needs to be refined. 

6.3 An Example 

The example is based on the code sequence in Table 6 and 
the ALU's allocated in Section 5. Inspecting the operands of 
the operations associated with ALU2, it is found that the 
positions of the two operands of the statement "V1 = V5 and  1 

V3" need to be flipped. It is changed into the form of " V l  = V3 

and 1 VS". Using the indices in Table 8, the compatible graph in 
Table 9 (G) is constructed. In Table 9, those edges which join 
interconnection variables with the same source or the same 
sink are enclosed by square brackets. The graph formed by 
these edges is called G1. 

Source Destination I n d e x i n g  
Name Name Integer 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

V1 V12 1 
V1 ALUt. I n l  2 
V2 ALUI . In2  3 
V3 A L U I . I n l  4 
V3 ALU2 . In l  5 
V4 ALU2. In2 6 
V5 ALUZ.In2 7 
V5 ALD3.In2 8 
V6 ALUt. In2 9 

V10 ALU3 . In t  10 
V12 A L U I . I n l  11 

ALUI .0u t  V2 12 
ALU1.Out V3 13 
ALU2.Out V1 14 
ALU2.0Ut V3 15 
ALU2.0ut  V5 16 
ALU3.0ut  V10 17 

Table 8: Indices of interconnection variables 

[1,2] (1,4) (1,5) (1,5) ( t ,7)  (1,8) 
(1.9) (1,10) (1,11) (1,12) (1,14) (1,15) 

(1,16) (1.17) [2,4] (2,6) (2,9) [2,11] 
(2,14) (2,16) (3,4) (3,6) [3,9] (3,16) 
[4,5] (4,7) (4,8) (4,10) [4,11] (4,13) 

(4,14) (4,15) (4,17) (5,13) [6,7] (6,8) 
(6,10) (6,11) (6,13) (0,14) (6,15) (6,17) 
[7,8] (7,9) (7,13) (7,16) (8,9) (8,11) 

(8.13) (8.14) (8,16) (9,10) (9,11) (9,13) 
(9.14) (9,15) (9,17) (10,11) (10,13) (10,14) 

(10,16) (11,13) (11,15) (11,16) (11.17) [12,13] 
(13,14) [13,15] (13,16) (13,17) [14,15] [14,16] 
(14,17) [15,16] (16,17) 

Table 9: G: List of edges which join combinable 

interconnection variables 

In G1 nodes 14 and 16 have the maximum number of 
common neighbors. The are combined. G and G1 are 
reduced. The next node to be selected should be node 15. 
Inspecting the nodes which are connected to node 15 and the 
composite node { 14, 16 }, it is found that both (13,14) and 
(13,15) are contained in G. However, among them, only (13,15) 
belongs to GI .  Since the edge (13,15) is being deleted, the 
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edge (13,14) should be added into GI .  The nodes 13 and 14 
are then combined to form the composite node 
{ 13, 14, 15, 16 }. This composite node forms a cluster. 

Repeatedly applying the above algorithm to G and G1, the 
interconnection variables are finally partitioned into eight 
groups. They are {13 ,14 ,15 ,16 } ,  { 1 , 2 , 4 , 1 1 } ,  { 6 , 7 , 8 } ,  
{ 3 , 9 } ,  { 5 } ,  { 1 0 } ,  { 1 2 }  and { 1 7 } .  Figure 2 depicts the 
completed allocation of the data-memory part. 

MUX 

[ ,v,u^ - - ~ " - ~  I MUX 

_ ~ . . ~ A L U 2  

- - ~ - ~  ALU3 J 
Figure 2: Data Paths of the Example 

7 Exploring the Design Space 

Design tradeoffs are fundamental to exploring a design 
space. Cost and speed are generally used to define the 
tradeoffs. If the serialization of some statements make the live 
periods of two variables satisfy the conditions given in 
Subsection 4.1, then these two variables can be assigned to 
the same register. Similiarly, two operators of the same kind, 
two ALU's, or two buses can be grouped together if all the 
parallelism associated with them has been eliminated. These 
tradeoffs are named the basic tradeoffs. 

Let a base design which is directly translated from a VT and 
improved by the algorithms presented in Sections 4, 5, and 6 
be given. Assume that there are N basic tradeoffs. The effect 
of any one, any two, any three, etc. of these tradeoffs can be 
considered. The ultimate case is to consider the effect of all N 
tradeoffs. To limit the search space, only a limited number of 
composite tradeoffs are considered. 

By inspecting the improved code sequence and the 
allocated data paths in the previous sections, it is not difficult 
to find all the basic and composite tradeoffs for the example. 
We leave this as an exercise for the readers. 

8 Conclusions and Future Work 

This paper presents a procedure for data-memory allocation. 
The procedure has been programmed and in some preliminary 
experiments has produced designs nearly identical to 
commercially produced designs. Further research will focus 
on more extensive experimentation. 
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