
Facet : A Procedure for the A u t o m a t e d Synthes is of Digital Sys tems 1

Chia-Jeng Tseng and Daniel P. S iewiorek

Departmer~ts of Electr ical Engineering and Computer Science

Carnegie-Mel lon Universi ty

Pittsburgh, Pennsylvania 15213

A b s t r a c t

In the past decade significant effort has been devoted to the
development of methodologies for design at the register-
transfer level. However, effective and versatile procedures are
still not available. This paper presents an efficient procedure
for the automated synthesis of data paths at the register-
transfer level. The procedure minimizes the numbers of
storage elements, data operators, and interconnection units.
In addition, the procedure has the capability of exploring
alternatives in the design space. In some preliminary
experiments the procedure produced designs nearly identical
to commercially produced designs.

1 In t roduct ion

The Carnegie-Mellon University Design Automation (CMU-
DA) system has been developed over the past six years [6].
Using the ISPS description [3] as input, the CMU-DA system
proceeds through global optimization, design style selection,
data-memory allocation, physical module binding, control
allocation, chip partitioning, and mask generation phases. This
paper describes the result of some research in the data-
memory allocation phase.

The problem of data-memory allocation includes five
subpro~)tems. They are the specification of data flow and
control flow, the allocation of storage elements, the allocation
of data operators~ the allocation of interconnection units, and
the exploration of the design space. The issues of specifying
the initial operation sequences are described in Section 2.
Given a list of operation sequences (in some sense, this means
the performance is specified), the problem of design
improvement is concerned with the minimization of the
numbers of storage elements, data operators, and
interconnection units. These three minimization problems can
be formulated into the clique.partitioning problem. The clique-
partitioning pro~lem will be detailed in Section 3. Section 4, 5,
and 6 describe the formulations and present algorithms for
generating solutions for each of these three problems.
Exploring the design space is the topic of Section 7. Section 8
contains conclusions and suggestions for future work.

1This research has been supported by the National Science Foundat ion

under Grant ENG 78-25755. The procedure is mainly concerned with the
search of cl iques in graphs. The similiarity in shape for a facet and a cl ique
stimulated us to use "Facet " as the name of the procedure.

2 Specification of Initial Code
Sequences

The input to the data-memory allocator is the value trace
(VT) [7, 12]. A VT preserves all the data flow and control flow
information in the original ISPS description. This section
presents a procedure for specifying the initial code sequences.

A basic block is a linear sequence of operation codes having
one entry point (the first operation executed) and one exit point
(the last operation executed)[1]. A VT basic block is first
converted into a two-dimensional list of operation sequences.
To preserve the maximum parallelism in a VT, a specific name
is assigned to each value in the VT. Taking advantage of the
data dependency relationships among different operations, the
operation sequences are compacted in an as early as possible
(AEAP) manner. The AEAP strategy (or the First-come First-
serve strategy) has been applied in microcode compaction and
proved to generate near-optimal solutions [5].

Using the AEAP strategy, an operation is moved forward to
the horizontal list just behind the horizontal list where (at least)
one of its operands is defined. Starting from the entry point of
a basic block, the statements are processed one by one. Each
time a triple statement (a statement which consists of one
operation, one or two sources, and one destination) is
processed, its operands are compared with the names defined
in the previous line. If one of its operands is defined in the
previous line, the operation is located there. Once the location
of a statement is specified, its destination name is compared
with the destination names of the other statements in the
horizontal list. If some statement has the same destination
name, then the original one is a redundant statement. The
redundant statement can be eliminated. Table 1 is a VT-like
data flow specification which will be used as a running example
throughout the paper. Table 2 is the code sequence obtained
by using the AEAP strategy. The statement enclosed by
parentheses is a redundant statement and should be
eliminated.

V3 = V1 + VZ
V5 = V3 - V4
V7 = V3 * V6
V8 = V3 + V5
V9 = V1 + V7"
V l l = VIO / V5
V12 = 100
V13 = V3
V12 = V l
V14 = V l l and V8
V15 = V12 o r V9
V1 = V14
V2 = V15

Table 1 : A VT-like Data Flow Specification

Paper 31.4
490

20th Design Automat ion Conference

0738-100X/83/0000/049051.00 © 1983 IEEE

V3 = V l + VZ ; (V l Z = 1 0 0) ;
V5 = V3 - V4 ; V7 = V3 * V6 ;

V8 = V3 + V5 ; Vg = V1 + V7 ;
V 1 4 = V l l a n d V8 ; V15 = V 1 2 o r V9
V1 = V 1 4 ; V2 = V 1 5

V I Z = V1

V 1 3 = V3
V l l = V I O / V5

Table 2: Compacted Code Sequences

3 Some Procedures for Part i t ioning a
Graph into Disjoint Cliques

Let G be a graph consisting of a finite number of nodes and
a set of undirected edges connecting pairs of nodes. A non-
empty collection C of nodes of G forms a complete graph if
each node in (3 is connected to every other node of C. A
complete graph C is said to be a c l ique [11] with respect to G
if C is not contained in any other complete graph contained in
G. The clique-partitioning problem is to partition the nodes
in G into a number of disjoint clusters such that each node
appears in one and only one cluster. Furthermore, each of
these clusters itself forms a complete graph (clique).

Many applications require the partitioning of a graph into the
minimum number of disjoint cliques. Minimization is consistent
with finding the cliques in the graph one by one. However, the
search for cliques in a graph has been proved to be
NP-comp/ete. Related research can be found in
[2, 4, 8, 9, 10, 15]. A procedure which partitions a graph into a
near minimum number of cliques is given in this section. The
procedure uses the neighborhood proloerty (as described in
the next subsection) among nodes to partition a graph into a
set of disjoint cliques. The time complexity of the procedure is
a polynomial function of the numbers of nodes and edges in
the graph [14]. The procedure has been applied to several
graphs and found to generate optimal partitionings. However,
the neighborhood" property is not a sufficient condition for
finding the clique in a graph and sometimes a suboptimal
solution is generated.

3.1 The A lgor i thm

Let G be an undirected graph and its nodes be indexed by
integers. Assume nodes i and j are connected and i is smaller
than j. The edge which joins nodes i and j is represented by the
integer.pair (i,j). Each of these nodes is the neighbor of the
other node. If a third node is connected to the other two
nodes, it is said to be a common neighbor of the pair. Two data
structures are used to represent the graph. NodeList is used to
store the nodes in the graph. It is a two-dimensional data
structure. Each horizontal list contains a number of nodes
which form a clique. Initially, each node of the graph occupies
a horizontal list. When several nodes are grouped into a
clique, they are coalesced into the same horizontal list.
EdgeList is used to store the edges in the graph. All the edges
which have the same "left node" (the node with the smaller
index) are linked in a horizontal list. The indices in a horizontal
list are sorted in an increasing order. The "left nodes" of all
the horizontal lists are vertically linked together. Again, they
are sorted in an increasing order.

Given a sorted list of edges of a graph, the following
algorithm partitions the nodes of a graph into disjoint clusters.
Each cluster forms a clique.

A lgor i thm 1 :

1. Scan through the list of edges (EdgeList). For each (i,j),
i< j , compute its number of common neighbors.

2. Pick the edge (p,q) which has the maximum number of
common neighbors. Combine the lists of nodes headed
by p and q. The smaller one of p and q is used as the head
of the resulting clique. 2 Update the list of edges of G (as
described in Algorithm 2). If the list of edges is empty, the
graph partitioning is completed.

3. Assume p is the head of the resulting clique. Pick an edge
which joins node p and other nodes and has the maximum
number of common neighbors. Let the edge be (p,r), or
(r,p) if r is smaller than p. Save r, or p if r is smaller than p.
Update the list of edges of G (as described in Algorithm 2).
If node p (or r if r is smaller than p) no longer appears in
the EdgeList, go to Step 2 and start to collect the next
cluster. Otherwise, repeat Step 3.

In Step 2 and Step 3, if there is more than one pair having the
maximum number of common neighbors, the numbers of
edges which would be excluded are computed. The pair which
excludes the least number of edges is selected. If more than
one pair excludes the same number of edges, we choose one
arbitrarily.

The number of common neighbors for each pair of
connected nodes can be calculated by inspecting the list of
edges. How is the number of edges to be excluded computed
if a pair of nodes is grouped together?. A node k which is
connected to only one of i and j is no longer connected to the
composite node (i,j). Thus the edge (i,k) or O,k) must be
deleted. A node k which is connected to both i and j is still
connected to the composite node (i.j). Only one of edges (i,k)
and (j,k) needs to be deleted. For consistency, each time one
of these two edges needs to be deleted, the edge (j,k) is
deleted. Therefore, the numbers of edges to be excluded can
also be computed by inspecting the list of edges.

Once a pair of nodes is picked, the edge list needs to be
updated in the following ways.

A lgor i thm 2:

1. Delete those edges which need to be deleted.

2. Recompute the numbers of common neighbors and the
numbers of edges to be deleted for those pairs of
connected nodes which remain in the list of edges.

3.2 An Illustrative Example

Let the graph depicted in Figure t (a) be given. The list of
edges, the number of common neighbors and the edges to be
deleted for each pair of connected nodes are depicted in
Figure 1 (b). For example, the number of common neighbors
and the number of edges to be excluded for (1,2) can be
computed in the following way.. Node 3 is the only node wich is
connected to both nodes 1 and 2. The number of common
neighbors for (1,2) is thus one. If nodes 1 and 2 are grouped
together, the edges (1,2), (2,3), and (2,4) need to be deleted.
Therefore, the number of edges to be excluded is three.

2
Us ing ,he s m a l l e r n o d e as t h e h e a d of t h e r e s u l t i n g c l i q u e is j u s t a m a t t e r of

c o n v e n i e n c e , It d o e s n o t i n f l u e n c e the f ina l resu l t ,

Paper 31.4
491

As indicated in Figure 1 (b), the pairs of nodes (2,3) and (3,4)
have the maximum number of common neighbors and exclude
the same number of edges if either pair is combined. Let nodes
2 and 3 be the first pair to be grouped together. Nodes 1 and 4
are connected to both nodes 2 and 3. They are connected to
the composite node in the reduced graph. Node 5 is only
connected to one of these two nodes, it is not connected to the
composite node in the reduced graph. The list of edges of the
reduced graph is depicted in Figure 1 (c).

To reduce the graph in Figure 1 (c), the numbers of common
neighbors of the edges which consist of the composite node
are compared. Both the edges (1,2) and (2,4) have the same
number of common neighbors. Choosing the edge (1,2), the
number of edges to be excluded from the graph is less than
choosing the edge (2,4). Therefore, the edge (1,2) is selected.
The composite node which contains the nodes 1, 2, and 3 is no
longer connected to other nodes. They belong to a cluster.

Repeatedly applying the procedure to the reduced graph,
the nodes in the original graph are partitioned into six clusters.
They are { 1, 2, 3} , {4, 5}, {6, 7} , { 8 } , { 9 }, and { 10}.

1 ~/Common Neighbors

i 6 (1,2) 1 -3 (1,2) 0 -2

\ , (1,3) 1 -3 (2,4) 0 -3
(2,3) 2 -3 (4,5) 0 -2
(2,4) 1 -4 (6,7) 0 -3

3 / - = 9 (3,4) 2 -3 (7,8) 0 -3

/ (3,5) 1 -3 (7,9) 0 -3
(4,5) 1 -3 ~'
(6,7) 0 -3 ~ Edges Deleted

8 • 10 (7,8) 0-3
5 (7,9) 0 -3

(a) (b) (c)

Figu re 1 : Graph Used by the Example

3.3 Modify ing Algor i thm 1 to Meet Demands of the Real
World

Naive application of the clique-partitioning algorithm to the
data-memory allocation problem does not generate good
solutions. In this subsection two other notions are introduced
to direct the application of the clique-partitioning procedure.
One is divide and conquer. The other is the transitive property.
The interpretation of these two notions on data-memory
allocation will be detailed in Sections 4, 5, and 6.

Given a graph G, each edge of G represents some kind of
relationship between the two nodes. When Algorithm 1 is
applied, it is quite possible that several pairs of nodes have the
same number of common neighbors and exclude the same
number of edges if any pair is combined. It is also possible that
the profit of grouping some set of nodes overrides the profit of
grouping other sets of nodes. Assume that the edges of the
graph can be classified into several categories according to
the profit measure of grouping each pair of connected nodes.
Then a subgraph can be constructed from those edges which
belong to the same category. The modifying clique-partitioning
algorithm uses these subgraphs to direct the task of clique.
partitioning and avoid grouping pairs of nodes randomly.

Let (p,q), (p,r) [or (r,p) if r is smaller than p], and (q,r) [or (r,q)
if r is smaller than q] be three edges in G, where p is smaller
than q. As indicated in Algorithm 1, if p and q are combined,
then the composite node is represented by the smaller node p.
Furthermore, the edge (q,r) is deleted from G.

Let (p,r), (q,r), and (p,q) belong to three different categories,
which are represented by i, j, and k. Assume the profits of
grouping a pair of nodes in categories i, j, and k are ordered in
an increasing manner. In addition, these three edges have the
following form of transitive property (named the generalized
transitive property). If the nodes p and q are grouped together,
then nodes p and r can be included in a new category/, where I
is the lower case of L. The edges in category / have a profit
measure better than edges in category i. The algorithm is
given below.

Algor i thm 3: A generalized clique-partitioning algorithm.

1.

2.

3.

Scan through the list of edges for category k (Gk). For
each (i,j), compute its number of common neighbors.
Pick the edge (p,q) which has the maximum number of
common neighbors from Gk.
Instead of directly applying Algorithm 2 to G and Gk,
update G and Gk in the following way. For each node r
which is only connected to one of the nodes p and q in the
graph G, the edge is deleted from G. If the edge is also an
edge of category k, it is deleted from Gk. For each node r
which is connected to both p and q in G, the edge (q,r) is
deleted from G. If this edge is contained in Gk, it is also
deleted. Assume that (p,r) is an edge of category i and
(q,r) is in the list of edges for category j. Due to the
combination or grouping of p and q, the edge (p,r)
becomes an edge of category/. The category identifier of
(p,r) is changed to /. If the profit of combining pairs of
nodes in category / is the same as or better than that of
combining pairs of nodes in category k, the edge is
included in Gk. Meanwhile, the number of common
neighbors and the number of edges to be excluded for
each of the edges remaining in Gk are updated.

Tile subgraph in which pairs of nodes have the best profit
measure is reduced first. Then the pairs of nodes having the
next level of profit measure are collected and reduced.
Repeatedly applying the procedure to the other subgraphs, the
process is stopped when a subgraph of a specified category or
the original graph G becomes empty.

The transitive properties defined in Sections 4, 5, and 6
assume that the category identifiers j, k, and I refer to the same
category. This is actually a special case of the generalized
transitive property. It is named the loose form transitive
property.

Illustrative examples for the modified clique-partitioning
algorithm are provided in Sections 4, 5, and 6.

4 Allocat ion of S t o r a g e E l e m e n t s

As indicated in [14], it is generally beneficial to assign more
than one variable to the same physical location. This section
discusses the issues of minimizing the number of storage
elements.

Paper 31.4
492

4 . 1 Sufficient Conditions for Combining Two Variables

Given a set of variables, the problem is to combine those
variables which can share a storage element. What are the
sufficient conditions for combining two variables? A variable is
five between the time of its definition and last use. A variable is
dead between the time of its last use and the next definition. If
the live periods of two variables are not overlapped, they have
disjoint lifetimes. Obviously, two variables can be combined if
they have disjoint lifetimes. In reality this constraint can be
relaxed. Two variables A and B can be combined if their
lifetimes are overlapped in such a way that one of them is used
as a source and the other is used as the destination or vice
versa in the same statement. In addition, the variable which is
used as the source is dead in the next time interval, i.e., the use
is a "last use." Pure data transfers are special cases.

4.2 A Procedure for Compacting Variables

If there are n variables and each pair of variables are proved
to be combinable (there are n(n-1)/2 different pairs), then
these n variables can be assigned to the same physical
location. Let the nodes of a graph be the variables and each
pair of nodes which can be cdmbined be joined by an edge.
Then a graph which contains the lifetime relationships among
all the variables can be constructed. Since the goal is to assign
these variables to the minimum number of physical locations,
this is actually the clique-partitioning problem.

The combination of each pair of variables which are related
by pure data transfers would cause these operations to be
eliminated. This improvement reduces the number of control
functions. If a horizontal list in the code sequence is occupied
by pure data transfers, it further results in a faster
implementation. To take this property into account, the
reduction of the original graph is separated into two phases. In
the first phase the edges which are associated with pure data
transfers in some time intervals are collected to form a
subgraph. Let the original graph and the subgraph be
represented by G and G1 respectively. The edges in G and G1
satisfy the loose form transitive property. Algorithm 3 in
Subsection 3.3 can be applied. Having completed the
partitioning of the subgraph, Algorithm 1 is then applied to the
remaining edges of the original graph.

Once the variables have been compacted, the list of
operation sequences is updated. The names which are
grouped together are assigned to the same name. Operations
of moving the content of a variable to itself are deleted. It is
then possible that the code sequences can be further
compacted. Therefore, the AEAP compaction is repeated once
to make the final refinement for the operation sequences.

4.3 Lifetime Analysis

According to the previous discussion, it is concluded that
the lifetime analysis is an essential process for the minimization
of the number of storage elements. The problem of lifetime
analysis is well understood in the area of compiler design.
Details can be referred to [1].

4.4 Const ruct ion of the L i fe t ime Compat ib le Graph

Let the l ive/dead status of all the variab!es be represented
by a lifetime list. The compatible graph is the graph consisting
of ail the ~dges which join combinable pairs of nodes. To
construct a compatible graph, a complete graph which
consists of all the nodes is first created. The lifetime list and
the list of code sequences are then traced and inspected.
Unless the conditions given in Subsection 4.1 are satisfied, the
edges which join those variables which are live in the same
time interval are deleted from the graph. If an edge has already
been deleted, this step is ignored. Those edges which
associate with pure data transfers in some time intervals are
marked.

4.5 Grouping Registers into Scratch Pad Memor ies

Having assigned all the variables to suitable physical
locations, the next step is to investigate the possibility of
grouping several registers into sets of scratch pad memories.
Those variables which have disjoint access time can be
grouped together. This problem can also be formulated into
the clique-partitioning problem.

4.6 An Example

Let the compacted code sequences in Table 2 be given.
Assume that the program is itself a loop. Having executed the
statements in the.last line, the control flow is passed back to
the statements in the first line. Applying the lifetime analysis
algorithm to the example, the status of these variables in each
time interval is indicated in Table 3.

Having derived the live/dead history of each variable, the
compatible graph can be constructed. As mentioned before, a
complete graph is first constructed. Using Table 3, the conflict
graph can be constructed in the following way. Considering
the time interval defined as "1 ", the variables V1, V2, V3, V4,
V6, VI0, and V12 are live. Each edge formed by these live
variables must be deleted from the graph. The nodes V2 and
V3 are used as a source and destination in the same statement.
In addition, the source variable is dead in the next time interval.
Therefore, the edge (2,3) is not deleted. Repeatedly applying
the procedure to the entire lifetime, the resulting compatible
graph is given in Table 4.

Time Vl V2 V3 V4 V5 V6 ~ V8 V9 ;VIO Vl l V12 V13 V14 VlS

Entry L L D L D L D D D L D D D D D

1 L L L L D L D D D L D L D D D

2 L D L L L L L D D L D L D D D

3 L D L L L L L L L L L L D D O

4 D D D L D L D L L L L L D L L

5 L L D L D L D D D L D D D L L

Exi t L L D L D L D D D L D D D D O

Table 3: Result of Lifetime Analysis

Paper 31.4
493

(1,9) (1,13) (1,14)- (2,3) (2,5) (z,7)
(2,8) (2,9) (2,11) (2,13) (2,15)* (3,8)

(3,13)* (3,14) (3,15) (4,13) (5,8) (5,11)
(5.13) (5,14) (5,15) (6,13) (7,9) (7,13)
(7,14) (7,15) (8,13) (8,14) (9,13) (9,15)

(10,13) (11,13) (11,14) (12,13) (12,15) (13,14)
(13,15)

Table 4: The Compatible Variable-pairs

Among these combinable variable-pairs, those edges which
are accompanied by " * " are associated with pure data
transfers in some time intervals. They are used to construct the
second graph. Algorithm 3 is used to reduce these two graphs.
It results in the following composite nodes: { 1, 14 }, { 2, 15 },
and {3, 13}.

Applying Algorithm 1 to the reduced graph, the variables are
finally partitioned into eight clusters. They are { 1, 14 },
{ 2 , 7 , 9 , 1 5 } , { 3 , 8 , 1 3 } , { 4 } , { 5 , 1 1 } , { 6 } , { 1 0 } a n d { 1 2 } .
The variables in each of these clusters can be assigned to the
same physical location. The code sequences in Table 2 can be
refined into the form in Table 5.

V3 = Vl + V2 ; V12 = V l
V5 = V3 - V4 ; V2 = V3 * V6
V3 = V3 + V5 ; V2 = V1 + V2 ;
V1 = V5 and V3 ; V2 = V12 or V2

Table 5:

V5 = V10 / V5

Improved Code Sequences

5 Allocation of Data Operators

The allocation of data operators consists of two tasks. One
is the combination of the same kind of operators. The other is
the grouping of various kinds of operators into arithmetic and
logic units. The goal is to assign these data operations to the
minimum number of clusters. The problem is again formulated
into the clique.partitioning problem.

5.1 The Formulat ion

A data operator is called an isolated opgrator if it is
exclusively assigned to a triple statement. What is the effect of
grouping two isolated data operators into one unit. If these two
operations are the same, the number of operators is reduced
by one. In addition, depending on the corresponding source
operands and the destination variables are the same or not, the
numbers of multiplexers and wired.broadcast trees may be
increased or decreased. What is the effect of merging an
isolated operator into an ALU or combining two ALU's? First,
the buses and the gating elements connected to the input and
output ports of the ALU can be shared. If the operations have
common sources or destination, the original gating elements
for the input or output ports of these modules can also be
shared. Therefore, it is generally beneficial to merge an
isolated data operator into an ALU or to-combine two ALU's
[14]. An important issue for the allocation of data operators is

choosing an appropriate set of operators to group together.

Let two isolated operations be given. Inspecting the
relationship between these two operations, there are sixteen
cases [14]. These sixteen cases can be classified into eight
categories. They are listed below.

1. G8: The operations and the three pairs of variables are all
the same.

2. GT: The operations are different but the three pairs of
variables are the same.

3. G6: The operations and two pairs of variables are the
same. The third pair of variables is different.

4. G5: Two pairs of the variables are the same. The
operations and one pair of variables are different.

5. G4: The operations and one pair of variables are the
same. The other two pairs of variables are different.

6. G3: One pair of the variables is the same. The operations
and the other two pairs of variables are different.

7. G2: The operations are the same. All three pairs of
variables are different.

8. GI : The operations and all three pairs of variables are
different.

All of these subgraphs satisfy the generalized transitive
property. For simplicity, the loose form transitive property is
assumed for them. The algorithm for allocating data operators
can be described as follows:

1. Create a complete graph whose nodes are indices of all
the data operators. Trace through the code sequences
and delete those edges connecting nodes which are used
simultaneously. Identify the category of each edge.

2. Collect edges of Category 8. Use Algorithm 3 to reduce G
and G8.

3. Having reduced the subgraph of Category 8, the graph G
together with the subgraphs of Categories 7, 6, 5, 4, 3, 2,
and 1 are reduced one by one.

5.2 An Example

Let each operation in Table'5 be assigned to a specific
name. An assignment is given in Table 6. Using the code
sequence and operator assignment, the compatible graph G is
depicted in Table 7. The superscript integer at the right side of
each edge is the category identifier of the edge.

V3 = V l +1 V2 ; V12 = V1

V5 : V3 -1 V4 ; V2 = V3 *1 V6

V3 = V3 +2 V5 ; V2 : Vt +3 V2 ; V5 : V l0 /1 V5

V1 = V5 and I V3 ; V2 = V12 or 1 V2

Operator I d e n t i f i e r s :

+1 -1 "1 +2 +3 /1 and1 ° r l

Indices: 1 2 3 4 5 6 7 8

Table 6: Assigning Operator Identifiers

(1 , 2) 1 (1 , 3) 1

Table 7:

(1 , 4) 4 - (1 ,5) 6 (1 , 6) 1 (1 , 7) 1 (1 , 8) 3

(2 , 4) 3 (2 , 5) 1 (2 , 6) 1 (2 . 7) 3 (2 , 8) 1

(3 , 4) 3 (3 , 5) 3 (3 , 6) 1 (3 , 7) 3 (3 , 8) 3

(4 . 7) 3 (4 , 8) 1

(5 , 7) 1 (5 , 8) 5

(6 , 7) 3 (6 , 8) 1

G: The Edges of the Original Compatible Graph

Paper 31.4
494

The edge of Category 6 in G is retrieved to form the
subgraph G6. G6 only consists of one edge. It is (1,5). The
original graph G and the subgraph G6 are first reduced. The
nodes 1 and 5 are combined. In the reduced graph the
categories of the edges (1,3) and (1,8) are updated to 3 and 5
respectively. The reduction procedure is continued until the
list of edges becomes empty. The data operators are finally
grouped into three clusters. They are { 1,3, 5, 8 }, { 2, 4, 7 },
and { 6 }.

6 Al locat ion of In te rconnec t ion Uni ts

This section discusses the issues in the allocation of
interconnection units.

6.1 A l ignment of Operands

An operation may be either Commutative or
noncommutative. For those commutative operations, the
designer has the freedom of flipping the position of the two
operands. If the operands of all the operations are suitably
aligned, the number of interconnection units can be
decreased. Let the operands of unary and noncommutative
operations be collected in two sets. The operands of th6
commutative operations can be suitably aligned by comparing
the operands with variables in these two sets.

6.2 The Formulation

Interconnection variables which are never used
simultaneously can be grouped together to fGrm buses. The
g0al is to group the interconnection variables into the minimum
number of clusters. The problem is again formulated into the
clique-partitioning problem.

To obtain a good bus style design, it is essential to minimize
both the number of buses and the total number of drivers and
r ece i ve rs [13] . There is no profit in combining two
interconnection variables which originate from different
sources and destine to different sinks. On the other hand, it is
generally beneficial to group those interconnection variables
which originate from the same source or destine to the same
sink to share a common bus. The details of the formulation are
given below.

A complete graph in which nodes consist of all the
interconnection variables is first constructed. Then the code
sequence is traced through. In each time interval, if two
interconnection variables are used simultaneously, the edge
formed by these two nodes is deleted. Those interconnection
variables which are associated with the same source, even
when they are used concurrently, can still share a common
interconnection. Therefore, when we construct the compatible
graph, these entries are not deleted.

Let the compatible graph be represented by G. When the
compatible graph is constructed, if two interconnection
variables originate from the same source or destine to the
same sink, the edge which joins these two vaiables is marked.
All the marked edges are collected to form the second graph
(named G1). The loose form transitive property is applicable to
G and G1. Algorithm 3 in Subsection 3.3 can be applied.

Refining the In i l ia l A l locat ion

An initial design might have a "join-node" in which more
than one bus is connected to a single input port. It is
necessary to insert a multiplexer in front of the input port. The
"join-node" caP. easily be found by checking the data paths
connected to an input port. If an input port is connected to
more than one bus, ~hen the node needs to be refined.

6.3 An Example

The example is based on the code sequence in Table 6 and
the ALU's allocated in Section 5. Inspecting the operands of
the operations associated with ALU2, it is found that the
positions of the two operands of the statement "V1 = V5 and 1

V3" need to be flipped. It is changed into the form of " V l = V3

and 1 VS". Using the indices in Table 8, the compatible graph in
Table 9 (G) is constructed. In Table 9, those edges which join
interconnection variables with the same source or the same
sink are enclosed by square brackets. The graph formed by
these edges is called G1.

Source Destination I n d e x i n g
Name Name Integer

.

V1 V12 1
V1 ALUt. I n l 2
V2 ALUI . In2 3
V3 A L U I . I n l 4
V3 ALU2 . In l 5
V4 ALU2. In2 6
V5 ALUZ.In2 7
V5 ALD3.In2 8
V6 ALUt. In2 9

V10 ALU3 . In t 10
V12 A L U I . I n l 11

ALUI .0u t V2 12
ALU1.Out V3 13
ALU2.Out V1 14
ALU2.0Ut V3 15
ALU2.0ut V5 16
ALU3.0ut V10 17

Table 8: Indices of interconnection variables

[1,2] (1,4) (1,5) (1,5) (t ,7) (1,8)
(1.9) (1,10) (1,11) (1,12) (1,14) (1,15)

(1,16) (1.17) [2,4] (2,6) (2,9) [2,11]
(2,14) (2,16) (3,4) (3,6) [3,9] (3,16)
[4,5] (4,7) (4,8) (4,10) [4,11] (4,13)

(4,14) (4,15) (4,17) (5,13) [6,7] (6,8)
(6,10) (6,11) (6,13) (0,14) (6,15) (6,17)
[7,8] (7,9) (7,13) (7,16) (8,9) (8,11)

(8.13) (8.14) (8,16) (9,10) (9,11) (9,13)
(9.14) (9,15) (9,17) (10,11) (10,13) (10,14)

(10,16) (11,13) (11,15) (11,16) (11.17) [12,13]
(13,14) [13,15] (13,16) (13,17) [14,15] [14,16]
(14,17) [15,16] (16,17)

Table 9: G: List of edges which join combinable

interconnection variables

In G1 nodes 14 and 16 have the maximum number of
common neighbors. The are combined. G and G1 are
reduced. The next node to be selected should be node 15.
Inspecting the nodes which are connected to node 15 and the
composite node { 14, 16 }, it is found that both (13,14) and
(13,15) are contained in G. However, among them, only (13,15)
belongs to GI . Since the edge (13,15) is being deleted, the

Paper 31.4
495

edge (13,14) should be added into GI . The nodes 13 and 14
are then combined to form the composite node
{ 13, 14, 15, 16 }. This composite node forms a cluster.

Repeatedly applying the above algorithm to G and G1, the
interconnection variables are finally partitioned into eight
groups. They are {13 ,14 ,15 ,16 } , { 1 , 2 , 4 , 1 1 } , { 6 , 7 , 8 } ,
{ 3 , 9 } , { 5 } , { 1 0 } , { 1 2 } and { 1 7 } . Figure 2 depicts the
completed allocation of the data-memory part.

MUX

[,v,u^ - - ~ " - ~ I MUX

_ ~ . . ~ A L U 2

- - ~ - ~ ALU3 J
Figure 2: Data Paths of the Example

7 Exploring the Design Space

Design tradeoffs are fundamental to exploring a design
space. Cost and speed are generally used to define the
tradeoffs. If the serialization of some statements make the live
periods of two variables satisfy the conditions given in
Subsection 4.1, then these two variables can be assigned to
the same register. Similiarly, two operators of the same kind,
two ALU's, or two buses can be grouped together if all the
parallelism associated with them has been eliminated. These
tradeoffs are named the basic tradeoffs.

Let a base design which is directly translated from a VT and
improved by the algorithms presented in Sections 4, 5, and 6
be given. Assume that there are N basic tradeoffs. The effect
of any one, any two, any three, etc. of these tradeoffs can be
considered. The ultimate case is to consider the effect of all N
tradeoffs. To limit the search space, only a limited number of
composite tradeoffs are considered.

By inspecting the improved code sequence and the
allocated data paths in the previous sections, it is not difficult
to find all the basic and composite tradeoffs for the example.
We leave this as an exercise for the readers.

8 Conclusions and Future Work

This paper presents a procedure for data-memory allocation.
The procedure has been programmed and in some preliminary
experiments has produced designs nearly identical to
commercially produced designs. Further research will focus
on more extensive experimentation.

A c k n o w l e d g e m e n t s

Comments and suggestions by Drs. Marie R. Barbacci,
Stephen W. Director, and Donald E. Thomas are gratefully
acknowledged.

R e f e r e n c e s

[1] A.V. Aho and J.D. Ullman, "Principles of Compiler Design,"
Addison-Wesley, Reading, MA, 1977.

[2] J. G. Augustson and J. Minker, "An Analysis of Some Graph
Theoretical Cluster Techniques," Journal of the ACM
17(4):571-588, October 1970.

[3] M. R. Barbacci, G. E. Barnes, R.G. Cattell, and D. P. Siewiorek,
"The Symbolic Manipulation of Computer Descriptions: The ISPS
Computer Description Language," Technical Report, Department
of Computer Science, Carnegie-Mellon University, March 1978.

[4] C. Bron and J. Kerbosch, "Finding All Cliques of an Undirected
Graph -- Algorithm 457", Communications of the ACM
16(9):575-577, September 1973.

[5] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, "Some
Experiments in Local Microcode Compaction for Horizontal
Machines," IEEE Transactions on Computers, C-30(7), July 1981.

[6] S. W. Director, A.C. Parker, D. P. Siewiorek, and D. E. Thomas,
"A Design Methodology and Computer Aids for Digital VLSl
Systems," IEEE Transactions on Circuits and Systems,
CAS-28(7), July 1981.

[7] M. McFarland, "The Value Trace: A Data Base for Automated
Digital Design," Master Thesis, Department of Electrical
Engineering, Carnegie-Mellon University, December 1978.

[8] J. W. Moon and L. Meser, "On Cliques in Graphs," Israel Journal
of Mathematics (3):23-28, March 1965.

[9] G.D. Mulligan and D.G. Corneil, "Corrections to Bierstone's
Algorithm for Generating Cliques," Journal of the ACM
19(2):244-247, April 1972.

[10] M. C. Paull and S. H. Unger, "Minimizing the Number of States in
Incompletely Specified Sequential Switching Function3," IRE
Transactions on Electronic Computers (EC-8):656-367,
September 1959.-

[11] E.M. Reingold, J. Nievergelt, and N. Deo, "Combinatorial
Algorithms: Theory and Practice," Prentice-Hall, 1977.

[12] E. A. Snow, "Automation of Module Set Independent Register-
Transfer Design," Ph.D. Thesis, Department of Electrical
Engineering, Carnegie-Mellon University, April 1978.

[13] C. J. Tseng and D. P. Siewiorek, ".The Modeling and Synthesis of
Bus Systems," Proceedings of the Eighteenth Design Automation
Conference, pages 471-478, ACM SIGDA and IEEE Computer
Society DATC, June 1981.

[14] C.J. Tseng and D.P. Siewiorek, "A Note on the Automated
Synthes~s of Bus Style Systems," Technical Report, Department
of Electrical Engineering, October 1982.

[15] S. Tsukiy~ma, M. Ide, H. Ariyoshi, and I. Shirakawa, "A New
Algorithm for Generating All the Maximal Independent Sets,"
SIAM Journal of Computing 6(3):505-517, September 1977.

Paper 31.4
496

