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Abstract—An ESOP-based Toffoli gate cascade synthesis 

algorithm is presented.  The algorithm is capable of generating 

a cascade of reversible gates for logic functions with large 

numbers of qubits.  The algorithm is fast as it uses a simple cost 

metric heuristic during a recursive divide-and-conquer function 

to determine NOT and Toffoli gate placement 

I. INTRODUCTION

Reversible computing has of late been gaining a great deal 
of attention from researchers.  There are a number of reasons 
for this attention.  One reason is the fact that a computer 
based on reversible logic operations should be able to reuse a 
fraction of the signal energies that comes close to 100% [1], a 
result first identified in [2].  Another reason for the interest in 
reversible computing is in its’ relationship to quantum 
computing; indeed, reversible computing can be considered a 
special case of quantum computing [3] and many researchers 
believe that logic synthesis for classical reversible circuits is a 
first step towards synthesis of quantum circuits [4].   

This paper describes a technique for synthesizing a logic 
function, represented as an exclusive-or sum-of-products 
(ESOP), to a cascade of reversible Toffoli gates.  This 
technique is of particular interest since it is one of few in the 
literature that bases its starting representation and intermediate 
manipulation on a list of cubes (or products) rather than a truth 
table.  We first present a rather simplified technique based on 
a straightforward mapping of cubes to reversible gates.  This 
first technique generates circuits requiring a higher than usual 
number of qubits, and so we subsequently present an 
optimization intended to reduce the number of required qubits.   

The paper progresses as follows:  Section II provides some 
brief background on reversible logic and the ESOP 
representation, while Section III gives an overview of related 
work.  We then present the basic method in Section IV, 
followed by a description of an optimization in Section V and 
our experimental results in Section VI.  Since this is relatively 
new we intend to continue developing and applying 
optimizations, and some of these are detailed in Section VII, 
Conclusions and Future Work. 

II. BACKGROUND

A.  Reversible Logic 

According to Shende et al., a gate is reversible if the 
(Boolean) function it computes is bijective [4], and a circuit is 
considered reversible if it consists entirely of reversible gates.  
For example, the function whose truth table is given in Fig. 
1A) is reversible while the function in Fig. 1B) is not. 

There are many reversible gates that may be used in 
synthesis; however in this work only NOT and Toffoli (TOF) 
gates are used.  The symbols used for these gates are shown in 
Figure 2.  A NOT gate has the usual behavior; that is, 

1x x where  denotes the exclusive-or operator.  A 

Toffoli (TOF) gate has similar behavior, but is controlled by 
one or more other qubits whose values are not affected; for 
example, a TOF2 gate with two control bits x and y, has the 

behavior , , , ,x y z x y xy z . We refer to the computing 

elements, or “signals” in a reversible function as qubits; the 
reader is referred to [3] for details on quantum computing. 
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Figure 1.  A) Example reversible function.  B) Example irreversible 

function. 

                  A)                     B) 

Figure 2.  A) NOT and B) TOF1 gate 
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B. ESOPs

An exclusive-or sum-of-products (ESOP) representation is 
a variation of the more traditional sum-of-products (SOP).  

For example, f xy yz  is in a sum-of-products form.  If we 

replace the OR (+) operator with exclusive-or ( ) then the 

function is an ESOP, for example f x yz yz .  ESOPs 

have a variety of nice properties, as detailed in [5], and any 
Boolean function can be represented as an ESOP. 

III. RELATED WORK

Although there are a variety of synthesis techniques for 
reversible logic in the literature, here we will describe only 
those that utilize an ESOP or similar representation. 

Gupta et al. [6] present a reversible logic synthesis 
technique based on a related representation, the positive-
polarity Reed-Muller (PPRM) expansion.  Rather than use an 
approach requiring one gate for each term in the expansion 
they utilize a tree structure to enable investigation of all 
possible factors of each term, and thus are able to construct a 
circuit that shares factors.   The PPRM representation, while 
canonical, is a special type of ESOP, with a more rigorous 
definition, and thus will almost always have more terms than 
the ESOP representation used in our work.  

Maslov and Dueck have also conducted an analytical 
comparison of their technique and EXOR PLAs, a structure 
that can implement ESOP representations [7].  They find that 
their reversible cascade with minimal garbage (RCMG) model 
compares favorably to an EXOR PLA, particularly for one 
class of functions for which the ESOP representation has 
exponential complexity.  However, their analysis is based 
entirely on circuit complexity.   

Finally, Perkowski and other researchers have also looked 
into using ESOPs as a starting point for reversible logic 
synthesis [8].  In [8] a new class of reversible gates is 
introduced, allowing modification of two qubits, but requiring 
a significantly higher level of complexity.  The technique in 
[8] also requires a factorization of each of the ESOPs 
representing the multiple outputs.  This method reported 
achieving good results in terms of gate numbers – in many 
cases they required only one gate per product term in the 
ESOP representation – but did require the use of some garbage 
lines.  

IV. ESOP MAPPING METHOD

The ESOP mapping method can be described as follows.  
We assume a circuit is given in an ESOP cube-list 
representation.  The circuit to be generated will require 2n+m
qubits where n is the number of inputs to the function and m is 
the number of outputs (of course, in a reversible function, 
m=n in the best case).   The 2n qubits correspond to each input 
in the positive and negative polarity.  The algorithm then 
generates a Toffoli gate for each cube of each output in the list 
of ESOP cubes.  The basic algorithm is outlined in Figure 3.  
An example is shown in Figure 4. 

V. OPTIMIZATION

The first optimization to consider is how to reduce the 
number of qubits; for an n-input reversible function most 
synthesis techniques require only n qubits, while our basic 
method requires 2n+m.   In many cases it may be likely that 
the negated form of a literal is not used, and when it is used, it 
can be generated by using a NOT gate on the qubit supplying 
the non-negated form of the literal. 

We have implemented a technique by which a cost metric 
is computed for each allowable variable.  The cube list is then 
sorted in such a way that, for the variable with the lowest cost 
metric, all cubes with its non-negated form appear before all 
cubes containing its negated form.  For cubes where the 
variable is a don’t care, we arbitrarily place that cube in the 
non-negated list.  This process is then repeated within these 
two halves, and so on.  Due to the use of an ESOP 
representation, the algorithm is able to freely reorder a cube 
list into the two halves, giving the algorithm greater flexibility 
in determining NOT and TOF gate placement.   
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Figure 4.  A) Full Adder ESOP Cubelist.  B) ESOP Mapping 

Method applied to A)

      A)                                       B)        

Figure 3.  ESOP Mapping Method 

basicCascadeGen(esop) 
  cascade.toffoliList = empty 

   //create qubits 
   foreach i in esop.inputs 

  //add a qubit representing literals of i 
    cascade.addQubit(i, positive) 
    cascade.addQubit(i, negative) 
   foreach o in esop.outputs 
    //add a constant 0 qubit for each output 
    cascade.addQubit(o, constant 0) 
   //create TOF gates 
   foreach c in esop.cubes 
    foreach o in esop.outputs 
     If c in onset(o) 
      //add a toffoli gate  
      t = new ToffoliGate 
      t.target = cascade.getQubit(output) 
      for each literal in c 
       t.addControl(cascade.getQubit(literal)) 
      cascade.addToffoli(t) 
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The variable v cost metric is shown in (1).  The cost metric 
gives lower scores to variables in a cube list that: 

are balanced with respect to its literals  

appear frequently 
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A standard cube is normally represented as a string consisting 

of ‘0’, ‘1’, and ‘-‘ terms for each variable, depending if the 

variable is present in negative or positive polarity, or is a don’t 

care.  As (1) suggests, ‘0’ is converted to -1, ‘1’ is converted 

to +1, and ‘-‘ is converted to 0.  Additionally, the two 

coefficients  and  are used to control the effect of either 

portion of the cost metric. controls the weight of the 

variable frequency term and controls the balanced variable 

term.  One may see that the  term becomes smaller, as the 

summation term in the denominator becomes larger, which 

corresponds directly with the number of times a variable 

appears in a cube list.  The term gets bigger if the variable 

is not balanced with respect positive/negative literal 

appearance.   
The resulting cascade uses n+m qubits rather than 2n+m

generated in the initial method.  Figure  details the algorithm.  
Figure 6 shows the full adder in Figure 4 after the algorithm is 
applied to it. 

VI. EXPERIMENTAL RESULTS

For this work we used EXORCISM-4 [9] to preprocess the 
benchmarks and produce a minimal ESOP representation.  
The implementation of the algorithms is in C++.  The results 
were generated on a 3.00 GHz Intel D CPU with 2GB RAM. 

Results for a number of binary functions (not necessarily 
reversible) given as pla benchmarks are reported in Table I.  

Each result is the smallest one produced by this technique in 
terms of the number of Toffoli gates generated.  For each 
circuit the following information is given: 

circuit : circuit name 

in : number of inputs 

out : number of outputs 

esopCubes : number of ESOP Cubes due to 
EXORCISM-4 

TOF Gates: number of Toffoli gates generated 

NOT Gates : number of NOT gates generated 

:  value used during cost metric calculation 

:  value used during cost metric calculation 

esopTime: cpu time expended to generate an 
ESOP cube list from the pla (for reference 

purposes only) 

cascadeGenTime : cpu time expended to perform 
the optimized cascade generation algorithm 

In Table I, the synthesis times reported are all < 1 second, 
even for circuits with over 100 inputs.  However, one may 
note that the full adder was generated with 6 TOF gates and 3 
NOT gates, while it is known that a full adder can be 
optimally implemented with 4 gates total.  Additionally, xor5 
has 2 NOT gates, which are unnecessary.  The presence of the 
NOT gates is due to the initial ESOP cube list.  So, there is a 
trade off between synthesis speed and quality of the resulting 
cascade in terms of the number of TOF gates.   

Additionally, the results make a distinction between the 
number of TOF gates and number of NOT gates generated.  
The number of gates is purely based on the number of shared 
cubes of the ESOP cube list.  One must also be aware these 
cascades may be comprised of TOF gates with a large number 
of control qubits.  In general, circuits with large input sizes 
will generally have large TOF sizes as well. 

The most noteworthy observation is how the algorithm is 
able to handle circuits with fairly large input sizes.  This is a 
characteristic that is not shared by many other cascade 
generation algorithms.    In the literature, other algorithms are 
reported to handle circuits with input sizes of up to 20 and for 
special cases.  We attribute this capability to the fact that the 
algorithms presented here do not rely upon truth tables as 
input and also do not traverse a large search space during gate 
placement.  The largest circuit generated was frg2, which has 
143 inputs and 139 outputs. 

Additionally, varying sets of coefficients were set up such 
that 1 .  This was done to gauge the effectiveness of 

either parameter in determining the best split variable.  In our 
experiments, no clear set of coefficients was found that 
consistently generated cascades with fewer NOT gates. 

Figure 5.  Cascade Generation with Not Insertion

reorder(cubes, polarity, vars) 
if(cubes.isEmpty || vars.isEmpty) 
 return cubes 
bestVar = calcBestVar(cubes, vars) 
{pCubes, nCubes} = split(cubes, bestVar) 
pReorder = reorder(pCubes, positive, vars – bestVar) 
nReorder = reorder(nCubes, negative, vars – bestVar) 
if(polarity==negative) 
 nReorderNots = addNots(nReordered, bestVar) 
reorderedCubes = reconnect(pReorder, nReorderNots) 
return reorderedCubes 

cascadeGen(esop) 
reorderedCubes = reorder(esop.cubes, positive, esop.vars) 
cascade = convertCubesToToffoli(reorderedCubes) 

removeExtraNots(cascade) 

Figure 6.  Full Adder with NOTs 
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VII. CONCLUSIONS & FUTURE WORK

We presented an ESOP based algorithm for cascade 
synthesis that is able to generate cascades for functions with 
large number of input variables.  This is in part due to the 
algorithm not being reliant upon exponentially-sized input, 
such as truth tables.  The algorithm is fast as it uses a simple 
cost metric heuristic during a recursive divide-and-conquer 
method to determine NOT and TOF gate placement.  
However, the resulting cascades require n+m qubits 

We believe this approach may be a viable initial mapping 
procedure that can be followed by circuit quality enhancing 
optimizations to be developed in the future.  Other future work 
includes developing techniques for reducing the number of 
initial ancilla inputs by augmenting the cascade with 
additional gates that allow for the “literal” outputs to generate 
function outputs.  
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TABLE I. EXPERIMENTAL RESULTS

Circuit in out esopCubes TOF Gates NOT Gates esopTime (s) cascadeGenTime (s) 

bw 5 28 22 251 11 1.00 0.00 0.02 0.00 

xor5 5 1 5 5 2 1.00 0.00 0.00 0.00 

5xp1 7 10 31 61 29 0.50 0.50 0.01 0.00 

risc 8 31 27 133 19 0.50 0.50 0.02 0.00 

cordic 23 2 776 1546 711 0.75 0.25 14.67 0.02 

ttt2 24 21 60 92 41 1.00 0.00 0.08 0.00 

vg2 25 8 184 214 286 1.00 0.00 0.11 0.02 

bc0 26 11 167 562 158 0.75 0.25 0.47 0.00 

in7 26 10 35 64 34 0.75 0.25 0.02 0.00 

chkn 29 7 144 147 202 0.50 0.50 0.14 0.02 

term1 34 10 540 702 127 0.25 0.75 2.62 0.02 

apex2 39 3 1637 1755 1005 0.75 0.25 45.27 0.06 

seq 41 35 248 1877 272 0.25 0.75 1.29 0.02 

apex1 45 45 288 1348 306 0.75 0.25 1.31 0.03 

apex3 54 50 258 2045 278 0.75 0.25 6.90 0.05 

dalu 75 16 1472 3472 644 1.00 0.00 0.11 0.00 

e64 65 65 65 129 64 0.75 0.25 0.06 0.03 

example2 85 66 205 280 81 0.25 0.75 3.35 0.05 

x4 97 71 299 460 155 1.00 0.00 2.41 0.05 

apex5 117 88 398 541 163 0.50 0.50 4.98 0.16 

ex4 128 28 316 321 417 0.75 0.25 0.91 0.20 

apex6 135 99 409 569 236 1.00 0.00 6.86 0.14 

frg2 143 139 1116 1971 339 0.50 0.50 184.70 0.72 

i2 201 1 257 257 536 0.75 0.25 0.80 0.28 
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