
ESOP-based Toffoli Gate Cascade Generation

K. Fazel, M. A. Thornton

Dept. of Computer Science and Engineering

Southern Methodist University

Dallas, TX, USA

{kfazel, mitch}@engr.smu.edu

J. E. Rice

Dept. of Mathematics & Computer Science

University of Lethbridge

Lethbridge, AB, Canada

j.rice@uleth.ca

Abstract—An ESOP-based Toffoli gate cascade synthesis

algorithm is presented. The algorithm is capable of generating

a cascade of reversible gates for logic functions with large

numbers of qubits. The algorithm is fast as it uses a simple cost

metric heuristic during a recursive divide-and-conquer function

to determine NOT and Toffoli gate placement

I. INTRODUCTION

Reversible computing has of late been gaining a great deal
of attention from researchers. There are a number of reasons
for this attention. One reason is the fact that a computer
based on reversible logic operations should be able to reuse a
fraction of the signal energies that comes close to 100% [1], a
result first identified in [2]. Another reason for the interest in
reversible computing is in its’ relationship to quantum
computing; indeed, reversible computing can be considered a
special case of quantum computing [3] and many researchers
believe that logic synthesis for classical reversible circuits is a
first step towards synthesis of quantum circuits [4].

This paper describes a technique for synthesizing a logic
function, represented as an exclusive-or sum-of-products
(ESOP), to a cascade of reversible Toffoli gates. This
technique is of particular interest since it is one of few in the
literature that bases its starting representation and intermediate
manipulation on a list of cubes (or products) rather than a truth
table. We first present a rather simplified technique based on
a straightforward mapping of cubes to reversible gates. This
first technique generates circuits requiring a higher than usual
number of qubits, and so we subsequently present an
optimization intended to reduce the number of required qubits.

The paper progresses as follows: Section II provides some
brief background on reversible logic and the ESOP
representation, while Section III gives an overview of related
work. We then present the basic method in Section IV,
followed by a description of an optimization in Section V and
our experimental results in Section VI. Since this is relatively
new we intend to continue developing and applying
optimizations, and some of these are detailed in Section VII,
Conclusions and Future Work.

II. BACKGROUND

A. Reversible Logic

According to Shende et al., a gate is reversible if the
(Boolean) function it computes is bijective [4], and a circuit is
considered reversible if it consists entirely of reversible gates.
For example, the function whose truth table is given in Fig.
1A) is reversible while the function in Fig. 1B) is not.

There are many reversible gates that may be used in
synthesis; however in this work only NOT and Toffoli (TOF)
gates are used. The symbols used for these gates are shown in
Figure 2. A NOT gate has the usual behavior; that is,

1x x where denotes the exclusive-or operator. A

Toffoli (TOF) gate has similar behavior, but is controlled by
one or more other qubits whose values are not affected; for
example, a TOF2 gate with two control bits x and y, has the

behavior , , , ,x y z x y xy z . We refer to the computing

elements, or “signals” in a reversible function as qubits; the
reader is referred to [3] for details on quantum computing.

xy x’y’ xy f(xy)

00
01
10
11

00
10
01
11

 00
01
10
11

0
0
0
1

A) B)

Figure 1. A) Example reversible function. B) Example irreversible

function.

 A) B)

Figure 2. A) NOT and B) TOF1 gate

1-4244-1190-4/07/$25.00 ©2007 IEEE. 206 PACRIM'07

B. ESOPs

An exclusive-or sum-of-products (ESOP) representation is
a variation of the more traditional sum-of-products (SOP).

For example, f xy yz is in a sum-of-products form. If we

replace the OR (+) operator with exclusive-or () then the

function is an ESOP, for example f x yz yz . ESOPs

have a variety of nice properties, as detailed in [5], and any
Boolean function can be represented as an ESOP.

III. RELATED WORK

Although there are a variety of synthesis techniques for
reversible logic in the literature, here we will describe only
those that utilize an ESOP or similar representation.

Gupta et al. [6] present a reversible logic synthesis
technique based on a related representation, the positive-
polarity Reed-Muller (PPRM) expansion. Rather than use an
approach requiring one gate for each term in the expansion
they utilize a tree structure to enable investigation of all
possible factors of each term, and thus are able to construct a
circuit that shares factors. The PPRM representation, while
canonical, is a special type of ESOP, with a more rigorous
definition, and thus will almost always have more terms than
the ESOP representation used in our work.

Maslov and Dueck have also conducted an analytical
comparison of their technique and EXOR PLAs, a structure
that can implement ESOP representations [7]. They find that
their reversible cascade with minimal garbage (RCMG) model
compares favorably to an EXOR PLA, particularly for one
class of functions for which the ESOP representation has
exponential complexity. However, their analysis is based
entirely on circuit complexity.

Finally, Perkowski and other researchers have also looked
into using ESOPs as a starting point for reversible logic
synthesis [8]. In [8] a new class of reversible gates is
introduced, allowing modification of two qubits, but requiring
a significantly higher level of complexity. The technique in
[8] also requires a factorization of each of the ESOPs
representing the multiple outputs. This method reported
achieving good results in terms of gate numbers – in many
cases they required only one gate per product term in the
ESOP representation – but did require the use of some garbage
lines.

IV. ESOP MAPPING METHOD

The ESOP mapping method can be described as follows.
We assume a circuit is given in an ESOP cube-list
representation. The circuit to be generated will require 2n+m
qubits where n is the number of inputs to the function and m is
the number of outputs (of course, in a reversible function,
m=n in the best case). The 2n qubits correspond to each input
in the positive and negative polarity. The algorithm then
generates a Toffoli gate for each cube of each output in the list
of ESOP cubes. The basic algorithm is outlined in Figure 3.
An example is shown in Figure 4.

V. OPTIMIZATION

The first optimization to consider is how to reduce the
number of qubits; for an n-input reversible function most
synthesis techniques require only n qubits, while our basic
method requires 2n+m. In many cases it may be likely that
the negated form of a literal is not used, and when it is used, it
can be generated by using a NOT gate on the qubit supplying
the non-negated form of the literal.

We have implemented a technique by which a cost metric
is computed for each allowable variable. The cube list is then
sorted in such a way that, for the variable with the lowest cost
metric, all cubes with its non-negated form appear before all
cubes containing its negated form. For cubes where the
variable is a don’t care, we arbitrarily place that cube in the
non-negated list. This process is then repeated within these
two halves, and so on. Due to the use of an ESOP
representation, the algorithm is able to freely reorder a cube
list into the two halves, giving the algorithm greater flexibility
in determining NOT and TOF gate placement.

.i 3

.o 2

.type esop

1-1 01

-11 11

11- 01

-00 10

0-- 10

.e

Figure 4. A) Full Adder ESOP Cubelist. B) ESOP Mapping

Method applied to A)

 A) B)

Figure 3. ESOP Mapping Method

basicCascadeGen(esop)
 cascade.toffoliList = empty

 //create qubits
 foreach i in esop.inputs

 //add a qubit representing literals of i
 cascade.addQubit(i, positive)
 cascade.addQubit(i, negative)
 foreach o in esop.outputs
 //add a constant 0 qubit for each output
 cascade.addQubit(o, constant 0)
 //create TOF gates
 foreach c in esop.cubes
 foreach o in esop.outputs
 If c in onset(o)
 //add a toffoli gate
 t = new ToffoliGate
 t.target = cascade.getQubit(output)
 for each literal in c
 t.addControl(cascade.getQubit(literal))
 cascade.addToffoli(t)

207

The variable v cost metric is shown in (1). The cost metric
gives lower scores to variables in a cube list that:

are balanced with respect to its literals

appear frequently

v

i

1
cost

 1 is positive, 1
 in cube

where 1

0

i

i

i

i

i

v
v

v v
v

v

v

A standard cube is normally represented as a string consisting

of ‘0’, ‘1’, and ‘-‘ terms for each variable, depending if the

variable is present in negative or positive polarity, or is a don’t

care. As (1) suggests, ‘0’ is converted to -1, ‘1’ is converted

to +1, and ‘-‘ is converted to 0. Additionally, the two

coefficients and are used to control the effect of either

portion of the cost metric. controls the weight of the

variable frequency term and controls the balanced variable

term. One may see that the term becomes smaller, as the

summation term in the denominator becomes larger, which

corresponds directly with the number of times a variable

appears in a cube list. The term gets bigger if the variable

is not balanced with respect positive/negative literal

appearance.
The resulting cascade uses n+m qubits rather than 2n+m

generated in the initial method. Figure details the algorithm.
Figure 6 shows the full adder in Figure 4 after the algorithm is
applied to it.

VI. EXPERIMENTAL RESULTS

For this work we used EXORCISM-4 [9] to preprocess the
benchmarks and produce a minimal ESOP representation.
The implementation of the algorithms is in C++. The results
were generated on a 3.00 GHz Intel D CPU with 2GB RAM.

Results for a number of binary functions (not necessarily
reversible) given as pla benchmarks are reported in Table I.

Each result is the smallest one produced by this technique in
terms of the number of Toffoli gates generated. For each
circuit the following information is given:

circuit : circuit name

in : number of inputs

out : number of outputs

esopCubes : number of ESOP Cubes due to
EXORCISM-4

TOF Gates: number of Toffoli gates generated

NOT Gates : number of NOT gates generated

: value used during cost metric calculation

: value used during cost metric calculation

esopTime: cpu time expended to generate an
ESOP cube list from the pla (for reference

purposes only)

cascadeGenTime : cpu time expended to perform
the optimized cascade generation algorithm

In Table I, the synthesis times reported are all < 1 second,
even for circuits with over 100 inputs. However, one may
note that the full adder was generated with 6 TOF gates and 3
NOT gates, while it is known that a full adder can be
optimally implemented with 4 gates total. Additionally, xor5
has 2 NOT gates, which are unnecessary. The presence of the
NOT gates is due to the initial ESOP cube list. So, there is a
trade off between synthesis speed and quality of the resulting
cascade in terms of the number of TOF gates.

Additionally, the results make a distinction between the
number of TOF gates and number of NOT gates generated.
The number of gates is purely based on the number of shared
cubes of the ESOP cube list. One must also be aware these
cascades may be comprised of TOF gates with a large number
of control qubits. In general, circuits with large input sizes
will generally have large TOF sizes as well.

The most noteworthy observation is how the algorithm is
able to handle circuits with fairly large input sizes. This is a
characteristic that is not shared by many other cascade
generation algorithms. In the literature, other algorithms are
reported to handle circuits with input sizes of up to 20 and for
special cases. We attribute this capability to the fact that the
algorithms presented here do not rely upon truth tables as
input and also do not traverse a large search space during gate
placement. The largest circuit generated was frg2, which has
143 inputs and 139 outputs.

Additionally, varying sets of coefficients were set up such
that 1 . This was done to gauge the effectiveness of

either parameter in determining the best split variable. In our
experiments, no clear set of coefficients was found that
consistently generated cascades with fewer NOT gates.

Figure 5. Cascade Generation with Not Insertion

reorder(cubes, polarity, vars)
if(cubes.isEmpty || vars.isEmpty)
 return cubes
bestVar = calcBestVar(cubes, vars)
{pCubes, nCubes} = split(cubes, bestVar)
pReorder = reorder(pCubes, positive, vars – bestVar)
nReorder = reorder(nCubes, negative, vars – bestVar)
if(polarity==negative)
 nReorderNots = addNots(nReordered, bestVar)
reorderedCubes = reconnect(pReorder, nReorderNots)
return reorderedCubes

cascadeGen(esop)
reorderedCubes = reorder(esop.cubes, positive, esop.vars)
cascade = convertCubesToToffoli(reorderedCubes)

removeExtraNots(cascade)

Figure 6. Full Adder with NOTs

208

VII. CONCLUSIONS & FUTURE WORK

We presented an ESOP based algorithm for cascade
synthesis that is able to generate cascades for functions with
large number of input variables. This is in part due to the
algorithm not being reliant upon exponentially-sized input,
such as truth tables. The algorithm is fast as it uses a simple
cost metric heuristic during a recursive divide-and-conquer
method to determine NOT and TOF gate placement.
However, the resulting cascades require n+m qubits

We believe this approach may be a viable initial mapping
procedure that can be followed by circuit quality enhancing
optimizations to be developed in the future. Other future work
includes developing techniques for reducing the number of
initial ancilla inputs by augmenting the cascade with
additional gates that allow for the “literal” outputs to generate
function outputs.

REFERENCES

[1] M. P. Frank, “Introduction to Reversible Computing: Motivation,
Progress, and Challenges,” Proc. 2nd Conference on Computing
Frontiers, pp. 385–390, 2005.

[2] LR. Landauer, “Irreversiblbility and Heat Generation in the Computing
Process,” IBM Journal of Research and Development 5, pp. 183–191
(July 1961).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information. Cambridge University Press, 2000.

[4] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes, “Synthesis
of Reversible Logic Circuits,” IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems, 22(6), pp. 710–722, (June 2003).

[5] B. Steinbach and A. Mishchenko, “SNF: a Special Normal Form for
ESOPs,” Proc. Reed-Muller Workshop, pp. 66–81, 2001.

[6] P. Gupta, A. Agrawal, and N. K. Jha. “An Algorithm for Synthesis of
Reversible Logic Circuits,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 25(11), pp. 2317–2330, (Nov. 2006).

[7] D. Maslov and G. W. Dueck, "Complexity of Reversible Toffoli
Cascades and EXOR PLAs", Proc. 12th International Workshop on
Post-Binary ULSI Systems, Tokyo, May 2003 (downloaded Mar. 2007
from http://www.cs.unb.ca/profs/gdueckreversible/esop.pdf).

[8] M. H. A. Khan and M. A. Perkowski, “Multi-Output ESOP Synthesis
with Cascades of New Reversible Gate Family”, Proc. 6th International
Symposium on Representations and Methodology of Future Computing
Technology, (RM), pp. 144–153, 2003

[9] A. Mishchenko and M. Perkowski, “Fast Heuristic Minimization of
Exclusive-Sums-or-Products”, 5th International Reed-Muller Workshop,
pp. 242–250, 2001.

TABLE I. EXPERIMENTAL RESULTS

Circuit in out esopCubes TOF Gates NOT Gates esopTime (s) cascadeGenTime (s)

bw 5 28 22 251 11 1.00 0.00 0.02 0.00

xor5 5 1 5 5 2 1.00 0.00 0.00 0.00

5xp1 7 10 31 61 29 0.50 0.50 0.01 0.00

risc 8 31 27 133 19 0.50 0.50 0.02 0.00

cordic 23 2 776 1546 711 0.75 0.25 14.67 0.02

ttt2 24 21 60 92 41 1.00 0.00 0.08 0.00

vg2 25 8 184 214 286 1.00 0.00 0.11 0.02

bc0 26 11 167 562 158 0.75 0.25 0.47 0.00

in7 26 10 35 64 34 0.75 0.25 0.02 0.00

chkn 29 7 144 147 202 0.50 0.50 0.14 0.02

term1 34 10 540 702 127 0.25 0.75 2.62 0.02

apex2 39 3 1637 1755 1005 0.75 0.25 45.27 0.06

seq 41 35 248 1877 272 0.25 0.75 1.29 0.02

apex1 45 45 288 1348 306 0.75 0.25 1.31 0.03

apex3 54 50 258 2045 278 0.75 0.25 6.90 0.05

dalu 75 16 1472 3472 644 1.00 0.00 0.11 0.00

e64 65 65 65 129 64 0.75 0.25 0.06 0.03

example2 85 66 205 280 81 0.25 0.75 3.35 0.05

x4 97 71 299 460 155 1.00 0.00 2.41 0.05

apex5 117 88 398 541 163 0.50 0.50 4.98 0.16

ex4 128 28 316 321 417 0.75 0.25 0.91 0.20

apex6 135 99 409 569 236 1.00 0.00 6.86 0.14

frg2 143 139 1116 1971 339 0.50 0.50 184.70 0.72

i2 201 1 257 257 536 0.75 0.25 0.80 0.28

209

