
Placement



CAD for VLSI 2

Introduction

• A very important step in physical design cycle.
– A poor placement requires larger area.
– Also results in performance degradation.

• It is the process of arranging a set of modules on 
the layout surface.
– Each module has fixed shape and fixed terminal locations.
– A subset of modules may have pre-assigned positions 

(e.g., I/O pads).



CAD for VLSI 3

The Placement Problem

• Inputs:
– A set of modules with 

• well-defined shapes
• fixed locations of pins.

– A netlist.
• Requirements:

– Find locations for each module so that no two modules overlap.
– The placement is routable.

• Objectives:
– Minimize layout area.
– Reduce the length of critical nets.
– Completion of routing.



CAD for VLSI 4

Placement Problems at Different Levels

1. System-level placement
– Place all the PCBs together such that

• Area occupied is minimum
• Heat dissipation is within limits.

2. Board-level placement
– All the chips have to be placed on a PCB. 

• Area is fixed
• All modules of rectangular shape

– Objective is to
• Minimize the number of routing layers
• Meet system performance requirements.



CAD for VLSI 5

3. Chip-level placement
– Normally, floorplanning / placement carried out along 

with pin assignment.
– Limited number of routing layers (2 to 4).

• Bad placements may be unroutable.
• Can be detected only later (during routing).
• Costly delays in design cycle.

– Minimization of area.



CAD for VLSI 6

Problem Formulation

• Notations:
B1,B2,…, Bn :   modules/blocks to be placed

wi, hi :   width and height of Bi, 1 ≤ i ≤ n 
N={N1,N2,…,Nm} :   set of nets (i.e. the netlist)

Q={Q1,Q2,…,Qk} :   rectangular empty spaces for routing

Li :   estimated length of net Ni, 1 ≤ i ≤ m



CAD for VLSI 7

Contd.

• The problem
Find rectangular regions R={R1,R2,...Rn} for each of the blocks 

such that
• Block Bi can be placed in region Ri.
• No two rectangles overlap, Ri∩Rj = Φ.
• Placement is routable (Q is sufficient to route all nets).
• Total area of rectangle bounding R and Q is minimized.
• Total wire length  ΣLi is minimized.
• For high performance circuits, max {Li | i=1,2,…,m} is 

minimized.
• General problem is NP-complete.
• Algorithms used are heuristic in nature.



CAD for VLSI 8



CAD for VLSI 9

Interconnection Topologies

• The actual wiring paths are not known during 
placement.
– For making an estimation, a placement algorithm needs to 

model the topology of the interconnection nets.
• An interconnection graph structure is used.
• Vertices are terminals, and edges are interconnections.



CAD for VLSI 10

Estimation of Wirelength

• The speed and quality of estimation has a drastic 
effect on the performance of placement algorithms.
– For 2-terminal nets, we can use Manhattan distance as an 

estimate.
– If the end co-ordinates are (x1,y1) and (x2,y2), then the wire 

length
L = ⎥ x1 – x2 ⎥ + ⎥ y1 – y2⎥

• How to estimate length of multi-terminal nets?



CAD for VLSI 11

Modeling of Multi-terminal Nets

1. Complete Graph
• nC2 = n(n-1)/2 edges for a n-pin net.
• A tree has (n-1) edges which is 2/n times the number 

of edges of the complete graph.
• Length is estimated as 2/n times the sum of the edge 

weights.
2. Minimum Spanning Tree

• Commonly used structure.
• Branching allowed only at pin locations.
• Easy to compute.



CAD for VLSI 12

Contd.

3. Rectangular Steiner Tree
• A Steiner tree is the shortest route for connecting a 

set of pins.
• A wire can branch from any point along its length.
• Problem of finding Steiner tree is NP-complete.

4. Semi Perimeter 
• Efficient and most widely used.
• Finds the smallest bounding rectangle that encloses 

all the pins of the net to be connected.
• Estimated wire length is half the perimeter of this 

rectangle.
• Always underestimates the wire length for congested 

nets.



CAD for VLSI 13

Example
Complete Graph Minimum Spanning Tree

Semi PerimeterSteiner Tree



CAD for VLSI 14

Design Style Specific Issues

• Full Custom
– Placing a number of blocks of various shapes and sizes 

within a rectangular region.
– Irregularity of block shapes may lead to unused areas.

• Standard Cell
– Minimization of the layout area means:

• Minimize sum of channel heights.
• Minimize width of the widest row.
• All rows should have equal width.

– Over-the-cell routing leads to almost “channel-less”
standard cell designs.



CAD for VLSI 15

• Gate Arrays
– The problem of partitioning and placement are the same in 

this design style.
– For FPGA’s, the partitioned sub-circuit may be a complex 

netlist.
• Map the netlist to one or more basic blocks (placement).



CAD for VLSI 16

Classification of Placement Algorithms

Placement Algorithms

OtherSimulation Based Partitioning Based

Simulated Annealing

Simulated Evolution

Force Directed

Breuer’s Algorithm

Terminal Propagation

Cluster Growth

Force Directed



CAD for VLSI 17

Simulated Annealing

• Simulation of the annealing process in metals or 
glass.
– Avoids getting trapped in local minima.
– Starts with an initial placement.
– Incremental improvements by exchanging blocks, 

displacing a block, etc.
– Moves which decrease cost are always accepted.
– Moves which increase cost are accepted with a probability 

that decreases with the number of iterations.
• Timberwolf is one of the most successful placement 

algorithms based on simulated annealing.



CAD for VLSI 18

Simulated Annealing Algorithm

Algorithm  SA_Placement
begin

T = initial_temperature;
P = initial_placement;
while  ( T > final_temperature)  do

while  (no_of_trials_at_each_temp not yet completed) do
new_P = PERTURB (P);
ΔC = COST (new_P) – COST (P);
if  (ΔC < 0)  then

P = new_P;
else if  (random(0,1) > exp(ΔC/T))  then

P = new_P;
T = SCHEDULE (T);        /** Decrease temperature **/

end



CAD for VLSI 19

TimberWolf

• One of the most successful placement algorithms.
– Developed by Sechen and Sangiovanni-Vincentelli.

• Parameters used:
– Initial_temperature = 4,000,000
– Final_temperature = 0.1
– SCHEDULE(T) = α(T) x T

• α(T) specifies the cooling rate which depends on the 
current temperature.

• α(T) is 0.8 when the cooling process just starts.
• α(T) is 0.95 in the medium range of temperature.
• α(T) is 0.8 again when temperature is low.



CAD for VLSI 20

The SCHEDULE Function



CAD for VLSI 21

The PERTURB Function

• New configuration is generated by making a 
weighted random selection from one of the 
following:

a) The displacement of a block to a new location.
b) The interchange of locations between two blocks.
c) An orientation change for a block.

– Mirror image of the block’s x-coordinate.
– Used only when a new configuration generated using 

alternative (a) is rejected.



CAD for VLSI 22

The COST Function

• The cost of a solution is computed as:
COST  =  cost1  +  cost2  + cost3

where cost1 : weighted sum of estimated length of all nets
cost2 :  penalty cost for overlapping
cost3 :  penalty cost for uneven length among

standard cell rows.
– Overlap is not allowed in placement.
– Computationally complex to remove all overlaps.
– More efficient to allow overlaps during intermediate 

placements.
• Cost function (cost2) penalizes the overlapping. 



CAD for VLSI 23

Simulated Evolution / Genetic Algorithm

• The algorithm starts with an initial set of placement 
configurations.
– Called the population.

• The process is iterative, where each iteration is 
called a generation.
– The individuals of a population are evaluated to measure 

their goodness.
• To move from one generation to the next, three 

genetic operators are used:
• Crossover
• Mutation
• Selection



CAD for VLSI 24

CROSSOVER Operator

• Choose a random cut point.
• Generate offsprings by combining the left segment 

of one parent with the right segment of the other.
– Some blocks may get repeated, while some others may get 

deleted.
– Various ways to deal with this problem.

• Number of times the “crossover” operator is applied 
is controlled by crossover rate.



CAD for VLSI 25

MUTATION Operator

• Causes incremental random changes to an offspring 
produced by crossover.

• Most common is pairwise exchange.
• Number of times this is done is controlled by 

mutation rate.



CAD for VLSI 26

SELECT Operator

• Select members for crossover based on their fitness 
value.
– Obtained by evaluating a cost function.

• Higher the fitness value of a solution, higher will be 
the probability for selection for crossover.



CAD for VLSI 27

Force Directed Placement

• Explores the similarity between placement problem 
and classical mechanics problem of a system of 
bodies attached to springs.

• The blocks connected to each other by nets are 
supposed to exert attractive forces on each other.
– Magnitude of this force is directly proportional to the 

distance between the blocks.
• Analogous to Hooke’s law in mechanics.

– Final configuration is one in which the system achieves 
equilibrium.



CAD for VLSI 28

Contd.

• A cell i connected to several cells j experiences a total 
force

Fi =  Σj (wij * dij)
where wij is the weight of connection between i and j

dij is the distance between i and j. 
• If the cell i is free to move, it would do so in the 

direction of force Fi until the resultant force on it is 
zero.

• When all cells move to their zero-force target locations, 
the total wire length is minimized.



CAD for VLSI 29

Contd.

• For cell i, if (xi
0, yi

0) represents the zero-force target 
location, by equating the x- and y-components of 
the force to zero, we get

Σj ((wij * (xj – xi
0))  =  0

Σj ((wij * (yj – yi
0))  =  0

• Solving for xi
0 and yi

0, we get
xi

0 = (Σj (wij * xj))  / (Σj wij)
yi

0 = (Σj (wij * yj))  / (Σj wij)
• Care should be taken to avoid assigning more than 

one cell to the same location.



CAD for VLSI 30

Example



CAD for VLSI 31

Force Directed Approach for 
Constructive Placement

• The basic approach can be generalized for 
constructive placement.
– Starting with some initial placement, one module is 

selected at a time, and its zero-force location computed.
– The process can be iterated to improve upon the solution 

obtained.
– The order of the cells can be random or driven by some 

heuristic.
• Select the cell for which Fi is maximum.



CAD for VLSI 32

Breuer’s Algorithm

• Partitioning technique used to generate placement.
• The given circuit is repeatedly partitioned into two 

sub-circuits.
– At each level of partitioning, the available layout area is 

partitioned into horizontal and vertical subsections 
alternately.

– Each of the sub-circuits is assigned to a subsection.
– Process continues till each sub-circuit consists of a single 

gate, and has a unique place on the layout area.



CAD for VLSI 33

Contd.

• Different sequences of cut lines used:
1. Cut Oriented Min-Cut Placement
2. Quadrature Placement
3. Bisection Placement
4. Slice Bisection Placement

• These are illustrated diagrammatically.



CAD for VLSI 34

Illustration

4

3

2

1

1

3

2b

2a

4

3

4b4a

2b

1b

2b

2a2a 1a

6b56a

2
1

Cut-
Oriented

Slice 
BisectionBisection

Quadrature



CAD for VLSI 35

Terminal Propagation Algorithm

• Partitioning algorithms merely reduce net cut.
• Direct use of partitioning algorithms would increase 

net length.
– Also increases congestion in the channels.

• To prevent this, terminal propagation is used.
– When a net connecting two terminals is cut, a dummy 

terminal is propagated to the nearest pin on the boundary.
– When this dummy terminal is generated, the partitioning 

algorithm will not assign the two terminals in each partition 
into different partitions, as this would not result in a 
minimum cut.



CAD for VLSI 36

Illustration :: Terminal Propagation

BB

A

B
A

A

B

A

::  Dummy terminal ::  Terminal



CAD for VLSI 37

Cluster Growth

• In this constructive placement algorithm, bottom-
up approach is used.

• Blocks are placed sequentially in a partially 
completed layout.
– The first block (seed) is usually placed by the user.
– Other blocks are selected and placed one by one.

• Selection of blocks is usually based on 
connectivity with placed blocks.



CAD for VLSI 38

Contd.

• Layouts produced are not usually good.
– Does not take into account the interconnections and other 

circuit features.
• Useful for generating initial placements.

– For iterative placement  algorithms.



CAD for VLSI 39

Algorithm  Cluster_Growth
begin

B = set of blocks to be placed;
Select a seed block S from B;
Place S in the layout;
B = B – S;
while  (B ≠ φ) do

begin
Select a block X from B;
Place X in the layout;
B = B – X;

end;
end



CAD for VLSI 40

Performance Driven Placement

• The delay at chip level plays an important role in 
determining the performance of the chip.
– Depends on interconnecting wires.

• As the blocks in a circuit becomes smaller and 
smaller:
– The size of the chip decreases.
– Interconnection delay becomes a major issue in high-

performance circuits.
• Placement algorithms for high-performance chips:

– Allow routing of nets within timing constraints.



CAD for VLSI 41

Contd.

• Two major categories of algorithms:
1. Net-based approach

• Try to route the nets to meet the timing constraints on 
the individual nets instead of considering paths.

• The timing requirement for each net has to be decided 
by the algorithm.

• Usually a pre-timing analysis generates the bounds on 
the net-lengths which must be satisfied during 
placement.

2. Path-based approach
• Critical paths in the circuit are considered.
• Try to place the blocks in a manner that the path length 

is within the timing constraint.


