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Introduction

• A very important step in physical design cycle.
– A poor placement requires larger area.
– Also results in performance degradation.

• It is the process of arranging a set of modules on 
the layout surface.
– Each module has fixed shape and fixed terminal locations.
– A subset of modules may have pre-assigned positions 

(e.g., I/O pads).
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The Placement Problem

• Inputs:
– A set of modules with 

• well-defined shapes
• fixed locations of pins.

– A netlist.
• Requirements:

– Find locations for each module so that no two modules overlap.
– The placement is routable.

• Objectives:
– Minimize layout area.
– Reduce the length of critical nets.
– Completion of routing.
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Placement Problems at Different Levels

1. System-level placement
– Place all the PCBs together such that

• Area occupied is minimum
• Heat dissipation is within limits.

2. Board-level placement
– All the chips have to be placed on a PCB. 

• Area is fixed
• All modules of rectangular shape

– Objective is to
• Minimize the number of routing layers
• Meet system performance requirements.
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3. Chip-level placement
– Normally, floorplanning / placement carried out along 

with pin assignment.
– Limited number of routing layers (2 to 4).

• Bad placements may be unroutable.
• Can be detected only later (during routing).
• Costly delays in design cycle.

– Minimization of area.
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Problem Formulation

• Notations:
B1,B2,…, Bn :   modules/blocks to be placed

wi, hi :   width and height of Bi, 1 ≤ i ≤ n 
N={N1,N2,…,Nm} :   set of nets (i.e. the netlist)

Q={Q1,Q2,…,Qk} :   rectangular empty spaces for routing

Li :   estimated length of net Ni, 1 ≤ i ≤ m
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Contd.

• The problem
Find rectangular regions R={R1,R2,...Rn} for each of the blocks 

such that
• Block Bi can be placed in region Ri.
• No two rectangles overlap, Ri∩Rj = Φ.
• Placement is routable (Q is sufficient to route all nets).
• Total area of rectangle bounding R and Q is minimized.
• Total wire length  ΣLi is minimized.
• For high performance circuits, max {Li | i=1,2,…,m} is 

minimized.
• General problem is NP-complete.
• Algorithms used are heuristic in nature.
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Interconnection Topologies

• The actual wiring paths are not known during 
placement.
– For making an estimation, a placement algorithm needs to 

model the topology of the interconnection nets.
• An interconnection graph structure is used.
• Vertices are terminals, and edges are interconnections.
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Estimation of Wirelength

• The speed and quality of estimation has a drastic 
effect on the performance of placement algorithms.
– For 2-terminal nets, we can use Manhattan distance as an 

estimate.
– If the end co-ordinates are (x1,y1) and (x2,y2), then the wire 

length
L = ⎥ x1 – x2 ⎥ + ⎥ y1 – y2⎥

• How to estimate length of multi-terminal nets?
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Modeling of Multi-terminal Nets

1. Complete Graph
• nC2 = n(n-1)/2 edges for a n-pin net.
• A tree has (n-1) edges which is 2/n times the number 

of edges of the complete graph.
• Length is estimated as 2/n times the sum of the edge 

weights.
2. Minimum Spanning Tree

• Commonly used structure.
• Branching allowed only at pin locations.
• Easy to compute.
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3. Rectangular Steiner Tree
• A Steiner tree is the shortest route for connecting a 

set of pins.
• A wire can branch from any point along its length.
• Problem of finding Steiner tree is NP-complete.

4. Semi Perimeter 
• Efficient and most widely used.
• Finds the smallest bounding rectangle that encloses 

all the pins of the net to be connected.
• Estimated wire length is half the perimeter of this 

rectangle.
• Always underestimates the wire length for congested 

nets.
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Example
Complete Graph Minimum Spanning Tree

Semi PerimeterSteiner Tree
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Design Style Specific Issues

• Full Custom
– Placing a number of blocks of various shapes and sizes 

within a rectangular region.
– Irregularity of block shapes may lead to unused areas.

• Standard Cell
– Minimization of the layout area means:

• Minimize sum of channel heights.
• Minimize width of the widest row.
• All rows should have equal width.

– Over-the-cell routing leads to almost “channel-less”
standard cell designs.
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• Gate Arrays
– The problem of partitioning and placement are the same in 

this design style.
– For FPGA’s, the partitioned sub-circuit may be a complex 

netlist.
• Map the netlist to one or more basic blocks (placement).
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Classification of Placement Algorithms

Placement Algorithms

OtherSimulation Based Partitioning Based

Simulated Annealing

Simulated Evolution

Force Directed

Breuer’s Algorithm

Terminal Propagation

Cluster Growth

Force Directed
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Simulated Annealing

• Simulation of the annealing process in metals or 
glass.
– Avoids getting trapped in local minima.
– Starts with an initial placement.
– Incremental improvements by exchanging blocks, 

displacing a block, etc.
– Moves which decrease cost are always accepted.
– Moves which increase cost are accepted with a probability 

that decreases with the number of iterations.
• Timberwolf is one of the most successful placement 

algorithms based on simulated annealing.
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Simulated Annealing Algorithm

Algorithm  SA_Placement
begin

T = initial_temperature;
P = initial_placement;
while  ( T > final_temperature)  do

while  (no_of_trials_at_each_temp not yet completed) do
new_P = PERTURB (P);
ΔC = COST (new_P) – COST (P);
if  (ΔC < 0)  then

P = new_P;
else if  (random(0,1) > exp(ΔC/T))  then

P = new_P;
T = SCHEDULE (T);        /** Decrease temperature **/

end



CAD for VLSI 19

TimberWolf

• One of the most successful placement algorithms.
– Developed by Sechen and Sangiovanni-Vincentelli.

• Parameters used:
– Initial_temperature = 4,000,000
– Final_temperature = 0.1
– SCHEDULE(T) = α(T) x T

• α(T) specifies the cooling rate which depends on the 
current temperature.

• α(T) is 0.8 when the cooling process just starts.
• α(T) is 0.95 in the medium range of temperature.
• α(T) is 0.8 again when temperature is low.
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The SCHEDULE Function
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The PERTURB Function

• New configuration is generated by making a 
weighted random selection from one of the 
following:

a) The displacement of a block to a new location.
b) The interchange of locations between two blocks.
c) An orientation change for a block.

– Mirror image of the block’s x-coordinate.
– Used only when a new configuration generated using 

alternative (a) is rejected.
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The COST Function

• The cost of a solution is computed as:
COST  =  cost1  +  cost2  + cost3

where cost1 : weighted sum of estimated length of all nets
cost2 :  penalty cost for overlapping
cost3 :  penalty cost for uneven length among

standard cell rows.
– Overlap is not allowed in placement.
– Computationally complex to remove all overlaps.
– More efficient to allow overlaps during intermediate 

placements.
• Cost function (cost2) penalizes the overlapping. 
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Simulated Evolution / Genetic Algorithm

• The algorithm starts with an initial set of placement 
configurations.
– Called the population.

• The process is iterative, where each iteration is 
called a generation.
– The individuals of a population are evaluated to measure 

their goodness.
• To move from one generation to the next, three 

genetic operators are used:
• Crossover
• Mutation
• Selection
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CROSSOVER Operator

• Choose a random cut point.
• Generate offsprings by combining the left segment 

of one parent with the right segment of the other.
– Some blocks may get repeated, while some others may get 

deleted.
– Various ways to deal with this problem.

• Number of times the “crossover” operator is applied 
is controlled by crossover rate.
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MUTATION Operator

• Causes incremental random changes to an offspring 
produced by crossover.

• Most common is pairwise exchange.
• Number of times this is done is controlled by 

mutation rate.
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SELECT Operator

• Select members for crossover based on their fitness 
value.
– Obtained by evaluating a cost function.

• Higher the fitness value of a solution, higher will be 
the probability for selection for crossover.
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Force Directed Placement

• Explores the similarity between placement problem 
and classical mechanics problem of a system of 
bodies attached to springs.

• The blocks connected to each other by nets are 
supposed to exert attractive forces on each other.
– Magnitude of this force is directly proportional to the 

distance between the blocks.
• Analogous to Hooke’s law in mechanics.

– Final configuration is one in which the system achieves 
equilibrium.
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• A cell i connected to several cells j experiences a total 
force

Fi =  Σj (wij * dij)
where wij is the weight of connection between i and j

dij is the distance between i and j. 
• If the cell i is free to move, it would do so in the 

direction of force Fi until the resultant force on it is 
zero.

• When all cells move to their zero-force target locations, 
the total wire length is minimized.
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Contd.

• For cell i, if (xi
0, yi

0) represents the zero-force target 
location, by equating the x- and y-components of 
the force to zero, we get

Σj ((wij * (xj – xi
0))  =  0

Σj ((wij * (yj – yi
0))  =  0

• Solving for xi
0 and yi

0, we get
xi

0 = (Σj (wij * xj))  / (Σj wij)
yi

0 = (Σj (wij * yj))  / (Σj wij)
• Care should be taken to avoid assigning more than 

one cell to the same location.
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Example
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Force Directed Approach for 
Constructive Placement

• The basic approach can be generalized for 
constructive placement.
– Starting with some initial placement, one module is 

selected at a time, and its zero-force location computed.
– The process can be iterated to improve upon the solution 

obtained.
– The order of the cells can be random or driven by some 

heuristic.
• Select the cell for which Fi is maximum.
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Breuer’s Algorithm

• Partitioning technique used to generate placement.
• The given circuit is repeatedly partitioned into two 

sub-circuits.
– At each level of partitioning, the available layout area is 

partitioned into horizontal and vertical subsections 
alternately.

– Each of the sub-circuits is assigned to a subsection.
– Process continues till each sub-circuit consists of a single 

gate, and has a unique place on the layout area.
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• Different sequences of cut lines used:
1. Cut Oriented Min-Cut Placement
2. Quadrature Placement
3. Bisection Placement
4. Slice Bisection Placement

• These are illustrated diagrammatically.
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Illustration
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Terminal Propagation Algorithm

• Partitioning algorithms merely reduce net cut.
• Direct use of partitioning algorithms would increase 

net length.
– Also increases congestion in the channels.

• To prevent this, terminal propagation is used.
– When a net connecting two terminals is cut, a dummy 

terminal is propagated to the nearest pin on the boundary.
– When this dummy terminal is generated, the partitioning 

algorithm will not assign the two terminals in each partition 
into different partitions, as this would not result in a 
minimum cut.
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Illustration :: Terminal Propagation
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Cluster Growth

• In this constructive placement algorithm, bottom-
up approach is used.

• Blocks are placed sequentially in a partially 
completed layout.
– The first block (seed) is usually placed by the user.
– Other blocks are selected and placed one by one.

• Selection of blocks is usually based on 
connectivity with placed blocks.



CAD for VLSI 38

Contd.

• Layouts produced are not usually good.
– Does not take into account the interconnections and other 

circuit features.
• Useful for generating initial placements.

– For iterative placement  algorithms.
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Algorithm  Cluster_Growth
begin

B = set of blocks to be placed;
Select a seed block S from B;
Place S in the layout;
B = B – S;
while  (B ≠ φ) do

begin
Select a block X from B;
Place X in the layout;
B = B – X;

end;
end



CAD for VLSI 40

Performance Driven Placement

• The delay at chip level plays an important role in 
determining the performance of the chip.
– Depends on interconnecting wires.

• As the blocks in a circuit becomes smaller and 
smaller:
– The size of the chip decreases.
– Interconnection delay becomes a major issue in high-

performance circuits.
• Placement algorithms for high-performance chips:

– Allow routing of nets within timing constraints.
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• Two major categories of algorithms:
1. Net-based approach

• Try to route the nets to meet the timing constraints on 
the individual nets instead of considering paths.

• The timing requirement for each net has to be decided 
by the algorithm.

• Usually a pre-timing analysis generates the bounds on 
the net-lengths which must be satisfied during 
placement.

2. Path-based approach
• Critical paths in the circuit are considered.
• Try to place the blocks in a manner that the path length 

is within the timing constraint.


