BACKEND DESIGN

Circuit Partitioning

Partitioning

System Design

- Decomposition of a complex system into smaller subsystems.
- Each subsystem can be designed independently.
- Decomposition scheme has to minimize the interconnections between the subsystems.
- Decomposition is carried out hierarchically until each subsystem is of manageable size.

Partitioning at Different Levels

- Can be done at multiple levels:
 - System level
 - Board level
 - Chip level
- Delay implications are different:
 - − Intrachip → X
 - Intraboard → 10X
 - − Interboard → 20X

Different Delays in a Chip

Problem Formulation

- Partition a given netlist into smaller netlists such that:
 - **1.** Interconnection between partitions is minimized.
 - 2. Delay due to partitioning is minimized.
 - 3. Number of terminals is less than a predetermined maximum value.
 - 4. The area of each partition remains within specified bounds.
 - 5. The number of partitions also remains within specified bounds.

Group Migration Algorithms

- <u>Kernighan-Lin</u>
 - An iterative improvement algorithm for balanced two-way partitioning.
- Goldberg-Burstein
 - Uses properties of graphs to improve the performance of K-L algorithm.
- Fiduccia-Mattheyses
 - Considers multi-pin nets.
 - Can generate partitions of unequal sizes.
 - Uses efficient data structure to represent nodes.

Extension of K-L Algorithm

- Unequal sized blocks
 - To partition a graph with 2n vertices into two subgraphs of unequal sizes n1 and n2:
 - Divide the nodes into two subsets A and B, containing MIN(n1,n2) and MAX(n1,n2) vertices respectively.
 - Apply K-L algorithm, but restrict the maximum number of vertices that can be interchanged in one pass to MIN(n1,n2).

• Unequal sized elements

- To generate a two-way partition of a graph whose vertices have unequal sizes:
 - Assume that the smallest element has unit size.
 - Replace each element of size s with s vertices which are fully connected (s-clique) with edges of infinite weight.
 - Apply K-L algorithm to the modified graph.

Simulated Annealing and Evolution

- These belong to the probabilistic and iterative class of algorithms.
- Simulated Annealing
 - Simulates the annealing process used for metals.
 - As in the actual annealing process, the value of temperature is decreased slowly till it approaches the freezing point.
- Simulated Evolution
 - Simulates the biological process of evolution.
 - Each solution (generation) is improved in each iteration by using operators which simulate the biological events in the evolution process.

Simulated Annealing

- Concept analogous to the annealing process for metals and glass.
- A random initial partition is available as input.
- A new partition is generated by exchanging some elements.
- If the quality of partition improves, the move is always accepted.
- If not, the move is accepted with a probability which decreases with the increase in a parameter called *temperature* (T).

The Annealing Curve

Simulated Annealing Algorithm

The SCORE function

Imbalance (A,B) = | size(A) – size(B) |

Cutcost (A,B) = Sum of weights of cut edges

Cost = W_1 * Imbalance(A,B) + W_2 * Cutcost(A,B)

- The MOVE function
 - Several alternatives:
 - Pairwise exchange (W₁ =0)
 - Subsets of elements exchanged
 - Select that node
 - which is internally connected to least number of vertices
 - whose contribution to external cost is highest

Performance Driven Partitioning

- Typically, on-board delay is three orders of magnitude larger than on-chip delay.
 - On-chip delay is of the order of nanoseconds.
 - On-board delay can be in the order of milliseconds.
- If a critical path is cut many times by the partition, the delay in the path may be too large to meet the goals of high-performance systems.
- Goal of partitioning in high-performance systems:
 - 1. Reduce the cut-size.
 - 2. Minimize the delay in critical paths.
 - 3. Timing constraints have to be satisfied.

Contd.

- The problem can be modeled as a graph.
 - Each vertex represents a component (gate).
 - Each edge represents a connection between two gates.
 - Each vertex has a weight specifying the component delay.
 - Each edge has a weight, which depends on the partitions to which the edges belong.
- This problem is very general and still a topic of intensive research.

Summary

- Broadly, two classes of algorithms:
 - 1. Group migration based
 - High speed
 - Poor performance
 - 2. Simulation based
 - Low speed
 - High performance