
1

High Level Synthesis

CAD for VLSI 2

Design Representation

• Intermediate representation essential for efficient
processing.

– Input HDL behavioral descriptions translated into some
canonical intermediate representation.

• Language independent

• Uniform view across CAD tools and users

– Synthesis tools carry out transformations of the
intermediate representation.

2

CAD for VLSI 3

Scope of High Level Synthesis

Verilog / VHDL Description

Control and Data Flow Graph (CDFG)

FSM
Controller

DataPath
Structure

Transformation

Scheduling

Allocation

CAD for VLSI 4

Simple Transformation

A = B + C;

D = A * E;

X = D – A;

Read B Read C

Write A

+

Read A Read E

Write D

*

Read D Read A

Write X

–

Stmt 1 Stmt 2 Stmt 3

3

CAD for VLSI 5

Read B Read C

Write X

+

*

Read E

–

Data Flow
Graph

CAD for VLSI 6

Transformation with Control/Data Flow

case (C)
1: begin

X = X + 3;
A = X + 1;

end
2: A = X + 5;
default: A = X + Y;

endcase

4

CAD for VLSI 7

X = X + 3;
A = X + 1;

A = X + 5; A = X + Y;

Control Flow Graph

Data flow graph

can be drawn

similarly, consisting

of “Read” and

“Write” boxes,

operation nodes,

and muliplexers.

CAD for VLSI 8

Another Example

if (X == 0)

A = B + C;

D = B – C;

else

D = D – 1;

5

CAD for VLSI 9

Read B Read C Read D

Read X

1

Read A

+ −−−−

Write D

−−−−

Write A

0

= 01 10
MUX

CAD for VLSI 10

Compiler Transformations

• Set of operations carried out on the intermediate
representation.

– Constant folding

– Redundant operator elimination

– Tree height transformation

– Control flattening

– Logic level transformation

– Register-Transfer level transformation

6

CAD for VLSI 11

Constant Folding

Constant 4 Constant 12

Write X

+

Constant 16

Write X

CAD for VLSI 12

Redundant Operator Elimination

Read A Read B

Write C

*

Read A Read B

Write D

*

Read A Read B

Write C

*

Write D

C = A * B;

D = A * B;

7

CAD for VLSI 13

Tree Height Transformation

a = b – c + d – e + f + g

−−−−

−−−−

−−−−

−−−−

+

+

+

+

+

+

a

f

e

d

c

b

g

a

b

dc

e

f g

CAD for VLSI 14

Control Flattening

8

CAD for VLSI 15

Logic Level Transformation

Read A Read B

AND

OR

Write C

NOT

Read A Read B

OR

Write C

C = A + A′′′′B = A + B

High Level Synthesis

PARTITIONING

9

CAD for VLSI 17

Why Required?

• Used in various steps of high level synthesis:

– Scheduling

– Allocation

– Unit selection

• The same techniques for partitioning are also used
in physical design automation tools.

– To be discussed later.

CAD for VLSI 18

Component Partitioning

• Given a netlist, create a partition which satisfies
some objective function.

– Clusters almost of equal sizes.

– Minimum interconnection strength between clusters.

• An example to illustrate the concept.

10

CAD for VLSI 19

Cut 1 = 4

Cut 2 = 4

Size 1 = 15

Size 2 = 16

Size 3 = 17

CAD for VLSI 20

Behavioral Partitioning

• With respect to Verilog, can be used when:

– Multiple modules are instantiated in a top-level module
description.

• Each module becomes a partition.

– Several concurrent “always” blocks are used.

• Each “always” block becomes a partition.

11

CAD for VLSI 21

Partitioning Techniques

• Broadly two classes of algorithms:

1. Constructive

• Random selection

• Cluster growth

• Hierarchical clustering

2. Iterative-improvement

• Min-cut

• Simulated annealing

CAD for VLSI 22

Random Selection

• Randomly select nodes one at a time and place
them into clusters of fixed size, until the proper size
is reached.

• Repeat above procedure until all the nodes have
been placed.

• Quality/Performance:

– Fast and easy to implement.

– Generally produces poor results.

– Usually used to generate the initial partitions for iterative
placement algorithms.

12

CAD for VLSI 23

Cluster Growth

m : size of each cluster, V : set of nodes

n = |V| / m ;
for (i=1; i<=n; i++)
{

seed = vertex in V with maximum degree;
Vi = {seed};
V = V – {seed};
for (j=1; j<m; j++)

{
t = vertex in V maximally connected to Vi;
Vi = Vi U {t};
V = V – {t};

}
}

CAD for VLSI 24

Hierarchical Clustering

• Consider a set of objects and group them
depending on some measure of closeness.

– The two closest objects are clustered first, and considered
to be a single object for further partitioning.

– The process continues by grouping two individual objects,
or an object or cluster with another cluster.

– We stop when a single cluster is generated and a
hierarchical cluster tree has been formed.

• The tree can be cut in any way to get clusters.

13

CAD for VLSI 25

Example

v1

v2
v3

v4 v5

7 5

4
9

1

v1

v24
v3

v5

7 5

4

1

v241
v3

v5

4

6
v2413

v5

4

v24135

CAD for VLSI 26

v24135

v5v3v1v4
v2

v2413

v241

v24

14

CAD for VLSI 27

Min-Cut Algorithm (Kernighan-Lin)

• Basically a bisection algorithm.

– The input graph is partitioned into two subsets of equal
sizes.

• Till the cutsets keep improving:

– Vertex pairs which give the largest decrease in cutsize are
exchanged.

– These vertices are then locked.

– If no improvement is possible and some vertices are still
unlocked, the vertices which give the smallest increase are
exchanged.

CAD for VLSI 28

Example

8

7

6

5

4

3

2

1

5 4

3
2

1

8

76

Initial Solution Final Solution

15

CAD for VLSI 29

Steps of Execution

1

2

5

4

3

6

7

8

Choose 5 and 3
for exchange

CAD for VLSI 30

• Drawbacks of K-L Algorithm

– It is not applicable for hyper-graphs.

• It considers edges instead of hyper-edges.

• It cannot handle arbitrarily weighted graphs.

• Partition sizes have to be specified a priori.

– Time complexity is high.

• O(n3).

– It considers balanced partitions only.

16

CAD for VLSI 31

Goldberg-Burstein Algorithm

• Performance of K-L algorithm depends on the ratio
R of edges to vertices.

• K-L algorithm yields good bisections if R > 5.

• For typical VLSI problems, 1.8 < R < 2.5.

• The basic improvement attempted is to increase R.

– Find a matching M in graph G.

– Each edge in the matching is contracted to increase the
density of the graph.

– Any bisection algorithm is applied to the modified graph.

– Edges are uncontracted within each partition.

CAD for VLSI 32

Example of G-B Algorithm

Matching of Graph

After Contracting

17

CAD for VLSI 33

Simulated Annealing

• Iterative improvement algorithm.

– Simulates the annealing process in metals.

– Parameters:

• Solution representation

• Cost function

• Moves

• Termination condition

• Randomized algorithm

– To be discussed later.

High Level Synthesis

SCHEDULING

18

CAD for VLSI 35

What is Scheduling?

• Task of assigning behavioral operators to control
steps.

– Input:

• Control and Data Flow Graph (CDFG)

– Output:

• Temporal ordering of individual operations (FSM states)

• Basic Objective:

– Obtain the fastest design within constraints (exploit
parallelism).

CAD for VLSI 36

Example

• Solving 2nd order differential equations (HAL)

module HAL (x, dx, u, a, clock, y);

input x, dx, u, a, clock; output y;

always @(posedge clock)

while (x < a)

begin

x1 = x + dx;

u1 = u – (3 * x * u * dx) – (3 * y * dx);

y1 = y + (u * dx);

x = x1;

u = u1;

y = y1;

end

endmodule

19

CAD for VLSI 37

CAD for VLSI 38

Scheduling Algorithms

• Three popular algorithms:

– As Soon As Possible (ASAP)

– As Late As Possible (ALAP)

– Resource Constrained (List scheduling)

20

CAD for VLSI 39

As Soon As Possible (ASAP)

• Generated from the DFG by a breadth-first search

from the data sources to the sinks.

– Starts with the highest nodes (that have no parents) in the
DFG, and assigns time steps in increasing order as it
proceeds downwards.

– Follows the simple rule that a successor node can execute
only after its parent has executed.

• Fastest schedule possible

– Requires least number of control steps.

– Does not consider resource constraints.

CAD for VLSI 40

ASAP Schedule for HAL

* * * * +

* * + <

-

-

v1 v2 v3 v4 v10

v5 v6 v9 v11

v7

v8

21

CAD for VLSI 41

As Late As Possible (ALAP)

• Works very similar to the ALAP algorithm, except
that it starts at the bottom of the DFG and proceeds
upwards.

• Usually gives a bad solution:

– Slowest possible schedule (takes the maximum number of
control steps).

– Also does not necessarily reduce the number of functional
units needed.

CAD for VLSI 42

ALAP Schedule for HAL

* *

*

* +

*

*

+ <

-

-

v1 v2

v3

v4 v10

v5

v6

v9 v11

v7

v8

22

CAD for VLSI 43

Resource Constrained Scheduling

• There is a constraint on the number of resources
that can be used.

– List-Based Scheduling

• One of the most popular methods.

• Generalization of ASAP scheduling, since it produces
the same result in absence of resource constraints.

– Basic idea of List-Based Scheduling:

• Maintains a priority list of “ready” nodes.

• During each iteration, we try to use up all resources in that
state by scheduling operations in the head of the list.

• For conflicts, the operator with higher priority will be
scheduled first.

CAD for VLSI 44

* *

**

*-

-

v1 v2

v3v5

v6v7

v8

<0>
<0>

<0>

<0>

<0>

<1>

<1>

*

+

v4

v9

+

<

v10

v11

<2>

<2>

<2>

<2>

For operator node i,

Mobility of i
<i> = Time for ALAP – Time for ASAP

23

CAD for VLSI 45

• Priority List:

* : 1 <0>

2 <0>

3 <1>

4 <2>

+ : 10 <2>

• Resources:

* : 2

+ : 1

- : 1

< : 1

CAD for VLSI 46

HAL List Schedule

2 multipliers, 1 adder, 1 subtractor, 1 comparator

* *

*

*

+

*

*

+

<

-

-

v1 v2

v3

v4

v10

v5

v6

v9

v11

v7

v8

24

CAD for VLSI 47

Time Constrained Scheduling

• Given the number of time steps, try to minimize the
resources required.

1. Force Directed Scheduling (FDS)

2. Integer Linear Programming (ILP)

3. Iterative Refinement

Force Directed Scheduling
[Ref: paper by Paulin & Knight]

• Goal is to reduce hardware by balancing
concurrency

• Iterative algorithm, one operation scheduled per
iteration

• Information (i.e. speed & area) fed back into
scheduler

25

The Force Directed Scheduling
Algorithm

Step 1

• Determine ASAP and ALAP schedules

*

-

+

*

*

*
+ <

*

*
-

*

-

+* * *
+ <**

-

ASAP ALAP

26

Step 2

• Determine Time Frame of each op

– Length of box ~ Possible execution cycles

– Width of box ~ Probability of assignment

– Uniform distribution, Area assigned = 1

Step 3

• Create Distribution Graphs

– Sum of probabilities of each Op type for each c-step of the CDFG

– Indicates concurrency of similar Ops
DG(i) = ΣΣΣΣ Prob(Op, i)

27

Conditional Statements

• Operations in different branches are mutually
exclusive

• Operations of same type can be overlapped onto
DG

• Probability of most likely operation is added to DG

DG for Add

-+

-
+

+

Fork

Join

+-
+

-+

Self Forces

• Scheduling an operation will effect overall concurrency

• Every operation has 'self force' for every C-step of its time
frame

• Analogous to the effect of a spring: F = Kx (Hooke’s law)

Force(i) = DG(i) * x(i)

DG(i) ~ Current Distribution Graph value

x(i) ~ Change in operation’s probability

Self Force(j) = [Force(i)]

• Desirable scheduling will have negative self force

– Will achieve better concurrency (lower potential energy)

CAD for VLSI 54

∑
=

b

ti

Total self force associated with the
assignment of an operation to
C-step j (t ≤ j ≤ b)

28

Example

� Attempt to schedule * (operation 4) in C-

step 1

Self Force(1) = Force(1) + Force(2)

= (DG(1) * X(1)) + (DG(2) * X(2))

= [2.833*(0.5) + 2.333 * (-0.5)] = +0.25

� This is positive, scheduling the multiply in

the first C-step would be bad

DG for Multiply

*

-

*

*

-

*

*
*

+ <

+

C-step 1

C-step 2

C-step 3

C-step 4
1/2

1/3

Diff Eq Example: Self Force for
Node 4

29

Predecessor & Successor Forces

• Scheduling an operation may affect the time frames
of other linked operations

• This may negate the benefits of the desired
assignment

• Predecessor/Successor Forces = Sum of Self Forces
of any implicitly scheduled operations

*

-

+

*

*

*
+ <

*

*
-

Example: Successor Force on Node 4

• If node 4 scheduled in step 1

– no effect on time frame for successor node 8

• Total force = Froce4(1) = +0.25

• If node 4 scheduled in step 2

– causes node 8 to be scheduled into step 3

– must calculate successor force

30

Final Time Frame and Schedule

Diff Eq Example: Final DG

31

Lookahead

• Temporarily modify the constant DG(i) to include the
effect of the iteration being considered

Force (i) = temp_DG(i) * x(i)
temp_DG(i) = DG(i) + x(i)/3

• Consider previous example:

Self Force(1) = (DG(1) + x(1)/3)x(1) + (DG(2) + x(2)/3)x(2)
= .5(2.833 + .5/3) -.5(2.333 - .5/3)
= +.41667

• This is even worse than before

Minimization of Bus Costs

• Basic algorithm suitable for narrow class of problems

• Algorithm can be refined to consider “cost” factors

• Number of buses ~ number of concurrent data transfers

• Number of buses = maximum transfers in any C-step

• Create modified DG to include transfers: Transfer DG

Trans DG(i) = [Prob (op,i) * Opn_No_InOuts]

Opn_No_InOuts ~ combined distinct in/outputs for Op

• Calculate Force with this DG and add to Self Force

32

Minimization of Register Costs
• Minimum registers required is given by the largest number of

data arcs crossing a C-step boundary

• Create Storage Operations, at output of any operation that
transfers a value to a destination in a later C-step

• Generate Storage DG for these “operations”

• Length of storage operation depends on final schedule

s

ss

d

d d

Storage distribution for S

ASAP Lifetime MAX Lifetime ALAP Lifetime

Minimization of Register Costs(contd.)

• avg life] =

• storage DG(i) = (no overlap between ASAP &
ALAP)

• storage DG(i) = (if overlap)

• Calculate and add “Storage” Force to Self Force

3

life] [MAX life] [ALAP life] [ASAP ++

life][max

life] [avg

[overlap]life][max

[overlap] - life] [avg

−

7 registers minimum

ASAP Force Directed

5 registers minimum

33

Pipelining

* * *

+

+

<

-

-
* * *

+

+

<

-

-

DG for Multiply

1

2

3, 1’

4, 2’

3’

4’
Instance

Instance’

Functional Pipelining

1

2

3

4

*

*

Structural Pipelining

• Functional Pipelining
– Pipelining across multiple

operations
– Must balance distribution across

groups of concurrent C-steps
– Cut DG horizontally and

superimpose
– Finally perform regular Force

Directed Scheduling

• Structural Pipelining
– Pipelining within an operation
– For non data-dependant operations,

only the first C-step need be
considered

Other Optimizations

• Local timing constraints

– Insert dummy timing operations -> Restricted time frames

• Multiclass FU’s

– Create multiclass DG by summing probabilities of relevant
ops

• Multistep/Chained operations.

– Carry propagation delay information with operation

– Extend time frames into other C-steps as required

• Hardware constraints

– Use Force as priority function in list scheduling algorithms

34

CAD for VLSI 67

Scheduling Under Realistic Constraints

• Functional units can have varying delays.

– Several approaches:

• Unit-delay model

• Multicycle model

• Chaining model

• Pipelining model

CAD for VLSI 68

+

*+

+

*

+

Unit Delay Multicycling

35

CAD for VLSI 69

+
*

+

Chaining

*

*

Pipelining

High Level Synthesis

ALLOCATION and BINDING

36

CAD for VLSI 71

Basic Idea

• Selection of components to be used in the register
transfer level design.

• Binding of hardware structures to behavioral
operators and variables.

– Register

– ALU

– Interconnection (MUX)

CAD for VLSI 72

Example

+
o1

+
o2

+
o3

+
o4

a b c d

e f

g h

Adder 1 Adder 2

a b,e,g c,f,h d

R1 R2 R3 R4

e = a + b;

g = a + e;

f = c + d;

h = f + d;

o1,o3 o2,o4

37

CAD for VLSI 73

An Integrated Approach

• From the paper by “C-J. Tseng and D.P. Sieworek”

