High Level Synthesis

Design Representation

* Intermediate representation essential for efficient
processing.

— Input HDL behavioral descriptions translated into some
canonical intermediate representation.

» Language independent
« Uniform view across CAD tools and users

— Synthesis tools carry out transformations of the
intermediate representation.

CAD for VLSI

Scope of High Level Synthesis

Verilog / VHDL Description

l Transformation
Control and Data Flow Graph (CDFG)
Scheduling
Allocation
FSM DataPath
Controller Structure

CAD for VLSI

Simple Transformation

X O >
mn un n
O>» W
I * o+

>Mo

%

Cstmt 2 >———»Cstmt 3

Read B Read C Read A Read E Read D Read A

o

Nedl s

Write A Write D Write X

CAD for VLSI

Read B Read C

Read E

Data Flow
Graph

Write X

CAD for VLSI

Transformation with Control/Data Flow

case (C)

1: begin
X=X+3;
A=X+1;

end

2: A=X+5;

default: A=X+Y;

endcase

CAD for VLSI

Data flow graph
e . can be drawn
X=X+3; _) similarly, consisting
A=X:1; A=X+5; | [A=X+Y; of “Read” and
T~ | “Write” boxes,

operation nodes,
and muliplexers.

Control Flow Graph

CAD for VLSI

Another Example

if (X==0)
A=B +C;
D=B-C;

else
D:D—1;

CAD for VLSI

Read B Read C Read D

Read A

Read X 0

RS eS

Write A Write D

CAD for VLSI

Compiler Transformations

» Set of operations carried out on the intermediate
representation.
— Constant folding

Redundant operator elimination

Tree height transformation

Control flattening

Logic level transformation

Register-Transfer level transformation

CAD for VLSI

Constant Folding

Constant 4 Constant 12 Constant 16

Write X Write X

CAD for VLSI 1

Redundant Operator Elimination

C=A*B;

D=A*B;
Read A Read B Read A Read B Read A Read B
Write C Write D Write C| | Write D

CAD for VLSI 12

Tree Height Transformation

a=b-c+d-e+f+g

a a

g
c/‘ —> ﬁ}\/l
d/ e
R AR

f

CAD for VLSI 13

Control Flattening

ﬁ? —
P iadats
N

~

&,

<

CAD for VLSI 14

Logic Level Transformation

Read A Read B Read A Read B

—> R

Write C

Write C

C=A+AB=A+B

CAD for VLSI 15

High Level Synthesis

PARTITIONING

Why Required?

» Used in various steps of high level synthesis:
— Scheduling
— Allocation
— Unit selection
+ The same techniques for partitioning are also used
in physical design automation tools.
— To be discussed later.

CAD for VLSI 17

Component Partitioning

» Given a netlist, create a partition which satisfies
some objective function.
— Clusters almost of equal sizes.
— Minimum interconnection strength between clusters.

« An example to illustrate the concept.

CAD for VLSI 18

T\‘_D"“’-’—‘—(—\._A
Hi“ uDD Cuti1=4
:lL{f <] | V,j Lj -
| ey | Lo Cut2=4
= N%
- " Size 1= 15
e s
i‘! K Il L Size 2 = 16
i %_| Size 3 =17
=Y L
(b)
CAD for VLSI 19

Behavioral Partitioning

* With respect to Verilog, can be used when:

— Multiple modules are instantiated in a top-level module
description.

+ Each module becomes a partition.
— Several concurrent “always” blocks are used.
» Each “always” block becomes a partition.

CAD for VLSI 20

10

Partitioning Techniques

» Broadly two classes of algorithms:
1. Constructive
+ Random selection
* Cluster growth
» Hierarchical clustering
2. lterative-improvement
* Min-cut
» Simulated annealing

CAD for VLSI 21

Random Selection

+ Randomly select nodes one at a time and place
them into clusters of fixed size, until the proper size
is reached.

* Repeat above procedure until all the nodes have
been placed.

* Quality/Performance:

— Fast and easy to implement.
— Generally produces poor results.

— Usually used to generate the initial partitions for iterative
placement algorithms.

CAD for VLSI 22

11

Cluster Growth

m : size of each cluster, V : set of nodes

n=|V|/m;
for (i=1;i<=n; i++)
{
seed = vertex in V with maximum degree;
V, = {seed};
V =V - {seed};
for (j=1; j<m; j++)

t = vertex in V maximally connected to V;;
Vi=V;U {t}
V=V- {t};

}

CAD for VLSI 23

Hierarchical Clustering

« Consider a set of objects and group them
depending on some measure of closeness.

— The two closest objects are clustered first, and considered
to be a single object for further partitioning.

— The process continues by grouping two individual objects,
or an object or cluster with another cluster.

— We stop when a single cluster is generated and a
hierarchical cluster tree has been formed.

» The tree can be cut in any way to get clusters.

CAD for VLSI 24

Example

Va3
6 V3
4 :> 4
Vs Vs
Vasizs O
CAD for VLSI 25
V24135
V2413
NN
N
Va1 N
Vg
\"/
Vv, v, Vy V3 5

CAD for VLSI

26

13

Min-Cut Algorithm (Kernighan-Lin)

» Basically a bisection algorithm.

— The input graph is partitioned into two subsets of equal
sizes.

+ Till the cutsets keep improving:

— Vertex pairs which give the largest decrease in cutsize are
exchanged.

— These vertices are then locked.

— If no improvement is possible and some vertices are still

unlocked, the vertices which give the smallest increase are
exchanged.

CAD for VLSI 27
Example
1 8
Py
2 :
6 7
5 4
Initial Solution Final Solution

CAD for VLSI

28

14

Steps of Execution

Choose 5 and 3
for exchange

CAD for VLSI

29

+ Drawbacks of K-L Algorithm
— Itis not applicable for hyper-graphs.
+ It considers edges instead of hyper-edges.
* It cannot handle arbitrarily weighted graphs.
+ Partition sizes have to be specified a priori.
— Time complexity is high.
« O(n3).
— It considers balanced partitions only.

CAD for VLSI

30

15

Goldberg-Burstein Algorithm

Performance of K-L algorithm depends on the ratio
R of edges to vertices.
K-L algorithm yields good bisections if R > 5.
For typical VLSI problems, 1.8 <R < 2.5.
The basic improvement attempted is to increase R.
— Find a matching M in graph G.
— Each edge in the matching is contracted to increase the
density of the graph.
— Any bisection algorithm is applied to the modified graph.
— Edges are uncontracted within each partition.

CAD for VLSI

31

Example of G-B Algorithm

After Contracting

Matching of Graph =

CAD for VLSI

32

16

Simulated Annealing

* lterative improvement algorithm.
— Simulates the annealing process in metals.
— Parameters:
+ Solution representation
+ Cost function
* Moves
» Termination condition
+ Randomized algorithm
— To be discussed later.

CAD for VLSI

33

High Level Synthesis

SCHEDULING

17

What is Scheduling?

» Task of assigning behavioral operators to control
steps.
— Input:
» Control and Data Flow Graph (CDFG)
— Output:
» Temporal ordering of individual operations (FSM states)
» Basic Objective:

— Obtain the fastest design within constraints (exploit
parallelism).

CAD for VLSI

35

Example

» Solving 2nd order differential equations (HAL)

module HAL (x, dx, u, a, clock, y);
input x, dx, u, a, clock; output y;
always @(posedge clock)
while (x < a)
begin
x1 = x + dx;
ul=u-(3*x*u*dx)—(3*y*dx);
yl =y + (u * dx);
X = Xx1;
u=ui;
y=y1;
end
endmodule

CAD for VLSI

36

18

CAD for VLSI

37

Scheduling Algorithms

» Three popular algorithms:
— As Soon As Possible (ASAP)
— As Late As Possible (ALAP)
— Resource Constrained (List scheduling)

CAD for VLSI

38

19

As Soon As Possible (ASAP)

» Generated from the DFG by a breadth-first search
from the data sources to the sinks.

— Starts with the highest nodes (that have no parents) in the
DFG, and assigns time steps in increasing order as it
proceeds downwards.

— Follows the simple rule that a successor node can execute
only after its parent has executed.
» Fastest schedule possible
— Requires least number of control steps.
— Does not consider resource constraints.

CAD for VLSI 39

ASAP Schedule for HAL

CAD for VLSI 40

20

As Late As Possible (ALAP)

» Works very similar to the ALAP algorithm, except
that it starts at the bottom of the DFG and proceeds
upwards.

» Usually gives a bad solution:

— Slowest possible schedule (takes the maximum number of
control steps).

— Also does not necessarily reduce the number of functional
units needed.

CAD for VLSI 41

ALAP Schedule for HAL

CAD for VLSI 42

21

Resource Constrained Scheduling

There is a constraint on the number of resources
that can be used.
— List-Based Scheduling
* One of the most popular methods.
» Generalization of ASAP scheduling, since it produces
the same result in absence of resource constraints.
— Basic idea of List-Based Scheduling:
» Maintains a priority list of “ready” nodes.
» During each iteration, we try to use up all resources in that
state by scheduling operations in the head of the list.
» For conflicts, the operator with higher priority will be
scheduled first.

CAD for VLSI 43
<2> v <2>
4 V10
<2> V
9 V44

<2>

For operator node i,

Mobility of i
<i> = Time for ALAP — Time for ASAP

CAD for VLSI

44

22

* Priority List:
¥ 1<0>
2 <0>
3<1>
4 <2>
+: 10 <2>

 Resources:

¥ 2
+: 1
- 1
<: 1

CAD for VLSI 45

HAL List Schedule

2 multipliers, 1 adder, 1 subtractor, 1 comparator

V1o
Vi
Vg Vv,
Vg
CAD for VLSI 46

23

Time Constrained Scheduling

Given the number of time steps, try to minimize the
resources required.

1. Force Directed Scheduling (FDS)

2. Integer Linear Programming (ILP)

3. lterative Refinement

CAD for VLSI

47

Force Directed Scheduling
[Ref: paper by Paulin & Knight]

Goal is to reduce hardware by balancing
concurrency

Iterative algorithm, one operation scheduled per
iteration

Information (i.e. speed & area) fed back into
scheduler

24

The Force Directed Scheduling

Input:

Output:

1. While
1.1
1.2
1.3
1.4
1.5

Algorithm

DFG G = (N, E), Iteration Period = T.
Final FDS Schedule.
(Unscheduled nodes exist) {
Compute the time frames for each node;
Build the distribution graph;
Compute the self-forces;
Compute the predecessor and successor forces;
Schedule the node into the time step that
minimizes the total force;

Step 1

Determine ASAP and ALAP schedules

KO PO @@

PO 0 © @
Q/ QLY OO
© O ©Q

25

Step 2

* Determine Time Frame of each op
— Length of box ~ Possible execution cycles
— Width of box ~ Probability of assignment
— Uniform distribution, Area assigned = 1

1 1 1
Time step 1 1 2
- X | X 4 L
Time step 2 3 5
X X 8
Time step 3- 7 9
X L
Time step 4 1
+

[+

1o

[a

Step 3

» Create Distribution Graphs

— Sum of probabilities of each Op type for each c-step of the CDFG

— Indicates concurrency of similar Ops

DG(i) = £ Prob(Op, i)

DG for Multiply
0 1 2 3

N

l|I|||I|||l||||f||'||||||

DG for Add

4 0 1
I

2
cln b bt o

26

Conditional Statements

Operations in different branches are mutually

exclusive

Operations of same type can be overlapped onto

DG

Probability of most likely operation is added to DG

/ Fork\ !
&
® [RN}
S
N/ '

=

DG for Add

Self Forces

frame

Force(i) = DG(i) * x(i)

Scheduling an operation will effect overall concurrency
Every operation has 'self force' for every C-step of its time

Analogous to the effect of a spring: F = Kx (Hooke’s law)

DG(i) ~ Current Distribution Graph value
x(i) ~ Change in operation’s probability

Self Force(j) = Zb: [Force(i)]

i=t

Total self force associated with the
assignment of an operation to
C-stepj(t<sj<b)

Desirable scheduling will have negative self force

— Will achieve better concurrency (lower potential energy)

CAD for VLSI

54

27

Example

= Attempt to schedule * (operation 4) in C-
step 1

Self Force(1) = Force(1) + Force(2)
= (DG(1) * X(1)) + (DG(2) * X(2))

= [2.833*(0.5) + 2.333 * (-0.5)] = +0.25

C-step 1

C-step 2

C-step 3

C-step 4

= This is positive, scheduling the multiply in ; I
the first C-step would be bad 3|
3
DG for Multiply

Diff Eq Example: Self Force for

Node 4

Self _Forces(1)

+0.25

Self_Forces(2)

—0.25

Forces(1) + Forceys(2)
(DG um(1) % 24(1)) + (DG (2) * 24(2))
(2.833 % (1 — 0.5)) + (2.333 % (0 — 0.5))
(2.833 * (+0.5)) + (2.333 x (—0.5))

Forces(1) + Forces(2)
(DGm(1) * z4(1)) + (DG (2) * 24(2))
(2.833 % (—0.5)) + (2.333 % (+0.5))

28

Predecessor & Successor Forces

» Scheduling an operation may affect the time frames
of other linked operations

« This may negate the benefits of the desired
assignment

* Predecessor/Successor Forces = Sum of Self Forces
of any implicitly scheduled operations

Example: Successor Force on Node 4

If node 4 scheduled in step 1

— no effect on time frame for successor node 8
Total force = Froce4(1) = +0.25
If node 4 scheduled in step 2

— causes hode 8 to be scheduled into step 3

— must calculate successor force

Suec_Forces(2) Self_Forees(2) + Sel f Forces(3)
(DG (2) * 28(2)) + (DG (3) * x5(3))
(2.333 % (0 = 0:5)) + (0.833 % (1 = 0.5))
(2.333 % (—0.5)) + (0:833 % (+0.5))
—-0.75 , :

{1 | R I

Forces(2) Self_Forces(2) + Succ_Forces(2)

—0.25 - 0.75 = ~1.00

29

Final Time Frame and Schedule

Time step 1 1 2 6
X X +
Time step 2 3 4 10
X X <
Time step 3 7 8 5
X X
Time step 3 11 9
- +

Diff Eq Example: Final DG

DG for Multiply DG for Add
[1 2 a 4 0 1 2 3 1
Lot bate o boted Loet botn Lo ot |
1| [
2| I L]
3| I I
4 []

30

Lookahead

Temporarily modify the constant DG(i) to include the
effect of the iteration being considered

Force (i) = temp_DG(i) * x(i)
temp_DG(i) = DG(i) + x(i)/3

Consider previous example:

Self Force(1) = (DG(1) + x(1)/3)x(1) + (DG(2) + x(2)/3)x(2)
=.5(2.833 + .5/3) -.5(2.333 - .5/3)

= +.41667

This is even worse than before

Minimization of Bus Costs

Basic algorithm suitable for narrow class of problems
Algorithm can be refined to consider “cost” factors
Number of buses ~ number of concurrent data transfers
Number of buses = maximum transfers in any C-step
Create modified DG to include transfers: Transfer DG

Trans DG(i) = [[Prob (op,i) * Opn_No_InOuts]
Opn_No_InOuts ~ combined distinct in/outputs for Op

Calculate Force with this DG and add to Self Force

31

Minimization of Register Costs

Minimum registers required is given by the largest number of
data arcs crossing a C-step boundary

Create Storage Operations, at output of any operation that
transfers a value to a destination in a later C-step

Generate Storage DG for these “operations”
Length of storage operation depends on final schedule

1Q_ L Q O Q
MG =
5 \Cj | \C>/ \C>/ Storage distribution for S

Minimization of Register Costs(contd.)

.

[ASAPIife] + [ALAPlife]+ [MAX life]
3

avg life] =

storage DG(j) = L2velifel

ALAP) [max life]
[avg life] - [overlap]

storage DG(i) = [max life] —[overlap] (if overlap)

(no overlap between ASAP &

Calculate and add “Storage” Force to Self Force
ASAP Force Directed

QOQ olo ke
QOO0 ojle]

I I !
7 registers minimum 5 registers minimum

ii@

32

Pipelining

Functional Pipelining

: N CH-E
* Functional Pipelining =
— Pipelining across multiple Ima
operations)] ’
— Must balance distribution across [nstance
groups of concurrent C-steps 001 2 3 4
— Cut DG horizontally and 1.3 E—
superimpose 2,4 =
— Finally perform regular Force
Directed Scheduling DG for Multply
» Structural Plpellnlng Structural Pipelining

— Pipelining within an operation

— For non data-dependant operations,
only the first C-step need be
considered

*

Other Optimizations

Local timing constraints

— Insert dummy timing operations -> Restricted time frames

Multiclass FU’s

— Create multiclass DG by summing probabilities of relevant
ops

Multistep/Chained operations.

— Carry propagation delay information with operation

— Extend time frames into other C-steps as required

Hardware constraints

— Use Force as priority function in list scheduling algorithms

33

Scheduling Under Realistic Constraints

* Functional units can have varying delays.
— Several approaches:
 Unit-delay model
* Multicycle model
+ Chaining model
 Pipelining model

CAD for VLSI 67

Unit Delay Multicycling

CAD for VLSI 68

34

Pipelining

CAD for VLSI 69

High Level Synthesis

ALLOCATION and BINDING

35

Basic Idea

» Selection of components to be used in the register
transfer level design.

+ Binding of hardware structures to behavioral
operators and variables.
— Register
— ALU
— Interconnection (MUX)

CAD for VLSI

7

Example
R1 R2 R3 R4
La | [begf[cth]| [d |
Adder 1 Adder 2
01,03 05,04
e=a+b;
g=a+e;
f=c+d;
h=f+d;

CAD for VLSI

72

36

An Integrated Approach

* From the paper by “C-J. Tseng and D.P. Sieworek”

CAD for VLSI

73

37

