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Technology MappingTechnology Mapping

Slides adopted from A. Slides adopted from A. KuehlmannKuehlmann, UC Berkeley 2003, UC Berkeley 2003
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Technology MappingTechnology Mapping

• Where is it used
– After technology independent

optimization

• Role
– Assign logic functions to gates 

from custom library
– Optimize for area, delay, 

power, etc.

• Also called 
library binding.

Initial logic network

techn-independent
optimization

techn-independent
optimization

technology
mapping

technology
mappingCell library 

manufacturing
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TechnologyTechnology--independent Optimizationindependent Optimization

• Technology independent
optimization (14 literals):

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

d+ea+bc

t5’

t1t2 + fg

F

ab+d

t4h + t2t3

d+e b+h

t4’

at2 +c

t1t3 + fgh

F

• Original logic network                
(16 literals):

t1 = a + bc
t2 = d + e
t3 = ab + d
t4 = t1t2 + fg
t5 = t4h + t2t3

F = t5’
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Cell Library (library of gates)Cell Library (library of gates)

• Implement the optimized logic network using a set of gates which 
form a library

• Each gate has a cost (area, delay, etc.)
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Technology Mapping as Pattern MatchingTechnology Mapping as Pattern Matching

• Represent each function of a network using a set of    
base functions.
– Typically the base is 2-input NANDs and inverters.  
– The set should be functionally complete.

• This representation is called the subject graph.
• Each gate of the library is likewise represented using the 

base set. This generates pattern graphs.
– Represent each gate in all possible ways.

• Cover the subject graph with patterns.
– graph-based
– binate covering
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Subject GraphSubject Graph

Subject graph of 
2-input NANDs
and invertors

d+e b+h

t4’

at2 +c

t1t3 + fgh

F

b’ h’

a

d’ e’
hg

f

c

F
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Pattern Matching ApproachPattern Matching Approach

• A cover is a collection of pattern graphs such that:
– Every node of the subject graph is contained in one (or more) 

pattern graphs.
– Each input required by a pattern graph is an output of some other 

graph.
• For minimum area, the cost of the cover is the sum of the areas 

of the gates in the cover.

• Technology mapping problem:
– Find a minimum cost covering of the subject graph by 

choosing from the collection of pattern graphs for all the 
gates in the library.
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Subject GraphSubject Graph

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g

d

e

h

b

a

c
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Some Pattern Graphs from the LibrarySome Pattern Graphs from the Library

inv(1) nand3 (3)

oai22 (4)

nor(2)
nor3 (3)

xor (5)
aoi21 (3)

nand2(2)

Value in bracket indicates cost
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Subject graph covering (Trivial Covering)Subject graph covering (Trivial Covering)

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’ F

f

g

d

e

h

b

a

c
8 nand2, 7 inv

Total area: 23
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Better CoveringBetter Covering

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

F

f

g

d

e

h

b

a

c

aoi22(4)

and2(3)

or2(3)

or2(3)

nand2(2)

nand2(2)

inv(1)

1 and2, 2 or2,  
2 nand2, 1 inv, 
1 aoi22 

Total area: 18
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Alternate CoveringAlternate Covering

F

f

g

d

e

h

b

a

c

nand3(3)nand3(3)

oai21(3)oai21(3)

oai21 (3)oai21 (3)

and2(3)

inv(1)

nand2(2)

t1 = d + e
t2 = b + h
t3 = at2 + c
t4 = t1t3 + fgh
F = t4’

1 and2, 1 inv,  
1 nand2, 1 
nand3, 2 oai21 

Total area: 15
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Tech. mapping using DAG CoveringTech. mapping using DAG Covering

Input:
– Technology independent, optimized logic network.
– Description of the gates in the library with their cost.

Output:
– Netlist of gates (from library) which minimizes total cost.

General Approach:
• Construct a subject DAG for the network.
• Represent each gate in the target library by pattern DAG’s.
• Find an optimal-cost covering of subject DAG using the 

collection of pattern DAG’s.
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• Complexity of DAG covering:
– NP-hard.
– Remains NP-hard even when the nodes have out degree ≤ 2
– If subject DAG and pattern DAG’s are trees, an efficient 

algorithm exists.
• Using dynamic programming.
• First proposed for optimal code generation in a compiler.
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DAG Covering ProblemDAG Covering Problem

• Compute all possible matches in the subject graph using the 
pattern graphs.

• Let mi∈{0.1} indicate the exclusion or the inclusion of match i in 
the cover.
– mi=0, if match i is not included
– mi=1, if match i is included

• Need to cover each node in the subject graph with a match.
– Example: If node j is covered by matches m2, m5 and m10, then the 

following clause must be satisfied to make sure that this node is 
covered.

(m2 + m5 + m10)
– Each node in the subject graph generates such a clause.
– All the clauses must be satisfied to cover all the nodes in the 

subject graph.
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• Simply covering all the nodes in the subject graph is 
not enough.
– Need to make sure that the inputs of the matches in the 

cover are also the outputs of some matches in the cover.

• Let mi have subject graph nodes s1, s2, …, sn as 
inputs.
– If mi is in the cover, then for each sj that is not a primary 

input, there must be some match with sj an an output.
– Let Sj be the clause for all the matches that result in sj as an 

output.
• Thus, mi ⇒ Sj for each sj that is not a primary input.

– mi ⇒ Sj ≡ mi′ + Sj

– This ensures that the inputs to mi are outputs of 
some match (or primary inputs).
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– Each primary input must have some match that generates it 
as an output (an Sj type clause).

– Each clause must be satisfied.
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DAG Covering as Binate CoveringDAG Covering as Binate Covering

• Satisfying each clause is equivalent to the binate 
covering problem.
– Need to cover each clause.
– Clause may be covered by a variable selected in positive or 

negative phase.
– Need to find a minimum cost cover.

• With area as the cost function:
– mi = 0, cost = 0
– mi = 1, cost = area cost of pattern graph in mi

• Very hard when cost of a match is not independent of 
other matches.
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Covering Table

variables

cl
au

se
s
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Binate Covering ExampleBinate Covering Example



21g1,g2,g3,g5g5a,b.g43oai21m14
g4,g6,g7,g8,g9g9a,b,c,d4nand4m13
g1,g2,g3,g4,g5g5a,b5xnor2m12
g4,g6,g7g7a,b,c3nand3m11
g7,g8,g9g9g6,c,d3nand3m10
g9g9g8,d2nand2m9
g8g8g71invm8
g7g7g6,c2nand2m7
g6g6g41invm6
g5g5g3,g42nand2m5
g4g4a,b2nand2m4
g3g3g1,g22nand2m3
g2g2a1invm2
g1g1b1invm1

CoversProducesInputsCostGateMatch
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• Each node must be covered by some match.
(m1+m12+m14)(m2+m12+m14)(m3+m12+m14)(m4+m11+m12+

m13)(m5+m12+m14)(m6+m11+m13)(m7+m10+m11+m13)(m
8+m10+m13)(m9+m10+m13)

• Each selected match input must be a primary input or 
the output of some other selected match.
(m3′+m1)(m3′+m2) (m5′+m3) (m5′+m4) (m6′+m4) (m7′+m6) 

(m8′+m7) (m9′+m8) (m10′+m6) (m14′+m4)

• The two primary outputs must be the outputs of 
selected matches.
(m5+m12+m14)(m9+m10+m13)
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• Covering expression has 58 prime implicants (i.e. 58 
minimal solutions).
– Least cost solution is:    

m3′m5′m6′m7′m8′m9′m10′m12m13m14′
– Uses two gates for a cost of 9.

• m12: xor
• m13: nand4
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Final SolutionFinal Solution
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Problems with Binate CoveringProblems with Binate Covering

• Intrinsically a hard problem.
– Search techniques seem to work well for large unate

covering problems, but not for binate covering problems.

• Problem size is very large.
– Large number of matches.
– Large number of clauses (rows).

• Cost function is limited.
– Cost for a match must be independent of the cost of other 

matches.
– Works for area as a cost, but not for delay and power.
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Dynamic ProgrammingDynamic Programming
• An algorithmic method that solves an optimization problem by 

decomposing it into a sequence of decisions. 
• Such decisions lead to an optimum solution if the following 

Principle of Optimality is satisfied [Bellman 1957]:
– An optimal sequence of decisions has the property that whatever the 

initial state and decisions are, the remaining decisions must 
constitute an optimal decision sequence w.r.to the state resulting 
from the fist decision.

• Typical recursive equation:

cost(i) = mink{ dik + cost(k) }

dik
cost(i)

i k
cost(k)
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Dynamic Programming Dynamic Programming -- exampleexample

• Example: shortest path problem in a layered network
cost(i) = mink{ dik + cost(k) }

9
5

3

8

7

0
531

4
2

5
3

6

a

b

c

d
s t
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Dynamic Programming Dynamic Programming -- exampleexample
• Similarly, for node i at gate gi:

cost(i) = mink{cost(gi) + ∑k cost(k) }

i

gi

k1 k2
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Optimal Tree Covering by TreesOptimal Tree Covering by Trees
• Partition subject graph into forest of trees
• Cover each tree optimally using dynamic programming

Given:
– Subject trees (networks to be mapped)
– Forest of patterns (gate library)

• Consider a node N of a subject tree
• Recursive Assumption: for all children of N, a best cost match (which 

implements the node) is known
• Cost of a leaf of the tree is 0. 
• Compute cost of each pattern tree which matches at N,

Cost =  SUM of best costs of implementing each input of pattern 
plus the cost of the pattern

• Choose least cost matching pattern for implementing N
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Optimum Area AlgorithmOptimum Area Algorithm
Algorithm OPTIMAL_AREA_COVER(node) {

foreach input of node {
OPTIMAL_AREA_COVER(input);// satisfies recurs. assumption

}
// Using these, find the best cover at node 
node→area = INFINITY;
node→match = 0;
foreach match at node {
area = match→area;
foreach pin of match {
area = area + pin→area;

}
if (area < node→area) {
node→area = area;
node→match = match;

}
}

}
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Technology Mapping Technology Mapping -- exampleexample

• F = (a’ (b+c))’ = a + b’ c’

Subject tree (network)

Pattern trees (library)

a

b c

or2 (5)

and2 (4)

nand2 (3)

inv (2) 

inv (2)

nand2 (7)
or2 (5)inv (2)

nand2 (12)

in
v 

(2
)

aoi12 (6)

aoi12 (10)
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Tree Covering in ActionTree Covering in Action

nand2(3)

inv(2)

nand2(8)
nand2(13)

inv(2)

nand2(3)
inv(5)

and2(4)

inv(6)
and2(8)

nand2(7)
nand3(4)

nand2(21)
nand3(22)
nand4(18)

inv(20)
aoi21(18)

nand2(21)
nand3(23)
nand4(22)

nand2 = 3
inv     = 2
nand3 = 4
nand4 = 5
and2  =  4
aio21 =  4
oai21  = 4

Library:
(=cost)

nand4nand4

aoi21aoi21

nand4nand4
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Complexity of Tree CoveringComplexity of Tree Covering
• Complexity is controlled by finding all sub-trees of the subject 

graph which are isomorphic to a pattern tree.

• Complexity of covering is linear in both size of subject tree 
and size of collection of pattern trees

• But: for the overall mapping, must add complexity of matching
– Complexity = O(nodes)*(complexity of matching)
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Partitioning the Subject DAG into TreesPartitioning the Subject DAG into Trees
Trivial partition: break the graph at all multiple-fanout points

– leads to no “duplication” or “overlap” of patterns
– drawback - sometimes results in many of small trees

Leads to 3 trees
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Partitioning the subject DAG into treesPartitioning the subject DAG into trees
• Single-cone partition:

– from a single output, form a large tree back to the primary inputs; 
– map successive outputs until they hit match output formed from mapping 

previous primary outputs.
• Duplicates some logic (where trees overlap)
• Produces much larger trees, potentially better area results

output

output
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MinMin--Delay CoveringDelay Covering

• For trees:
– identical to min-area covering
– use optimal delay values within the dynamic programming 

paradigm

• For DAGs:
– if delay does not depend on number of fanouts: use dynamic 

programming as presented for trees
– leads to optimal solution in polynomial time

• “we don’t care if we have to replicate logic”

• Combined objective
– e.g. apply delay as first criteria, then area as second
– combine with static timing analysis to focus on critical paths


