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Schematic Capture

• Schematic

– Graphical representation of a netlist of components.

• Schematic Capture

– Interactive creation of a schematic

– Using a schematic editor

• Uses component icons

• Picks up components from library

• Creates netlist

– Input to simulation & synthesis tools
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Logic Simulation

• Takes a logic level netlist as input, and simulate 
functional behavior.

– “Netlist” obtained from schematic capture or synthesis.

– For simulation, the behavior of components is used.

• Available from component library

• Gates, flip-flops, MUX, registers, adder

• Ability to handle large circuits (millions of gates)

– Should be very fast

– Hardware accelerators
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• Simulation Objectives

– Functional correctness of the netlist

• Requires application of a set of test vectors ���� test 

bench

– Timing analysis

• Estimation of delay, critical paths

• Hazards, races, etc.

– Test generation

• Required for manufacture test

• To be discussed later
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Logic Synthesis

• Input: Boolean equations and FSMs

• Output: A netlist of gates and flip-flops

– Combinational circuits and sequential circuits are typically 
handled separately

• Design Goals:
– Minimize number of levels (delay)

– Minimize number of gates (area)

– Minimize signal activity (power)

• Typical Constraints:
– Target library (say, only NAND and NOT gates)
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• Special Considerations
– Ability to handle large circuits within a reasonable amount 

of time.

• Problem is known to be NP-complete

– Ability to handle mutually conflicting requirements (area & 
delay)

– Typically a fully automated process

• Algorithms/heuristics well understood

• Do not need user intervention

– Use technology dependent considerations

• Break a 20-input gate into smaller gates

• Use gates available in the library
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Technology Mapping

• Basic Concept:
– During logic synthesis, map portions of the netlist to 

“cells” available in the cell library

• Standard library (NAND, NOR, NOT, AOI, etc)

• FPGA cells, standard cells

• Objectives:
– Minimize area, delay, power

– Should be fast

• Able to handle large circuits, and large technology 
libraries

CAD for VLSI 16

An Example



1/28/2013

9

CAD for VLSI 17

Logic Verification

• Verify that the synthesized netlist matches the 
original specification

– Detect design errors, also synthesis errors

– Basic objective is to ensure functional correctness, and 
to locate errors, if any

• Broadly two approaches:
1. Simulation

• Fast, incremental, can handle large circuits

2. Formal verification

• Slow, exhaustive, for small circuits only

Logic Synthesis
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The Basic Problem

• Convert from logic equations to gate-level netlists 
(assume combinational logic).

– Maximize speed

– Minimize area, power

a′′′′bc + abc + d bc + d

b

c
d

b

c

d
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Logic Specification

• PLA Format

.i 3

.o 3

.p 4
1x1 011
x00 010
1x0 100
x11 011
.e

• Sum-of-product form

x  =  ac’
y  =  ac + b’c’ + bc
z  =  ac + bc
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Logic Synthesis Problem

1. Simplification of logic equations

– Reduce number of literals (and operands)

2. Synthesis

– Map logic equations to gates (AND, OR, etc)

3. Gate-level optimization

– Replace OR-NOT by NOR, for example

– Delay, power, area

4. Technology mapping

– Map from gates to technology library

– FPGA, TTL chips, standard cells, etc

Two Level Logic Minimization
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Basic Approaches

• Karnaugh Maps

– For n inputs, the map contains 2n entries

– Objective is to find minimum prime cover

• Minimum ���� fewest terms

• Prime ���� choose only maximal covers

– Don’t care terms are used to advantage

– Difficult to automate

• Minimum cover problem is NP-complete

• Process can get into a local minima

CAD for VLSI 24

• Problems with K-maps:

– Number of cells is exponential in the number of input 

variables.

• Imagine a 50-input circuit

– Requires efficient data structures

• For representing the function

• For searching for minimal prime cover

– Quine-McCluskey method

• Easy to implement in software

• Computational complexity remains high
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Espresso: A 2-level logic optimizer

• Some notations:

– For an n-input function, n-dimensional Boolean space

• Each point mapped to a unique combination of the n 

literals

• Entries in K-map, minterm

– Cube

• Conjunction (AND) of literals in an n-dimensional space

• Points on the n-dimensional hypercube that are “1”
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• Expression

– Disjunction (OR) of cubes

• Don’t cares

– Literals that are missing from a cube

ab

a′′′′b′′′′

a′′′′b

ab′′′′
Cube: b′′′′

Don’t care: a
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• Basic Approach

– Minimize cover of “ON-set” of the function

• ON-set ���� set of vertices that correspond to “1” 

minterms

• Minimum set of cubes

• Size of the cubes can be increased by exploiting don’t 

care literals

CAD for VLSI 28

• The Espresso Algorithm (Outline)

– Start with the sum-of-products form (i.e., cubes covering 

the ON-set).

– Expand, remove redundancy (irredundant) and reduce 

cubes in an iterative loop, until no further improvement is 

possible.

– Perturb the solution, and repeat the previous iterative 

steps, as long as the time budget permits.

• For each cube, add a subcube not covered by any other 

cube.

• Expand  subcubes and add them if they cover another 

cube.
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ESPRESSO Algorithm

Forig = ON-set;            /* vertices with expression TRUE  */
R = OFF-set;               /* vertices with expression FALSE */
D = DC-set;                /* vertices with expression DC    */
F = expand(Forig, R);      /* expand cubes against OFF-set   */
F = irredundant(F, D);     /* remove redundant cubes         */
do {

do {
F = reduce(F, D);   /* shrink cubes against ON-set */
F = expand(F, R);
F = irredundant(F, D);

} until cost is “stable”;
/* perturb solution */
G = reduce_gasp(F, D); /* add cubes that can be reduced */
G = expand_gasp(G, R); /* expand cubes that cover another */
F = irredundant(F+G, D);

} until time is up;
ok = verify(F, Forig, D); /* check that result is correct */

CAD for VLSI 30

Cube operation :: expand

• Make each cube as large as possible without 
covering a point in the OFF-set.

– Increases the number of literals in the cover.

– Sets the stage for finding a new and possibly better 

solution.

• Example:

f  =  a′′′′bc′′′′+ bc + ab′′′′c′′′′ Don’t care:  ab′′′′c

f  =  a′′′′b + bc + ac + ab′′′′
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• Throw out redundant cubes.
– Points may be covered by several cubes after the ‘expand” 

step.

– Remove smaller cubes whose points are covered by larger 
cubes.

– There must be one cube for every essential vertex.

• Example:
f  =  a′′′′b + bc + ac + ab′′′′

f  =  a′′′′b + ac + ab′′′′

Cube operation :: irredundant

One vertex in bc 

is covered by a′′′′b

& the other by ac
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Cube operation :: reduce

• The cubes in the cover are reduced in size.

– The number of literals in the cover is reduced.

– Smaller cubes can expand in more directions.

– Smaller cubes are more likely to be covered by other cubes 

during expansion.

• Example

f  =  a′′′′b + ac + ab′′′′

f  =  a′′′′b + abc + ab′′′′c′′′′



1/28/2013

18

CAD for VLSI 35

00

01 11

1000

01 11

10

Reduce

ON

DC

OFF

CAD for VLSI 36

– In general, the new cover will be different from the initial 

cover.

• “expand” and “irredundant” steps can possibly find out 

a new way to cover the points in the ON-set.

• Hopefully, the new cover will be smaller.
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Cube operation :: perturbations

• Reduce Gasp

– For each cube add a subcube not covered by other cubes.

• Expand Gasp

– Expand subcubes and add them if they cover another cube.

– Later use “irredundant” to discard redundant cubes.

– This is a “last gasp” heuristic for exploration.

• No ordering of cube size.

CAD for VLSI 38

00

01 11

10 00

01 11

10
Expand Gasp

00

01 11

10
Reduce Gasp

00

01 11

10 ON

DC

OFF



1/28/2013

20

CAD for VLSI 39

• Example:

f  =  a′′′′ + b    ���� f  =  a′′′′ + b + a′′′′b′′′′+ ab

(Reduce Gasp)

f  =  a′′′′b′′′′+ a′′′′b + ab    ���� f  =  a′′′′b′′′′+ a′′′′b + b

(Expand Gasp)

CAD for VLSI 40

An example

a’b’

a’b ab

ab’a’b’

a’b ab

ab’

x = a’b + ab + a’b’

Expand

a’b’

a’b ab

ab’

Irredundant

a’b’

a’b ab

ab’

Reduce

a’b’

a’b ab

ab’

Expand

Irredundant

a’b’

a’b ab

ab’

Cost Stable

x = a’ + b
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Essential and
Redundant Cubes

Prime &
Irredundant

Cover

Rp

Rp

E

Initial Cover Reduce Expand in
right direction
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Espresso :: conclusion

• The algorithm successively generates new covers 
until no further improvement is possible.

• Produces near-optimal solutions.

• Used for PLA minimization, or as a sub-function in 
multilevel logic minimization.

• Can process very large circuits.

– 10,000 literals, 100 inputs, 100 outputs

– Less than 15 minutes on a high-speed workstation
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Multi Level Logic Minimization

CAD for VLSI 44

Motivation

• In many applications, 2-level logic is unsuitable as 
compared to random (multilevel) logic.

– Gates with high fanin are slow, and take more area.

– It makes sense to transform a 2-level logic realization to 

multi-level logic.
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• A classical example :: XOR function

– For an 8-input XOR function, 

• For 2-level NAND-NAND realization

8C1 + 8C3 + 8C5 + 8C7 = 128 NAND8 gates

1     NAND128 gate

• For 3-level XOR realization

7  XOR2  gates

���� 28  NAND2 gates

Number of levels = 9

CAD for VLSI 46

• Multilevel logic optimization approaches:

1. Local optimization

» Rule-based transformation

2. Global optimization

» Weak division
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Local Optimization Technique

• Used in IBM Logic Synthesis System.

• Perform rule-based local transformations.

– Objective ���� reduce area, delay, power.

– Developing a good set of rules is a challenge.

– Should be comprehensive enough so as to completely 

explore the design space.

• Basic idea:

– Apply a transformation which reduces cost.

– Iterate and continue the transformations as long as 

solution keeps improving.
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• AND/OR transformations

– Reduce the size of the circuit, critical path.

– Typical transformations: 

a . 1 = a

a + 1 = 1

a + a′′′′ = 1

a . a′′′′ = 0

(a′′′′)′′′′ = a

a + a′′′′ . b = a + b

xor (xor(a1,a2,…,an), b) = xor (a1,a2,…,an,b)

• Transform the AND/OR form to NAND (or NOR) form.
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• NAND (NOR) transformations

– Some synthesis systems assume that all gates are of the 

same type (NAND or NOR).

– Does not require technology mapping.

– Rules framed that transform one NAND (NOR) network to 

another.

– Examples:

NAND (NOT (NAND (a,b)), c)  =  NAND (a,b,c)

NAND (NAND(a,b,c), NAND(a,b,c’)) =  NAND (a,b)

CAD for VLSI 50

How complex is the algorithm?

• n ���� number of circuit nodes

m ���� number of rules

– Ordering of rule (by cost reduction)  takes O(mn log mn)

time.

– The process has to be repeated many times.

• To speed up, we can use lazy evaluation.

– We only check those circuit nodes which were modified in 

the previous iteration.

– O(m log m) for every rule application.
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Global Optimization Technique

• Used in GE Socrates.

– Looks at all the equations at one time.

• Perform weak division.

– Divide out common sub-expressions.

– Literal count gets reduced.

• The following iterative steps are carried out:

– Generate the candidate sub-expressions.

– Select a sub-expression to divide.

– Divide functions by selected sub-expression.

CAD for VLSI 52

Example

• Original equations:

f1 = a.b.c + b.c.d + b.e.g     f2 = b.c.f.h + d.g + a.b.g

���� No. of literals = 18

– We find literals saved for sub-expressions:

b.c      ���� 4              a.b  ���� 2

a + d  ���� 2               b.g  ���� 2

Select the sub-expression bc.

• Modified equations (after iteration 1):

f1 =  (a + d).u + b.e.g

f2 =  u.f.h + d.g + a.b.g

u =  b.c                                       ���� No. of literals = 14+2
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f1 =  (a + d).u + b.e.g

f2 =  u.f.h + d.g + a.b.g

u =  b.c

– Literals saved for the sub-expressions:

b.g  ���� 2

• Modified equations (after iteration 2):

f1 =  (a + d).u + e.v

f2 =  u.f.h + d.g + a.v

u =  b.c

v  =  b.g ���� No. of literals = 12+4

• No common sub-expressions  ���� STOP

CAD for VLSI 54

About the algorithm

• Basically a greedy algorithm
– Can get stuck in local minima.

– Give a “push” to come out of local minima.

• Like the “gasp” function in Espresso.

– Generation of all candidate expressions is expensive.

• Some heuristic used.
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Multilevel Logic Interactive 
Synthesis System  (MIS)

• A very popular & widely used algorithm.

– Uses factoring of equations.

– Similar to weak division used in Socrates.

– The target technology is CMOS gate.

• Complex gates realizing any complex functions.

• Example:

f ′′′′ =  (a + b + c)

g′′′′ =  (a + b) . (d + e + f) . h

CAD for VLSI 56

Basic Concept

• For global optimization,

– Use algebraic factorization to identify common sub-

expressions.

– Avoid exponential search.

• For local optimization,

– Identify 2-level sub-circuits.

– Minimize them using Espresso, or some similar approach.
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Global Optimization Approach

• Given a netlist of gates

– Scan the network.

– Apply simple heuristics to “clean up” the netlist.

• Constant propagation

• Double inverter elimination

• Espresso minimization of each equation

– Then proceed for global optimization with a view to 

minimize area.

CAD for VLSI 58

– Basically an iterative approach.

• Enumerate all common factors and identify the “best” 
candidate.

• Equations themselves may be common factors.

• Invert an equation if it helps.

– Factors may show up in the inverted form.

• Number of literals used to estimate area.

• Factoring can reduce area.
– An equation in simple sum-of-products form can have 

many literals.

• Many transistors for CMOS realization.

– Factoring the equation reduces the number of literals.

• Reduces number of transistors in CMOS realization.
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Local Optimization Approach

• Next step is to look at the problem locally.

– Each equation treated as a complex gate.

• Optimize two or more gates that share one or more 

literals.

• Break a large gate into smaller gates.

– For each equation, the don’t care input set is obtained from 

the neighborhood gates.

• Minimized using Espresso.

• Also an iterative step.

Binary Decision Diagrams
(BDD)
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Introduction

• Representation of Boolean functions

– Canonical

• Truth table

• Karnaugh map

• Set of minterms

– Non-Canonical

• Sum of products

• Product of sums

• Factored form

• Binary Decision Diagram (Proposed by Akers in 1978)
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What is Binary Decision Diagram?

• A data structure used to represent a Boolean function.

• Represented as a rooted, directed, acyclic graph, which 
consists of decision nodes and two terminal nodes
(0-terminal and 1-terminal).

– Each decision node is labeled by a Boolean variable and has 

two child nodes called low child, and high child.

– The edge from a node to a low (high) child represents an 

assignment of the variable to 0 (1).

• A BDD is said to be ordered if different variables 
appear in the same order on all paths from the root.
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Example

CAD for VLSI 64

• Construction of a BDD is based on the Shannon 
expansion of a function.
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Shannon Expansion

• Given a Boolean function  f(x1,x2,…,xi,…,xn)

• Positive cofactor

fi
1 =   f(x1,x2,…,1,…,xn)

• Negative cofactor

fi
0 =   f(x1,x2,…,0,…,xn)

• Shannon’s expansion theorem states that

f  =  xi′′′′ fi
0 + xi fi

1 

f  =  (xi + fi
0 )(xi′′′′ + fi

1 )
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How to construct BDD?

f  =  ac + bc + a′′′′b′′′′c′′′′

=  a′′′′ (b′′′′c′′′′ + bc)  +  a (c + bc)

=  a′′′′ (b′′′′c′′′′ + bc)  +  a (c)

b′′′′c′′′′ + bc c

a

f

This is the first 

step. The process 

is continued for 

all input 

variables.
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f  =  ac + bc + a′′′′b′′′′c′′′′

=  a′′′′ (b′′′′c′′′′ + bc)  +  a (c + bc)

=  a′′′′ (b′′′′c′′′′ + bc)  +  a (c)

b′′′′(c′′′′) + b(c)                  b′′′′(c) + b(c)

c′′′′(1) + c(0)     c′′′′(0) + c(1)         c′′′′(0) + c(1)           c′′′′(0) + c(1)

Expand by a

Expand by b

Expand by c

Variable ordering:  a, b, c

CAD for VLSI 68

f

c

1 0 0 1 0 1 0 1

b

a

b

c c c
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Variable Ordering (OBDD)

• The size of a BDD is determined both by the 
function being represented and the chosen ordering 
of the variables.

– For some functions, the size of a BDD may vary between a 

linear to an exponential range depending upon the ordering 

of the variables.

• An example:

f(x1,…,x2n) = x1x2 + x3x4 + … + x2n-1x2n

Variable ordering:  x1 < x3 < … < x2n-1 < x2 < x4 < … < x2n

BDD requires 2n+1 nodes to represent the function.

Variable ordering: x1 < x2 < x3 < x4 < … < x2n-1 < x2n

BDD requires 2n nodes to represent the function.

CAD for VLSI 70

BDD for the function f(x1, ..., x8) = x1x2 + x3x4 + x5x6 + x7x8

using bad variable ordering
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Same function using good variable ordering
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• Important point to note:

– It is essential to find a good variable ordering when using 

the OBDD data structure in practice.

– The problem of finding the best variable ordering is NP-

hard.

– Several heuristics for variable ordering have been 

proposed.
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Reduced Ordered BDD (ROBDD)

• An ordered binary decision diagram is said to be 
reduced (ROBDD) if the following two graph 
reduction rules are applied:

– Merge any isomorphic subgraphs.

– Eliminate any node whose two children are isomorphic.

• The advantage of an ROBDD is that it is canonical 
(unique) for a given function.

– This property makes it useful in functional equivalence 

checking.
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Some Reduction Rules

y y

x
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x

y z

x

y z y z

x

y z

x

y z y z

x

x

Some Reduction Rules (contd.)
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Construction of ROBDD: an example
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0

0
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0
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1
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Some Benefits of BDD

• Checking for tautology is trivial.

– BDD is a constant 1.

• Complementation.

– Given a BDD for a function f, the BDD for f′′′′ can be obtained 

by simply interchanging the terminal nodes.

• Equivalence check.

– Two functions f and g are equivalent if their BDDs (under 

the same variable ordering) are the same.
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Use of BDD in Synthesis

• BDD is canonical for a given variable ordering.

• It implicitly uses factored representation: 

x

y yhh

x′′′′h + xh  =  h

x

y z

x

y z

x

y z

h h h

a b a b

ah + bh  =  (a+b)h
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• Variable reordering can reduce the size of BDD.

– Implicit logic minimization.

• Some redundancy is also removed during the 
construction of BDD itself.
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MUX realization of functions

x

f

f g

0 1

f g

f

x
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MUX-based Functional Decomposition

f g

h
0 1

f g
h

f f

An example ===>
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1

0 1

b

a

0

f

dc

f

1

d

b

a

c

0

ab′′′′
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To Summarize

• BDDs have been used traditionally to represent and 
manipulate Boolean functions.

– Used in synthesis systems.

– Used in formal verification tools.

– Efficient packages to manipulate BDDs are available.


