
1/28/2013

1

Synthesis

CAD for VLSI 2

The Y-diagram Revisited

Behavioral
Structural

Physical

More
abstract

designs

1/28/2013

2

CAD for VLSI 3

BehavioralStructural

Physical

Synthesis

CAD for VLSI 4

Algorithm
Flowchart

BehavioralStructural

Physical

Processor
Memory
Bus

PCBs
MCMs

1/28/2013

3

CAD for VLSI 5

Register
Transfers

BehavioralStructural

Physical

Register
MUX
ALU

ASICs
FPGAs

CAD for VLSI 6

BehavioralStructural

Physical

Boolean
equations

Gates
Flip-flops

Cells

1/28/2013

4

CAD for VLSI 7

BehavioralStructural

Physical

Transistor
functions

Transistors

Transistor
layout

CAD for VLSI 8

Logic Design

Redesign

Schematic
Capture

Logic
Simulation

Logic
Synthesis

Technology
Mapping

RTL Specification
Boolean Equations

Cell
Library

Performance Netlist

Component
Library

Redesign

Stimulus

Back-
Annotation Physical

Design

Logic
Verification

1/28/2013

5

CAD for VLSI 9

Schematic Capture

• Schematic

– Graphical representation of a netlist of components.

• Schematic Capture

– Interactive creation of a schematic

– Using a schematic editor

• Uses component icons

• Picks up components from library

• Creates netlist

– Input to simulation & synthesis tools

CAD for VLSI 10

nand2 1 2 3

nand2 1 3 4

nand2 2 3 5

nand2 4 5 6

In1

Netlist

Schematic

In2

Out

4
3

2

1

6

5

1/28/2013

6

CAD for VLSI 11

Logic Simulation

• Takes a logic level netlist as input, and simulate
functional behavior.

– “Netlist” obtained from schematic capture or synthesis.

– For simulation, the behavior of components is used.

• Available from component library

• Gates, flip-flops, MUX, registers, adder

• Ability to handle large circuits (millions of gates)

– Should be very fast

– Hardware accelerators

CAD for VLSI 12

• Simulation Objectives

– Functional correctness of the netlist

• Requires application of a set of test vectors ���� test

bench

– Timing analysis

• Estimation of delay, critical paths

• Hazards, races, etc.

– Test generation

• Required for manufacture test

• To be discussed later

1/28/2013

7

CAD for VLSI 13

Logic Synthesis

• Input: Boolean equations and FSMs

• Output: A netlist of gates and flip-flops

– Combinational circuits and sequential circuits are typically
handled separately

• Design Goals:
– Minimize number of levels (delay)

– Minimize number of gates (area)

– Minimize signal activity (power)

• Typical Constraints:
– Target library (say, only NAND and NOT gates)

CAD for VLSI 14

• Special Considerations
– Ability to handle large circuits within a reasonable amount

of time.

• Problem is known to be NP-complete

– Ability to handle mutually conflicting requirements (area &
delay)

– Typically a fully automated process

• Algorithms/heuristics well understood

• Do not need user intervention

– Use technology dependent considerations

• Break a 20-input gate into smaller gates

• Use gates available in the library

1/28/2013

8

CAD for VLSI 15

Technology Mapping

• Basic Concept:
– During logic synthesis, map portions of the netlist to

“cells” available in the cell library

• Standard library (NAND, NOR, NOT, AOI, etc)

• FPGA cells, standard cells

• Objectives:
– Minimize area, delay, power

– Should be fast

• Able to handle large circuits, and large technology
libraries

CAD for VLSI 16

An Example

1/28/2013

9

CAD for VLSI 17

Logic Verification

• Verify that the synthesized netlist matches the
original specification

– Detect design errors, also synthesis errors

– Basic objective is to ensure functional correctness, and
to locate errors, if any

• Broadly two approaches:
1. Simulation

• Fast, incremental, can handle large circuits

2. Formal verification

• Slow, exhaustive, for small circuits only

Logic Synthesis

1/28/2013

10

CAD for VLSI 19

The Basic Problem

• Convert from logic equations to gate-level netlists
(assume combinational logic).

– Maximize speed

– Minimize area, power

a′′′′bc + abc + d bc + d

b

c
d

b

c

d

CAD for VLSI 20

Logic Specification

• PLA Format

.i 3

.o 3

.p 4
1x1 011
x00 010
1x0 100
x11 011
.e

• Sum-of-product form

x = ac’
y = ac + b’c’ + bc
z = ac + bc

1/28/2013

11

CAD for VLSI 21

Logic Synthesis Problem

1. Simplification of logic equations

– Reduce number of literals (and operands)

2. Synthesis

– Map logic equations to gates (AND, OR, etc)

3. Gate-level optimization

– Replace OR-NOT by NOR, for example

– Delay, power, area

4. Technology mapping

– Map from gates to technology library

– FPGA, TTL chips, standard cells, etc

Two Level Logic Minimization

1/28/2013

12

CAD for VLSI 23

Basic Approaches

• Karnaugh Maps

– For n inputs, the map contains 2n entries

– Objective is to find minimum prime cover

• Minimum ���� fewest terms

• Prime ���� choose only maximal covers

– Don’t care terms are used to advantage

– Difficult to automate

• Minimum cover problem is NP-complete

• Process can get into a local minima

CAD for VLSI 24

• Problems with K-maps:

– Number of cells is exponential in the number of input

variables.

• Imagine a 50-input circuit

– Requires efficient data structures

• For representing the function

• For searching for minimal prime cover

– Quine-McCluskey method

• Easy to implement in software

• Computational complexity remains high

1/28/2013

13

CAD for VLSI 25

Espresso: A 2-level logic optimizer

• Some notations:

– For an n-input function, n-dimensional Boolean space

• Each point mapped to a unique combination of the n

literals

• Entries in K-map, minterm

– Cube

• Conjunction (AND) of literals in an n-dimensional space

• Points on the n-dimensional hypercube that are “1”

CAD for VLSI 26

• Expression

– Disjunction (OR) of cubes

• Don’t cares

– Literals that are missing from a cube

ab

a′′′′b′′′′

a′′′′b

ab′′′′
Cube: b′′′′

Don’t care: a

1/28/2013

14

CAD for VLSI 27

• Basic Approach

– Minimize cover of “ON-set” of the function

• ON-set ���� set of vertices that correspond to “1”

minterms

• Minimum set of cubes

• Size of the cubes can be increased by exploiting don’t

care literals

CAD for VLSI 28

• The Espresso Algorithm (Outline)

– Start with the sum-of-products form (i.e., cubes covering

the ON-set).

– Expand, remove redundancy (irredundant) and reduce

cubes in an iterative loop, until no further improvement is

possible.

– Perturb the solution, and repeat the previous iterative

steps, as long as the time budget permits.

• For each cube, add a subcube not covered by any other

cube.

• Expand subcubes and add them if they cover another

cube.

1/28/2013

15

CAD for VLSI 29

ESPRESSO Algorithm

Forig = ON-set; /* vertices with expression TRUE */
R = OFF-set; /* vertices with expression FALSE */
D = DC-set; /* vertices with expression DC */
F = expand(Forig, R); /* expand cubes against OFF-set */
F = irredundant(F, D); /* remove redundant cubes */
do {

do {
F = reduce(F, D); /* shrink cubes against ON-set */
F = expand(F, R);
F = irredundant(F, D);

} until cost is “stable”;
/* perturb solution */
G = reduce_gasp(F, D); /* add cubes that can be reduced */
G = expand_gasp(G, R); /* expand cubes that cover another */
F = irredundant(F+G, D);

} until time is up;
ok = verify(F, Forig, D); /* check that result is correct */

CAD for VLSI 30

Cube operation :: expand

• Make each cube as large as possible without
covering a point in the OFF-set.

– Increases the number of literals in the cover.

– Sets the stage for finding a new and possibly better

solution.

• Example:

f = a′′′′bc′′′′+ bc + ab′′′′c′′′′ Don’t care: ab′′′′c

f = a′′′′b + bc + ac + ab′′′′

1/28/2013

16

CAD for VLSI 31

00

01 11

10 00

01 11

10
Expand

ON

DC

OFF

CAD for VLSI 32

• Throw out redundant cubes.
– Points may be covered by several cubes after the ‘expand”

step.

– Remove smaller cubes whose points are covered by larger
cubes.

– There must be one cube for every essential vertex.

• Example:
f = a′′′′b + bc + ac + ab′′′′

f = a′′′′b + ac + ab′′′′

Cube operation :: irredundant

One vertex in bc

is covered by a′′′′b

& the other by ac

1/28/2013

17

CAD for VLSI 33

00

01 11

10
Irredundant

00

01 11

10

ON

DC

OFF

E

Rp

Rp

Rt

CAD for VLSI 34

Cube operation :: reduce

• The cubes in the cover are reduced in size.

– The number of literals in the cover is reduced.

– Smaller cubes can expand in more directions.

– Smaller cubes are more likely to be covered by other cubes

during expansion.

• Example

f = a′′′′b + ac + ab′′′′

f = a′′′′b + abc + ab′′′′c′′′′

1/28/2013

18

CAD for VLSI 35

00

01 11

1000

01 11

10

Reduce

ON

DC

OFF

CAD for VLSI 36

– In general, the new cover will be different from the initial

cover.

• “expand” and “irredundant” steps can possibly find out

a new way to cover the points in the ON-set.

• Hopefully, the new cover will be smaller.

1/28/2013

19

CAD for VLSI 37

Cube operation :: perturbations

• Reduce Gasp

– For each cube add a subcube not covered by other cubes.

• Expand Gasp

– Expand subcubes and add them if they cover another cube.

– Later use “irredundant” to discard redundant cubes.

– This is a “last gasp” heuristic for exploration.

• No ordering of cube size.

CAD for VLSI 38

00

01 11

10 00

01 11

10
Expand Gasp

00

01 11

10
Reduce Gasp

00

01 11

10 ON

DC

OFF

1/28/2013

20

CAD for VLSI 39

• Example:

f = a′′′′ + b ���� f = a′′′′ + b + a′′′′b′′′′+ ab

(Reduce Gasp)

f = a′′′′b′′′′+ a′′′′b + ab ���� f = a′′′′b′′′′+ a′′′′b + b

(Expand Gasp)

CAD for VLSI 40

An example

a’b’

a’b ab

ab’a’b’

a’b ab

ab’

x = a’b + ab + a’b’

Expand

a’b’

a’b ab

ab’

Irredundant

a’b’

a’b ab

ab’

Reduce

a’b’

a’b ab

ab’

Expand

Irredundant

a’b’

a’b ab

ab’

Cost Stable

x = a’ + b

1/28/2013

21

CAD for VLSI 41

Essential and
Redundant Cubes

Prime &
Irredundant

Cover

Rp

Rp

E

Initial Cover Reduce Expand in
right direction

CAD for VLSI 42

Espresso :: conclusion

• The algorithm successively generates new covers
until no further improvement is possible.

• Produces near-optimal solutions.

• Used for PLA minimization, or as a sub-function in
multilevel logic minimization.

• Can process very large circuits.

– 10,000 literals, 100 inputs, 100 outputs

– Less than 15 minutes on a high-speed workstation

1/28/2013

22

Multi Level Logic Minimization

CAD for VLSI 44

Motivation

• In many applications, 2-level logic is unsuitable as
compared to random (multilevel) logic.

– Gates with high fanin are slow, and take more area.

– It makes sense to transform a 2-level logic realization to

multi-level logic.

1/28/2013

23

CAD for VLSI 45

• A classical example :: XOR function

– For an 8-input XOR function,

• For 2-level NAND-NAND realization

8C1 + 8C3 + 8C5 + 8C7 = 128 NAND8 gates

1 NAND128 gate

• For 3-level XOR realization

7 XOR2 gates

���� 28 NAND2 gates

Number of levels = 9

CAD for VLSI 46

• Multilevel logic optimization approaches:

1. Local optimization

» Rule-based transformation

2. Global optimization

» Weak division

1/28/2013

24

CAD for VLSI 47

Local Optimization Technique

• Used in IBM Logic Synthesis System.

• Perform rule-based local transformations.

– Objective ���� reduce area, delay, power.

– Developing a good set of rules is a challenge.

– Should be comprehensive enough so as to completely

explore the design space.

• Basic idea:

– Apply a transformation which reduces cost.

– Iterate and continue the transformations as long as

solution keeps improving.

CAD for VLSI 48

• AND/OR transformations

– Reduce the size of the circuit, critical path.

– Typical transformations:

a . 1 = a

a + 1 = 1

a + a′′′′ = 1

a . a′′′′ = 0

(a′′′′)′′′′ = a

a + a′′′′ . b = a + b

xor (xor(a1,a2,…,an), b) = xor (a1,a2,…,an,b)

• Transform the AND/OR form to NAND (or NOR) form.

1/28/2013

25

CAD for VLSI 49

• NAND (NOR) transformations

– Some synthesis systems assume that all gates are of the

same type (NAND or NOR).

– Does not require technology mapping.

– Rules framed that transform one NAND (NOR) network to

another.

– Examples:

NAND (NOT (NAND (a,b)), c) = NAND (a,b,c)

NAND (NAND(a,b,c), NAND(a,b,c’)) = NAND (a,b)

CAD for VLSI 50

How complex is the algorithm?

• n ���� number of circuit nodes

m ���� number of rules

– Ordering of rule (by cost reduction) takes O(mn log mn)

time.

– The process has to be repeated many times.

• To speed up, we can use lazy evaluation.

– We only check those circuit nodes which were modified in

the previous iteration.

– O(m log m) for every rule application.

1/28/2013

26

CAD for VLSI 51

Global Optimization Technique

• Used in GE Socrates.

– Looks at all the equations at one time.

• Perform weak division.

– Divide out common sub-expressions.

– Literal count gets reduced.

• The following iterative steps are carried out:

– Generate the candidate sub-expressions.

– Select a sub-expression to divide.

– Divide functions by selected sub-expression.

CAD for VLSI 52

Example

• Original equations:

f1 = a.b.c + b.c.d + b.e.g f2 = b.c.f.h + d.g + a.b.g

���� No. of literals = 18

– We find literals saved for sub-expressions:

b.c ���� 4 a.b ���� 2

a + d ���� 2 b.g ���� 2

Select the sub-expression bc.

• Modified equations (after iteration 1):

f1 = (a + d).u + b.e.g

f2 = u.f.h + d.g + a.b.g

u = b.c ���� No. of literals = 14+2

1/28/2013

27

CAD for VLSI 53

f1 = (a + d).u + b.e.g

f2 = u.f.h + d.g + a.b.g

u = b.c

– Literals saved for the sub-expressions:

b.g ���� 2

• Modified equations (after iteration 2):

f1 = (a + d).u + e.v

f2 = u.f.h + d.g + a.v

u = b.c

v = b.g ���� No. of literals = 12+4

• No common sub-expressions ���� STOP

CAD for VLSI 54

About the algorithm

• Basically a greedy algorithm
– Can get stuck in local minima.

– Give a “push” to come out of local minima.

• Like the “gasp” function in Espresso.

– Generation of all candidate expressions is expensive.

• Some heuristic used.

1/28/2013

28

CAD for VLSI 55

Multilevel Logic Interactive
Synthesis System (MIS)

• A very popular & widely used algorithm.

– Uses factoring of equations.

– Similar to weak division used in Socrates.

– The target technology is CMOS gate.

• Complex gates realizing any complex functions.

• Example:

f ′′′′ = (a + b + c)

g′′′′ = (a + b) . (d + e + f) . h

CAD for VLSI 56

Basic Concept

• For global optimization,

– Use algebraic factorization to identify common sub-

expressions.

– Avoid exponential search.

• For local optimization,

– Identify 2-level sub-circuits.

– Minimize them using Espresso, or some similar approach.

1/28/2013

29

CAD for VLSI 57

Global Optimization Approach

• Given a netlist of gates

– Scan the network.

– Apply simple heuristics to “clean up” the netlist.

• Constant propagation

• Double inverter elimination

• Espresso minimization of each equation

– Then proceed for global optimization with a view to

minimize area.

CAD for VLSI 58

– Basically an iterative approach.

• Enumerate all common factors and identify the “best”
candidate.

• Equations themselves may be common factors.

• Invert an equation if it helps.

– Factors may show up in the inverted form.

• Number of literals used to estimate area.

• Factoring can reduce area.
– An equation in simple sum-of-products form can have

many literals.

• Many transistors for CMOS realization.

– Factoring the equation reduces the number of literals.

• Reduces number of transistors in CMOS realization.

1/28/2013

30

CAD for VLSI 59

Local Optimization Approach

• Next step is to look at the problem locally.

– Each equation treated as a complex gate.

• Optimize two or more gates that share one or more

literals.

• Break a large gate into smaller gates.

– For each equation, the don’t care input set is obtained from

the neighborhood gates.

• Minimized using Espresso.

• Also an iterative step.

Binary Decision Diagrams
(BDD)

1/28/2013

31

CAD for VLSI 61

Introduction

• Representation of Boolean functions

– Canonical

• Truth table

• Karnaugh map

• Set of minterms

– Non-Canonical

• Sum of products

• Product of sums

• Factored form

• Binary Decision Diagram (Proposed by Akers in 1978)

CAD for VLSI 62

What is Binary Decision Diagram?

• A data structure used to represent a Boolean function.

• Represented as a rooted, directed, acyclic graph, which
consists of decision nodes and two terminal nodes
(0-terminal and 1-terminal).

– Each decision node is labeled by a Boolean variable and has

two child nodes called low child, and high child.

– The edge from a node to a low (high) child represents an

assignment of the variable to 0 (1).

• A BDD is said to be ordered if different variables
appear in the same order on all paths from the root.

1/28/2013

32

CAD for VLSI 63

Example

CAD for VLSI 64

• Construction of a BDD is based on the Shannon
expansion of a function.

1/28/2013

33

CAD for VLSI 65

Shannon Expansion

• Given a Boolean function f(x1,x2,…,xi,…,xn)

• Positive cofactor

fi
1 = f(x1,x2,…,1,…,xn)

• Negative cofactor

fi
0 = f(x1,x2,…,0,…,xn)

• Shannon’s expansion theorem states that

f = xi′′′′ fi
0 + xi fi

1

f = (xi + fi
0)(xi′′′′ + fi

1)

CAD for VLSI 66

How to construct BDD?

f = ac + bc + a′′′′b′′′′c′′′′

= a′′′′ (b′′′′c′′′′ + bc) + a (c + bc)

= a′′′′ (b′′′′c′′′′ + bc) + a (c)

b′′′′c′′′′ + bc c

a

f

This is the first

step. The process

is continued for

all input

variables.

1/28/2013

34

CAD for VLSI 67

f = ac + bc + a′′′′b′′′′c′′′′

= a′′′′ (b′′′′c′′′′ + bc) + a (c + bc)

= a′′′′ (b′′′′c′′′′ + bc) + a (c)

b′′′′(c′′′′) + b(c) b′′′′(c) + b(c)

c′′′′(1) + c(0) c′′′′(0) + c(1) c′′′′(0) + c(1) c′′′′(0) + c(1)

Expand by a

Expand by b

Expand by c

Variable ordering: a, b, c

CAD for VLSI 68

f

c

1 0 0 1 0 1 0 1

b

a

b

c c c

1/28/2013

35

CAD for VLSI 69

Variable Ordering (OBDD)

• The size of a BDD is determined both by the
function being represented and the chosen ordering
of the variables.

– For some functions, the size of a BDD may vary between a

linear to an exponential range depending upon the ordering

of the variables.

• An example:

f(x1,…,x2n) = x1x2 + x3x4 + … + x2n-1x2n

Variable ordering: x1 < x3 < … < x2n-1 < x2 < x4 < … < x2n

BDD requires 2n+1 nodes to represent the function.

Variable ordering: x1 < x2 < x3 < x4 < … < x2n-1 < x2n

BDD requires 2n nodes to represent the function.

CAD for VLSI 70

BDD for the function f(x1, ..., x8) = x1x2 + x3x4 + x5x6 + x7x8

using bad variable ordering

1/28/2013

36

CAD for VLSI 71

Same function using good variable ordering

CAD for VLSI 72

• Important point to note:

– It is essential to find a good variable ordering when using

the OBDD data structure in practice.

– The problem of finding the best variable ordering is NP-

hard.

– Several heuristics for variable ordering have been

proposed.

1/28/2013

37

CAD for VLSI 73

Reduced Ordered BDD (ROBDD)

• An ordered binary decision diagram is said to be
reduced (ROBDD) if the following two graph
reduction rules are applied:

– Merge any isomorphic subgraphs.

– Eliminate any node whose two children are isomorphic.

• The advantage of an ROBDD is that it is canonical
(unique) for a given function.

– This property makes it useful in functional equivalence

checking.

CAD for VLSI 74

Some Reduction Rules

y y

x

1/28/2013

38

CAD for VLSI 75

x

y z

x

y z y z

x

y z

x

y z y z

x

x

Some Reduction Rules (contd.)

CAD for VLSI 76

Construction of ROBDD: an example

1/28/2013

39

CAD for VLSI 77

0 1

0

0

0 0 0

01

1 1 1
1

1

x1

x2 x2

x3

0 1

0 1

0

0

01

1

1

x1

x2

x3

0 1

0
1

1
1

0

0

x1

x2 x2

x3 x3 x3 x3

0 1 0 1 0 1 1 1

0 1

0

0 0 0 0

01

1 1 1 1

1

F=x1x2+x1x3+x1x2x3

0 1

x1

x2

x3 x3

x2

x3 x3

CAD for VLSI 78

Some Benefits of BDD

• Checking for tautology is trivial.

– BDD is a constant 1.

• Complementation.

– Given a BDD for a function f, the BDD for f′′′′ can be obtained

by simply interchanging the terminal nodes.

• Equivalence check.

– Two functions f and g are equivalent if their BDDs (under

the same variable ordering) are the same.

1/28/2013

40

CAD for VLSI 79

Use of BDD in Synthesis

• BDD is canonical for a given variable ordering.

• It implicitly uses factored representation:

x

y yhh

x′′′′h + xh = h

x

y z

x

y z

x

y z

h h h

a b a b

ah + bh = (a+b)h

CAD for VLSI 80

• Variable reordering can reduce the size of BDD.

– Implicit logic minimization.

• Some redundancy is also removed during the
construction of BDD itself.

1/28/2013

41

CAD for VLSI 81

MUX realization of functions

x

f

f g

0 1

f g

f

x

CAD for VLSI 82

MUX-based Functional Decomposition

f g

h
0 1

f g
h

f f

An example ===>

1/28/2013

42

CAD for VLSI 83

1

0 1

b

a

0

f

dc

f

1

d

b

a

c

0

ab′′′′

CAD for VLSI 84

To Summarize

• BDDs have been used traditionally to represent and
manipulate Boolean functions.

– Used in synthesis systems.

– Used in formal verification tools.

– Efficient packages to manipulate BDDs are available.

