Tutorial Questions
 Cryptography and Network Security
 Date: 13/10/2023

Q1. Using Fermat's theorem, find $3^{201} \bmod 11=1$.
Q2. Find Euler's Totient for the following:
a) 10
b) 41

Q3. (Euler's Theorem) Given $\mathrm{a}=3, \mathrm{n}=10$. Find $\mathrm{a}^{\phi(\mathrm{n})}$.
Q4. (CRT - Chinese Remainder Theorem) Given following congruences:

- $x \equiv 6(\bmod 11)$
- $x \equiv 13(\bmod 16)$
- $\mathrm{x} \equiv 9(\bmod 21)$
- $x \equiv 19(\bmod 25)$
find the solution for x .
Q5. Suppose Bob chooses, $\mathrm{p}=11$ and $\mathrm{q}=23$. How Bob can choose the key (e,n) to execute RSA. Consider the keys:
- Public Key, PU $=(3,253)$
- Private Key, $\mathrm{PR}=(147,253)$

Now use these to encrypt $\mathrm{M}=57$ and also verify the decryption.
Q6. Use Fermat's Theorem to find a number " a " between 0 and 72 with " a " congruent to 9^{794} modulo 73 .

Q7. Use Fermat's Theorem to find a number " x " between 0 and 28 with x^{85} congruent to 6 modulo 29. (solve it without any sort of brute force searching)

Q8. Show for an arbitrary positive integer " a ", $\phi(\mathrm{a})$ is given by:
$\phi(a)=\prod_{\{i=0 \text { to t }\}}\left[\left(P_{i} \wedge\left(a_{i}-1\right)\right)\left(P_{i}-1\right)\right]$, where $a=p_{1}{ }^{\text {al }} p_{2}{ }^{a 2} \ldots \ldots . p_{t}^{a t}$.

