Cryptography and Network Security (CS60065)
 AUTUMN, 2023-2024

TA: Tapadyoti Banerjee

Course Instructor: Prof. Dipanwita Roy Chowdhury
Department of Computer Science \& Engineering Indian Institute of Technology, Kharagpur West Bengal 721302, India

TUTORIAL: 2 DATE: 6 ${ }^{\text {th }}$ September 2023

The Entropy

Suppose X is a discrete random variable that takes on values from a finite set X . Then, the entropy of the random variable X is defined to be the quantity

$$
H(\mathbf{X})=-\sum_{x \in X} \operatorname{Pr}[x] \log _{2} \operatorname{Pr}[x]
$$

QUESTION : 1 (The Entropy)

Let $\mathrm{P}=\{\mathrm{a}, \mathrm{b}\}$ with $\operatorname{Pr}[\mathrm{a}]=1 / 4, \operatorname{Pr}[\mathrm{~b}]=3 / 4$. Copmpute $\mathrm{H}(\mathrm{P})$.

Let $\mathrm{K}=\{\mathrm{K} 1, \mathrm{~K} 2, \mathrm{~K} 3\}$ with $\operatorname{Pr}[\mathrm{K} 1]=1 / 2, \operatorname{Pr}[\mathrm{~K} 2]=\operatorname{Pr}[\mathrm{K} 3]=1 / 4$. Let $\mathrm{C}=\{1$, $2,3,4\}$, and the cryptosystem can be represented by the following encryption matrix:

	a	b
K1	1	2
K2	2	3
K3	3	4

The Entropy

Suppose X is a discrete random variable that takes on values from a finite set X . Then, the entropy of the random variable X is defined to be the quantity

$$
H(\mathbf{X})=-\sum_{x \in X} \operatorname{Pr}[x] \log _{2} \operatorname{Pr}[x]
$$

Reading Assignment:

THEOREM 3.6 Suppose \mathbf{X} is a random variable having a probability distribution that takes on the values $p_{1}, p_{2}, \ldots, p_{n}$, where $p_{i}>0,1 \leq i \leq n$. Then $H(\mathbf{X}) \leq \log _{2} n$, with equality if and only if $p_{i}=1 / n, 1 \leq i \leq n$.

THEOREM 3.7 $H(\mathbf{X}, \mathbf{Y}) \leq H(\mathbf{X})+H(\mathbf{Y})$, with equality if and only if \mathbf{X} and \mathbf{Y} are independent random variables.

QUESTION : 2 (The Key Equivocation)

Let (P, C,K, E,D) be a cryptosystem. Then prove the followings:
$\mathrm{H}(\mathrm{K} \mid \mathrm{C})=\mathrm{H}(\mathrm{K})+\mathrm{H}(\mathrm{P})-\mathrm{H}(\mathrm{C})$.

The Spurious Keys and Unicity Distance

The Spurious Keys and Unicity Distance

Reading Assignment:

1) Prove a bound on the expected number of spurious keys.
2) THEOREM 3.11 Suppose $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ is a cryptosystem where $|\mathcal{C}|=|\mathcal{P}|$ and keys are chosen equiprobably. Let R_{L} denote the redundancy of the underlying language. Then given a string of ciphertext of length n, where n is sufficiently large, the expected number of spurious keys, \bar{s}_{n}, satisfies

$$
\bar{s}_{n} \geq \frac{|\mathcal{K}|}{|\mathcal{P}|^{n R_{L}}}-1
$$

QUESTION : 3 (Quadratic Residue)

Find the quadratic residues and quadratic non-residues in \mathbf{Z}_{11}

QUESTION : 4 (Congruence)

Let g be a primitive root for Fp. Suppose that $x=a$ and $x=b$ are both integer solutions to the congruence $g^{x} \equiv h(\bmod p)$. Prove that $a \equiv b(\bmod p-1)$.

QUESTION : $5\left(Z^{*}{ }_{\mathrm{p}}\right.$ and cyclic group)

Suppose $\mathrm{p}=13$. Find how many primitive elements are there in modulo 13 . And, examine it for 2.

QUESTION : 6 (DES)

Find the average complexity of an exhaustive search against 2-key 3 DES.

QUESTION : 7 (DES)

Show that: $3 \mathrm{DES}_{\mathrm{k} 1} \overline{\mathrm{k} 2} \overline{(\mathrm{P})}=\overline{3 \mathrm{DES}_{\mathrm{k} 1 \mathrm{k} 2}(\mathrm{P})}$

