Medical Implant Security

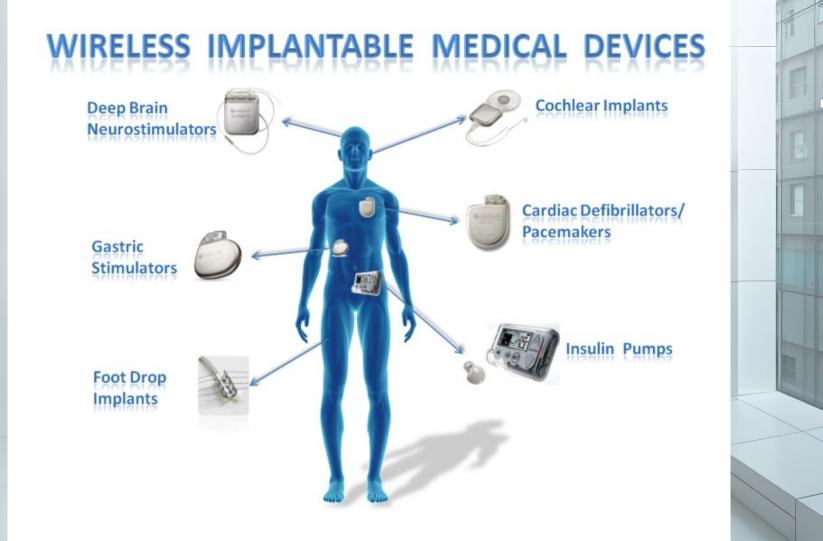
Understanding the Need for Secure Implantable Medical Devices

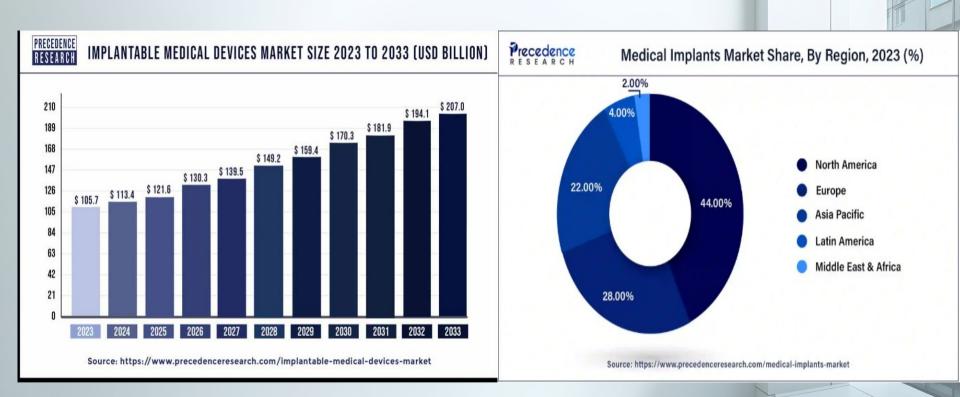
7/04/2025

Anisha Mitra, PhD Scholar, Department of CSE, IIT Kharagpur

Implantable Medical Devices

Embedded Technology for Human Health


Miniaturized Internal Tech


Implantable medical devices are biocompatible systems inserted into the human body to replace, monitor, or support physiological functions. *

Autonomous Life Management

These devices are designed to operate continuously inside the body, enhancing health outcomes through automated therapeutic intervention.

Why Important?

Medical Implant: Vulnerable?

Evaluation of Implant Interface

First Pacemaker

1970s

Telemetry Added

1999

MICS Established

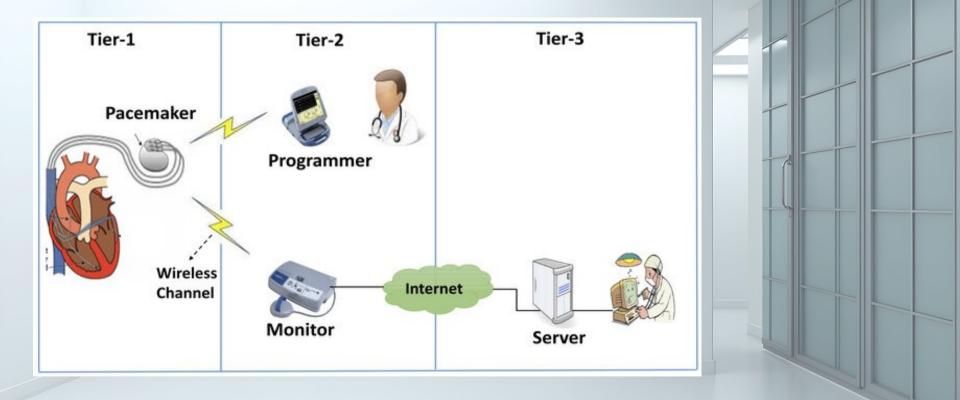
2006

MedRadio Expansion

2010s

Bluetooth Integration

100

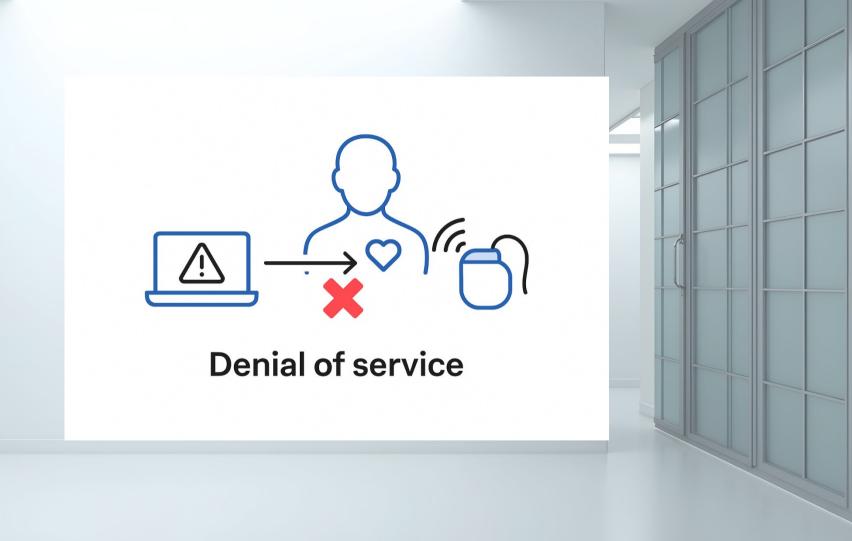


Communication

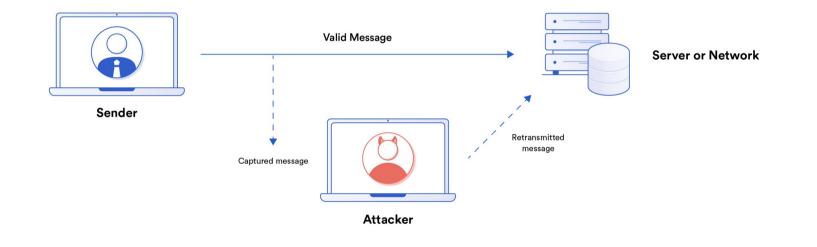
A Typical IMD Communication System- Unauthorized Access

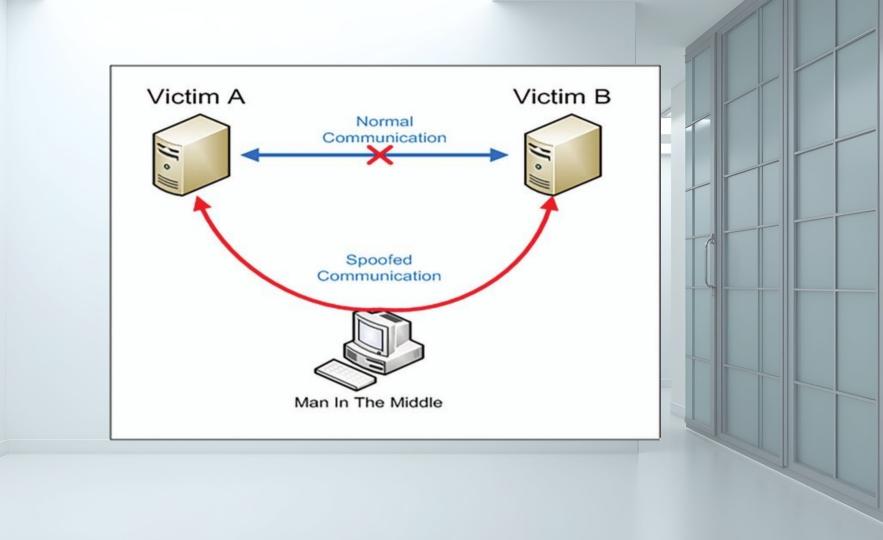
Security Attacks

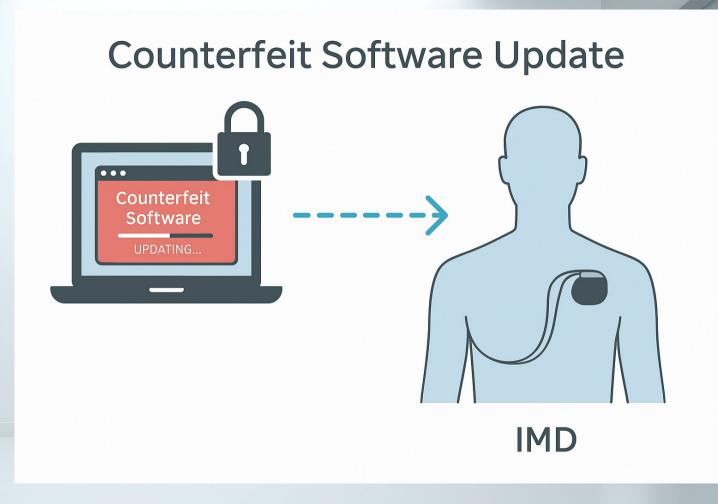
Eavesdropping Attack


Denial of Service(DoS) Attack

Replay Attack


Man-in-the-Middle Attack


Software Injection Attack



Replay Attack

Type 2: Medical data Safety

Key Stages & Threat Vectors:

1. Data Collection

Varies by device type (e.g., neural signals require noise filtering). Trusted sources (hospital firewall) vs. untrusted sources (internet). **Threat:** Data manipulation from non-trust zones.

2. Data Transfer

Uses wireless protocols to transmit data to external systems. Security Concerns: Integrity, confidentiality, and authenticity can be compromised. Threat: Man-in-the-middle attacks or packet injection.

3. Data at Rest

Stored in hospital servers, cloud platforms, or databases. **Threat:** Unauthorized access, tampering, or ransomware attacks.

Attack Type	Implications
Eavesdropping	Unauthorized access to sensitive patient data, violating privacy
Denial of Service (DoS)	Depletes device battery, prevents normal operation
Replay Attack	Reuses previously captured valid commands to manipulate device behavior
Man-in-the-Middle (MITM)	Intercepts/modifies communication between IMD and external devices
Software Injection Attack	Malicious commands alter device functionality or compromise its operation
Medical Data Manipulation	Leads to incorrect diagnosis or therapy due to altered or falsified patient data

CHALLENGES AND SECURITY TRADE-OFFS IN IMDs

Critical Physical Environment

•Biocompatibility:

Made from non-reactive materials like titanium/silicone, but may still trigger rejection or inflammation in some patients.

•Form Factor:

Must be compact and lightweight to avoid disrupting daily activities.

•Thermal & RF Limits:

Security mechanisms must respect limits on **heat dissipation** and **RF radiation** to prevent tissue damage or allergic responses.

Resource Constraints

•Non-rechargeable batteries with a lifespan of 8–10 years.

•Efficient power management is critical for both processing and communication tasks.

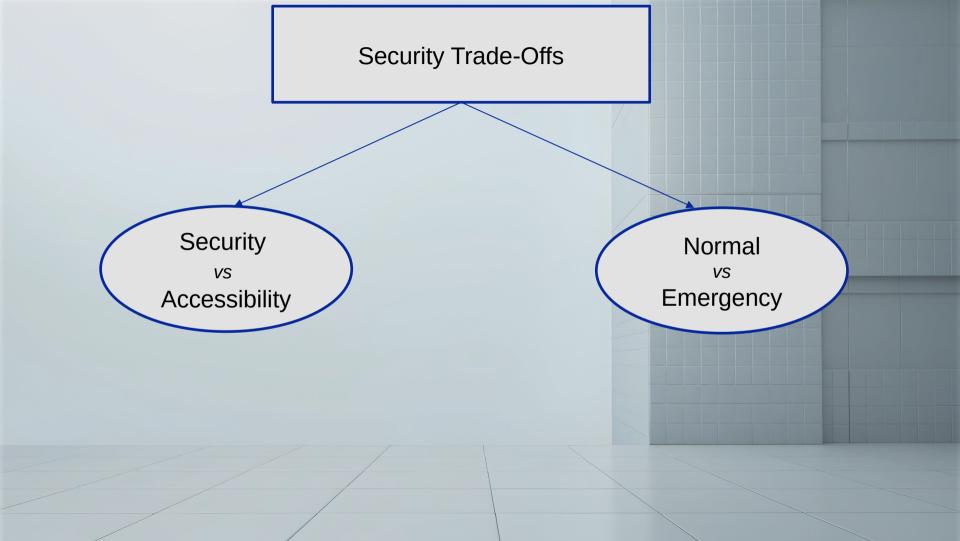
•**Traditional cryptographic methods** (e.g., symmetric encryption, PKI, hashing) are **resource-intensive**.

•Frequent cryptographic operations can drain the battery prematurely.

Battery depletion requires surgical replacement, posing health risks.

Legacy Compatibility

•Updating cryptographic protocols often requires modifying the IMD hardware.


•Millions of legacy IMDs are already implanted and remain vulnerable.

•~700,000 new cardiac implants are added each year.

•Ideal security solutions should also **protect already-implanted devices** without needing surgical updates.

Bureaucracy

- · Security updates require regulatory approval due to impact on
- IMD functionality.
- In the U.S., FDA approval is mandatory and may take up to 7 years.
- Bureaucratic delays make it difficult to quickly adopt new solutions.
- By the time approval is granted, the solution may be **outdated** due
- to technological advances.

Medical Device Recalls Due to Cybersecurity Vulnerabilities

Year	Device Model	Reason for Recall
2017	St. Jude Medical Cardiac Devices	Vulnerabilities enabled unauthorized control—risk of battery depletion or pacing hacks
2019	Medtronic MiniMed 508 & Paradigm Pumps	Unencrypted wireless communication could be exploited to deliver incorrect insulin
2020	BD Alaris System Infusion Pumps	Cyber flaws in software could allow remote tampering with infusion settings
2021	Medtronic MyCareLink Patient Monitors	Vulnerabilities in third-party communication stack (URGENT/11) posed risk

Case Study: Implantable Cardioverter Defibrillator(ICD) Security

Emerging IMD: Implantable Cardioverter Defibrillator

Figure: INOGENTM EL ICD by Boston Scientific [3]

Parts of an ICD

- Pulse Generator
- Electrodes

ICD Therapies

- Anti-tachycardia pacing(ATP)
- Cardioversion
- Defibrillation
- Bradycardia pacing
- Apart from the conventional ICDs, implanted under the skin, there is now a **Subcutaneous** version.

Primary Security Breach: ICD Communication environment

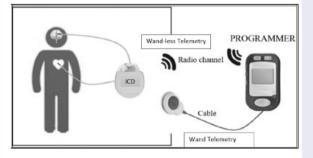
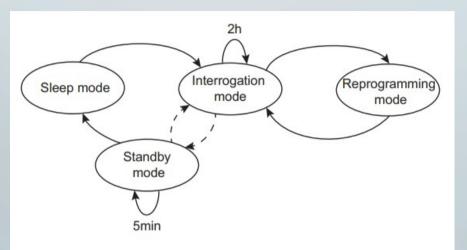


Figure: ICD Telemetry Service [5]

Telemetry Service

- Inductive coil telemetry using inductive Radio Frequency (RF) field(0-300 kHz) for proximity based communication.
- RF link telemetry using Medical Implant Communication System(MICS) [402-405 MHz] frequency band.
- This communication interfaces though beneficial for treatment delivery can turn into a significant attack surface.

- Employing a Black box approach to analyse the under proprietary protocol
- between ICD-Device programmer.
- Reverse engineering the underlying long-range communication protocol by
 - □ Identifying the wireless transmission parameter
 - □ Intercepting the message communicated during ICD-device programmer Equipment used


• Hardware

- Universal Software Radio Peripheral(USRP)
- A data acquisition System
 - (DAQ)
- A few Antennas
- A base station
- A few ICD models

Software

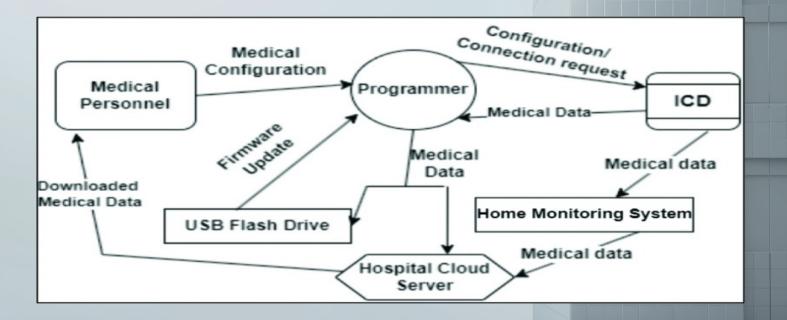
Transmitter & Receiver Program

ICD Activation

Exploit an Active Session

- Standby Mode usage
- Wake up ICD from 'Sleep' mode
- Using a legitimate external device

Marin et al., ACSAC 2016: On the (In)Security of Modern Implantable Cardiac Defibrillators - https://doi.org/10.1145/2991079.2991094


Data Manipulation Attack

Data Manipulation attacks on ICD environment

- An ICD delivers therapy based on some pre-programmed configurations which can be modified by a programmer.
- Various external communication paths existing in the ICD environment become vulnerable in the presence of an adversary.
- An unintended programming error or malfunctioning programmer can launch most threatening Data Manipulation (DM) attack.

A. Mitra and D. Roy Chowdhury, PST 2023 – Unmasking the Dominant Threat of Data Manipulation Attack on Implantable Cardioverter Defibrillators, IEEE, doi: 10.1109/PST58708.2023.10320186

Different DM attack flows on ICD environment

Countermeasures

A pseudo Command Set for ICD Functionalities

- ICDs' working depends on the detection of Ventricular Arrhythmias based on mainly two characteristics: **Heart Rate** and **Arrhythmias duration** [3].
- A pseudo command set is proposed based on identified primary functionalities of market-available ICDs.

Functionalities	Purpose	Pseudo Command
	VT1 rate/interval	SET VT1 GT value1
Tachycardia Zone Detection	VT2 rate/interval	SET VT2 GT value2
	VF rate/interval	SET VF GT valueF
	VT1 detection counter	SET VT1 time1
Tachycardia detection counter	VT2 detection counter	SET VT2 time2
or interval	VF detection counter	SET VF timeF
Shock dose releases after VF detections	VF first shock	VF1 REL dose-v1
	VF second shock	VF2 REL dose-v2
	VF 3-n th shock	VF3n REL dose-vn
Tachycardia detection en- able/disable	To decide whether to enable or disable tachycardia detection	ENL DET ON/OFF
Beeper control	Alerts about inappropriate ICD conditions	DISABLE BEEP

Figure: A Glimpse of the proposed Pseudo Command Set

Data manipulation attack (DMA) scenarios in ICD environment

SI. NO.	Pseudo Command	Identified modification	Possible outcome
1.	SET VT1 GT value1	value1 = 100(bpm)	May provide electric shock
2.	SET VT2 GT value2	value2 = 120(bpm)	when not required
3.	SET VT1 time1	time1 < 10	May cause unnecessary ICD
4.	SET VT2 time2	time2< 10	intervention
5.	VF1 REL dose-v1 VF2 REL dose-v2	(i) dose-v1< 10 or dose-v1 > 80 Joule (ii) dose-v2< 10 or dose-v2 > 80 Joule	May not terminate VF, can lead to death
		(iii) dose-v1>dose-v2	When 1 st shock dose value is greater than 2 nd shock dose value it fails to terminate VF, can lead to death
6.	DISABLE BEEP	Execute this command unnecessarily	Removes beeper functionality
7.	VF1 REL dose-v1 VF2 REL dose-v2 VF3n REL dose-vn	dose-v1 = 1(Joule), dose-v2 = 2(Joule), dose-vn = 0[OFF]	In case of VF, the ICD will provide only two shocks of very low energy which will not stop arrhythmias and can lead to death

Figure: Some DMA scenarios in ICD environment

Pseudo Command	Legitimate Shock delivery
 VF1 REL dose-v1 VF2 REL dose-v2 	'dose-v1' and 'dose-v2' should range between 10 to 80 Joule

Adversarial modification

• Case 1: Attacker changes and sets either dose-v1 or dose-v2 to be less than 10 Joule or both.

Low energy shock cannot halt detected Ventricular Fibrillation (VF).

• Case 2: Attacker changes and sets either dose-v1 or dose-v2 to be greater than 80 Joule or both.

Unnecessary high-energy shock can lead to a patient's death.

Case 3: Attacker sets a moderate value for dose-v1 (10 to 80 Joule) but for dose-v2, a value less than dose-v1.
 Do not terminate VF.

Security Goals

ICD's resource-contained, vulnerable environment necessitates two security goals: **Confidentiality, Integrity**

Confidentiality	Integrity	
 Security Primitives: Encryption and Authentication Functional instructions consisting of parameter values Parameter values consist of 	 Security Primitive: Authentication Functional instructions consisting of generic information 	
information about patient-specific health conditions.	 Instructions to change ICD operating modes, abort or start specific therapies, etc. 	

Data Transmission Protocol for ICD-Programmer Communication

- A comprehensive, secure protocol for ICD-programmer communication emphasises authenticated, unmodified message delivery.
- This security protocol consists of certain security primitives:
 Key Management
 - Lightweight Encryption Scheme
 - Lightweight Authentication scheme

Key Management and Lightweight Encryption Scheme

Key Management

- Two secret keys are considered for Encryption and Authentication schemes respectively
- We plan to utilise the dynamic key concept to provide a higher level of security
- Key revocation for various emergency conditions involving patients, medical practitioners must be taken into consideration

Lightweight Encryption Scheme

- Resource-constrained ICD environment cannot support resourceconsuming traditional encryption ciphers
- We prefer to propose a lightweight ARX based cipher design for the secure protocol

A Lightweight Authentication Scheme

• Authentication of the secret message prevents revelation, deception, and modification of message content.

- During ICD-Programmer communication, at the programmer's end, an authentication **Tag** is computed on the transmitting data, which gets recomputed and verified at the ICD's end.
- Any adversarial modification to the transmitted data leads to incorrect tag generation.

Resource Depletion Attack

Resource Depletion Attacks on ICD Environment

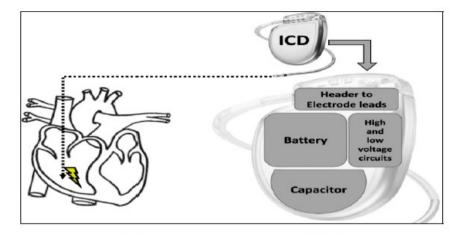


Figure: ICD Components [4]

- Battery-powered ICD environment is vulnerable to rapid battery depletion attack.
- Resource Depletion can lead to Denial of Service (DoS).
- ICD's telemetry service is exploited to launch Resource Depletion attacks.

<ロ><日><日><日><日<<

DQC

Resource Depletion Attack Models

1. Attacks on Low Power Modes of ICD

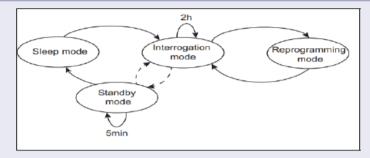


Figure: ICD modes of operation[6]

- Attacker's target ICDs power-conserving 'Sleep' and 'Standby' mode.
- **Barrage Attack:** Attackers prevent ICD from entering 'Sleep mode' by bombarding it with genuine access requests.
- Sleep Deprivation Attack: Attackers do not let ICD leave 'Standby mode'.

A. Mitra and D. Roy Chowdhury, ICMC 2024 – *Guarding the Beats: Defending Resource Depletion Attacks on ICDs*, LNNS, Springer. doi: 10.1007/978-981-97-2069-9_17

Algorithm 1 Barrage Attack

```
1: i \leftarrow 1; n \leftarrow N;
                                                                                      ▷ Consider 'N' to be a large value
2: while TRUE do
 3: L1:
4:
        if 'ICD' is in 'SM' then
                                                                                                     ▷ Sleep Mode: 'SM'
                 Attacker \xrightarrow{\text{Access Request}} 'ICD'
5:
                                                                                 'M' defines Attacker's identification
                               with 'M'
                                                                                        ▷ Checks 'M' for Authentication
6:
            for i = 1, \ldots, n do
7:
8:
                if Authorised then
9:
                       Release Access Grant
                       Attacker \xrightarrow{\text{Access Request}} 'ICD'
10:
                                     with 'M'
11:
12:
                 else
13:
                       delay(5)
                                                                     ▷ Wait for '5 minutes' for 'standby' mode to end
14:
                       goto L1
15:
                 end if
             end for
16:
17:
         end if
18: end while
```

Algorithm 2 Sleep Deprivation Attack

1: $i \leftarrow 1$; $n \leftarrow N$; 2: for i = 1, ..., n do 3: L2: 4: if 'ICD' is in 'SB' then 5: Attacker $\xrightarrow{A \text{ Specific}}$ 'ICD' $\xrightarrow{\text{message}}$ 'ICD' 6: delay(4) 7: goto L2 8: end if 9: end for ▷ Consider 'N' to be a large value

▷ Standby Mode: 'SB'

▷ Wait for '4 minutes' to keep the ICD in 'Standby' mode

2. Prolonged Telemetry Communication

Attackers target ICDs magnet based short-range communication.

Using a strong magnet, the ICD is kept in telemetry interrogation mode.

Algorithm 3 Prolonged Telemetry Communication

```
1: i \leftarrow 1; n \leftarrow N;
                                                                                ▷ Consider 'N' to be a large value
2: for i = 1, ..., n do
3:
4:
       if 'Wand-telemetry' is established then
5:
            L3: Replay 'Wand-less telemetry' initiation Command
6:
7:
           if 'Wand-less Telemetry' is enabled then
8:
                                                                                              ▷ Wait for 'one hour'
                     wait(60)
9:
                     goto L3
10:
            end if
11.
        end if
12: end for
```

3.Electromagnetic Interference on the Wireless Channel(Jamming)

• Step 1: Attacker checks if any active session is going on between ICD and programmer.

• Step 2: If no ongoing active session exists, go to Step 1.

• Step 3: If there is an active session, then the attacker sends high power noise signal at ICD's reception frequency.

• **Step 4:** Disrupts ICD's ongoing session.

• Step 5: ICD raises signal power to receive legitimate telemetry data.

4. Device Functional Parameter Modification

- Functional Model-based ICDs working depends on certain programmable parameters.
- Pulse Amplitude and Pulse Width may control battery longevity and potential battery drain.
- The number of high-energy shocks delivered in a single session may affect battery performance.

Attacker's approach

- Record RF signal involving target parameter change.
 - Replay recorded RF signal with attacker specified values.

Table: Malicious Device Parameter Modification

SI. NO.	Parameters	Identified modification
	Atrium pulse amplitude (P.A.)	P.A. = 7.5
1.	Left Ventricular pulse amplitude (L.V.A.)	L.V.A. = 7.5
	Right Ventricular pulse amplitude (R.V.A.)	R.V.A. = 7.5
	Atrium pulse width (P.W.)	P.W. = 1.5
2.	Left Ventricular pulse width (L.V.W.)	L.V.W. = 0.4
	Right Ventricular pulse width (R.V.W.)	R.V.W. = 0.4
3.	Maximum shock delivery (maxsh)	maxsh » 5

Countermeasures

Possible Countermeasures

Attacks on Low Power Modes of ICD

Assumptions

- ICD uses a 4-bit buffer and a 2-bit counter.
- Counter is initialized to zero, a threshold of 3 is set.
- Buffer stores the ID of the user sending an access request in the most recent past.
- The counter keeps track of the consecutive requests sent by the same user.

- Resource depletion attack involving a strong magnet can be stopped by using a timer.
- Jamming attacks requires anti-jamming techniques.
- Secure Programmer-ICD communication using lightweight authenticated encryption to prevent malicious parameter modification.

Future Scope

Complete Software Simulation and real-time simulation of the proposed scheme in an ICD environment

Future emphasis is placed on the necessity of collaboration with device manufacturers, healthcare institutions, and regulatory boards

The future objective is to establish a standardized, real-time legal framework for medical implant security assessments that extends beyond national boundaries

Thank you!

Do you have any questions?