Public Key Cryptography

Euler's Theorem

- a generalisation of Fermat's Theorem
- $> M^{\emptyset(n)} = 1 \pmod{n}$
 - for any M, n where gcd(M,n)=1

```
> Corollary:

M^{1+k \cdot \varnothing(n)} = [(M^{\varnothing(n)})^k \times M^1] \mod n
= [(1)^k \times M] \mod n
= M \mod n
```

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- > asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

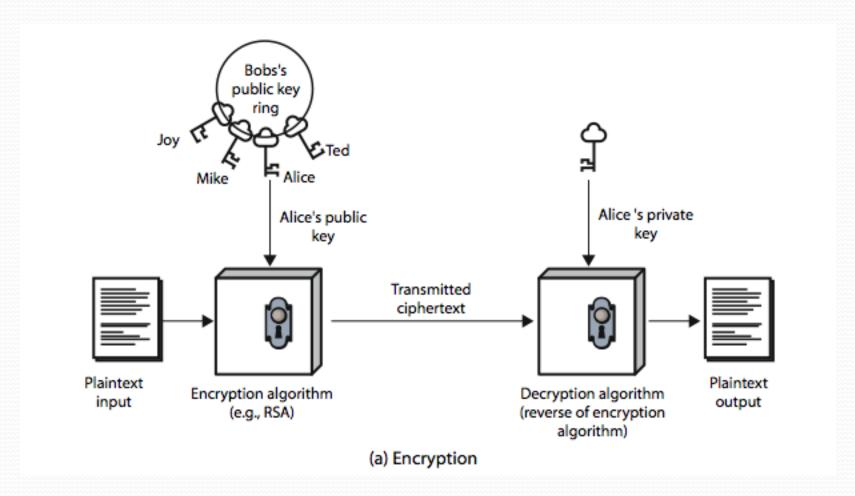
Why Public-Key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976
 - known earlier in classified community

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a **private-key**, known only to the recipient, used to **decrypt messages**, and **sign** (create) **signatures**
- is **asymmetric** because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

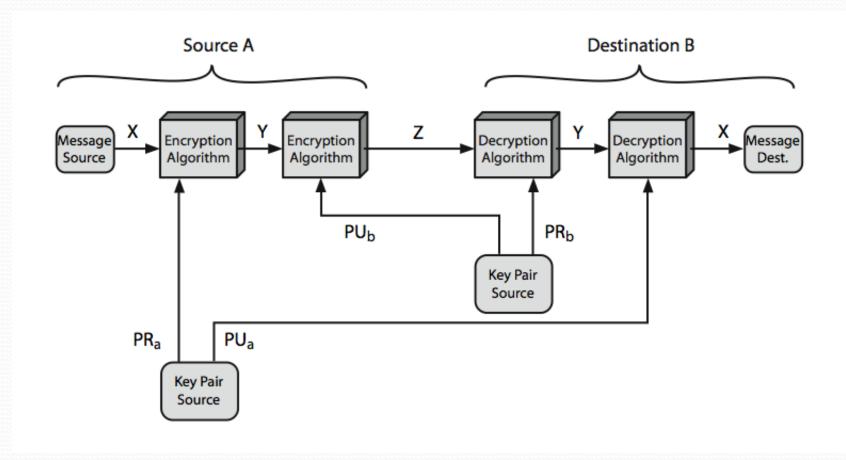
Public-Key Cryptography



Public-Key Characteristics

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

Public-Key Cryptosystems



Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>1024 bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, but is made hard enough to be impractical to break
- requires the use of very large numbers
- hence is slow compared to private key schemes

RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - nb. exponentiation takes $O((\log n)^3)$ operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - nb. factorization takes $O(e^{\log n \log \log n})$ operations (hard)

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random p, q
- computing their system modulus n=p.q
 - note \emptyset (n) = (p-1) (q-1)
- selecting at random the encryption key e
 - where $1 < e < \emptyset$ (n), $gcd(e, \emptyset) = 1$
- solve following equation to find decryption key d
 - e.d $\equiv 1 \mod \emptyset(n)$ and $0 \le d \le n$
- publish their public encryption key: PU={e,n}
- keep secret private decryption key: PR={d,n}

RSA Use

- to encrypt a message M the sender:
 - obtains public key of recipient PU={e,n}
 - computes: $C = M^e \mod n$, where $o \le M < n$
- to decrypt the ciphertext C the owner:
 - uses their private key PR={d,n}
 - computes: M = C^d mod n
- note that the message M must be smaller than the modulus n (block if needed)

Why RSA Works

- because of Euler's Theorem:
 - $a^{g(n)} \mod n = 1$ where gcd(a, n) = 1
- in RSA have:
 - \bullet n=p.q
 - \emptyset (n) = (p-1) (q-1)
 - carefully chose $e \& d to be inverses mod <math>\emptyset$ (n)
 - hence e.d=1+k. \varnothing (n) for some k, ed $\equiv 1 \mod \varnothing$ (n, so d \equiv e⁻¹ mod \varnothing (n)
- hence :

$$C^{d} = M^{e \cdot d} = M^{1+k \cdot \varnothing(n)} = M^{1} \cdot (M^{\varnothing(n)})^{k}$$

= $M^{1} \cdot (1)^{k} = M^{1} = M \mod n$

RSA Example - Key Setup

- Select primes: p=17 & q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n)=(p-1)(q-1)=16 \times 10=160$
- 4. Select e: gcd(e,160)=1; choose *e*=7
- 5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x160+1</p>
- 6. Publish public key PU={7,187}
- 7. Keep secret private key PR={23,187}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88<187)
- encryption:

```
C = 88^7 \mod 187 = 11
```

• decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

- can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log₂ n) multiples for number n
 - eg. $7^5 = 7^4 \cdot 7^1 = 3 \cdot 7 = 10 \mod 11$
 - eg. $3^{129} = 3^{128} \cdot 3^1 = 5 \cdot 3 = 4 \mod 11$

Exponentiation

```
c = 0; f = 1
for i = k down to 0
do c = 2 x c
f = (f x f) mod n
if b_i == 1 then
c = c + 1
f = (f x a) mod n
return f
```

Efficient Encryption

- encryption uses exponentiation to power e
- > hence if e small, this will be faster
 - often choose e=65537 (2¹⁶-1)
 - also see choices of e=3 or e=17
- ▶ but if e too small (eg e=3) can attack
 - using Chinese remainder theorem & 3 messages with different modulii
- ▶ if e fixed must ensure gcd(e,ø(n))=1
 - ie reject any p or q not relatively prime to e

Efficient Decryption

- decryption uses exponentiation to power d
 - this is likely large, insecure if not
- can use the Chinese Remainder Theorem (CRT) to compute mod p & q separately. then combine to get desired answer
 - approx 4 times faster than doing directly
- only owner of private key who knows values of p & q can use this technique

RSA Key Generation

- users of RSA must:
 - determine two primes at random p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus
 n=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

RSA Security

- possible approaches to attacking RSA are:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)
 - timing attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n=p.q, hence compute ø(n) and then d
 - determine ø(n) directly and compute d
 - find d directly
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of May-05 best is 200 decimal digits (663) bit with LS
 - biggest improvement comes from improved algorithm
 - cf QS to GHFS to LS
 - currently assume 1024-2048 bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Timing Attacks

- developed by Paul Kocher in mid-1990's
- > exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- > infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Chosen Ciphertext Attacks

- RSA is vulnerable to a Chosen Ciphertext Attack (CCA)
- attackers chooses ciphertexts & gets decrypted plaintext back
- choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis
- can counter with random pad of plaintext
 - or use Optimal Asymmetric Encryption Padding (OASP)