

Why AES ?

 DES broken for small key size

 Demand: replacement of DES

 Triple-DES is secured……. ?

 NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 1998

 5 were shortlisted in Aug 1999

NIST’s requirements Competition

 Private key symmetric block cipher

 128-bit data, 128-bit keys

 Stronger & faster than Triple-DES

 Provide full specification & design details

 Both C & Java implementations

NIST Evaluation Criteria

 Criteria:
 Security – effort for practical cryptanalysis

 Cost – in terms of computational efficiency

 Algorithm & implementation characteristics

 ease of software & hardware implementation

 flexibility in encryption-decrypt and Keying

Shortlisted Candidates

 After testing and evaluation, shortlist in Aug-1999

 MARS - complex, fast, high security margin
 RC6 - simple, fast, low security margin
 Rijndael - fast, good security margin
 Serpent - slow, clean, high security margin
 Twofish - complex, fast, high security margin

The AES Cipher - Rijndael

 Rijndael was selected as the AES in Oct-2000
 Designed by Vincent Rijmen and Joan Daemen in

Belgium

 An iterative rather than Feistel cipher
 processes data (128 bits) as bytes (16 bytes)

 10 rounds

 Rijndael design:
 128 bits plain text and 128/192/256 bit keys,

 resistant against known attacks

 Both software and hardware friendly

AES Structure

7

AES

Plaintext (128 bits)

Ciphertext (128 bits)

Key (128-256 bits)

AES Rounds
 First 9 rounds are identical

 last round are a little different

AES Overview

• Round keys are derived from the cipher key
using Rijndael's key schedule

Key
Expansion

• AddRoundKey : Each byte of the state is
combined with the round key using bitwise xorInitial Round

• SubBytes : non-linear substitution step

• ShiftRows : transposition step

• MixColumns : mixing operation of each
column.

• AddRoundKey

Rounds

• SubBytes

• ShiftRows

• AddRoundKey
Final Round No MixColumns

Rijndael

AES-128
 Data block viewed as 4-by-4 table of bytes

 Represented as 4 by 4 matrix of 8-bit bytes.

 Key is expanded to array of 32 bits words

1 byte

AES Data Structure

Unit Transformation

Changing Plaintext to State

 Text: CRYPTOCLASSIITCS

 Hexadecimal Data:

02 11 18 0F 13 0D 02 0B 00 12 12 08 08 13 02 12

State:

02 13 00 08

11 0D 12 13

18 02 12 02

0F 0B 08 12

AES Round

Substitute Byte Transformation
 A simple substitution of each byte

 Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit
values

 Each byte of state is replaced by byte indexed by row (left 4-bits) &
column (right 4-bits)
 e.g. byte {95} is replaced by byte in row 9 column 5

 which has value {2A}

 S-box constructed using defined transformation of values in Galois
Field- GF(28)

SubBytes Operation

S1,1 = xy16 x’y’16

Sbox Construction
 Initialize the Sbox with byte values

1st row: 00 01 02 … 0F

2nd row: 10 11 12 … 1F

 Map each byte to its multiplicative inverse in the finite field GF(28); byte
00 is mapped to itself

 Consider each byte as (b7, b6, b5, b4, b3, b2, b1, b0). Apply the
transformation to each bit of each byte

bi‘ = bi + b(i+4)mod8+ b(i+5)mod8 + b(i+6)mod8 + b(i+7)mod8 + ci

+ is XOR and ci is the ith bit of byte C with the value (63) (say)

Substitute Byte Transformation

 Byte transformation:

b0’ 1 0 0 0 1 1 1 1 b0 1
b1’ 1 1 0 0 0 1 1 1 b1 1
b2’ 1 1 1 0 0 0 1 1 b2 0

b3’ = 1 1 1 1 0 0 0 1 x b3 + 0
b4’ 1 1 1 1 1 0 0 0 b4 0
b5’ 0 1 1 1 1 1 0 0 b5 1
b6’ 0 0 1 1 1 1 1 0 b6 1
b7’ 0 0 0 1 1 1 1 1 b7 0

Example: Input 95, multiplicative inverse of 95 in GF(28) = 8A.
After bit transformation the result is 2A (appears in row 9, column 5 of
the Sbox)

Inverse Byte Transformation
 The inverse transformation to each bit of each byte

bi‘ = b(i+2)mod8+ b(i+5)mod8 + b(i+7)mod8 + di

+ is XOR and di is the ith bit of byte D with the value.

D = 05 for C = (63)

B’ = XB + C

Y(XB + c) + D = B

YXB + YC + D = B

YX = I, YC = D , YC + D is null vector

AES SBox

Inverse SBox

Sample SubByte Transformation

 The SubBytes and InvSubBytes transformations are
inverses of each other.

ShiftRows
 Shifting, which permutes the bytes.

 A circular byte shift in each each
 1st row is unchanged

 2nd row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 In the encryption, the transformation is
called ShiftRows

 In the decryption, the transformation is
called InvShiftRows and the shifting is to the
right

ShiftRows Scheme

ShiftRows and InvShiftRows

MixColumns
 ShiftRows and MixColumns provide diffusion to the

cipher

 Each column is processed separately

 Each byte is replaced by a value dependent on all 4 bytes
in the column

 Effectively a matrix multiplication in GF(28) using prime
poly m(x) =x8+x4+x3+x+1

|02 03 01 01 |

|01 02 03 01 | x [S] = [S’]

|01 01 02 03 |

| 03 01 01 02|

MixClumns Scheme

The MixColumns transformation operates at the column level; it

transforms each column of the state to a new column.

MixColumn and InvMixColumn

Mix Columns Transformation
 Another way

 Each column of state is treated as 4-term polynomial with
coefficiens in GF(28). Each column is multiplied modulo
(1+x4) by the fixed polynomial a(x)

a(x) = {03}x3 + {01}x2 + {01}x + {02}

Similarly the inverse Mix Column transformation cabe
performed by multiplying each column by b(x) where

b(x) = {0B}x3 + {0D}x2 + {09}x + {0E}

Here, b(x) = a-1(x) mod (1 + x4)

AddRoundKey

 XOR state with 128-bits of the round key

 AddRoundKey proceeds one column at a time.

 adds a round key word with each state column matrix

 the operation is matrix addition

 Inverse for decryption identical

 since XOR own inverse, with reversed keys

AddRoundKey Scheme

AES Round

AES Key Scheduling

 takes 128-bits (16-bytes) key and expands into array of 44 32-
bit words [44 words = 4 words + 40 words = 128 bit key + 10
128 bit round keys]

AES Key Expansion
 takes 128-bit (16-byte) key and expands into array of

44/52/60 32-bit words

 start by copying key into first 4 words

 then loop creating words that depend on values in
previous & 4 places back

 in 3 of 4 cases just XOR these together

 1st word in 4 has rotate + S-box + XOR round constant on
previous, before XOR 4th back

AES Key Expansion

Key Expansion Scheme

Key Expansion submodule

 RotWord performs a one byte circular left shift on a word
For example:

RotWord[b0,b1,b2,b3] = [b1,b2,b3,b0]

 SubWord performs a byte substitution on each byte of
input word using the S-box

 SubWord(RotWord(temp)) is XORed with RCon[j] – the
round constant

Round Constant (RCon)
 RCON is a word in which the three rightmost bytes are zero

 It is different for each round and defined as:

RCon[j] = (RCon[j],0,0,0)

where RCon[1] =1 , RCon[j] = 2 * RCon[j-1]

 Multiplication is defined over GF(2^8) but can be implement in Table
Lookup

Key Expansion Example (1st Round)

• Example of expansion of a 128-bit cipher key

Cipher key = 2b7e151628aed2a6abf7158809cf4f3c

w0=2b7e1516 w1=28aed2a6 w2=abf71588 w3=09cf4f3c

i wi-1 RotWor
d

SubWor
d

Rcon[i/4
]

ti w[i-4] wi

4 09cf4f3c cf4f3c09 8a84eb
01

0100000
0

8b84eb
01

2b7e1516 a0fafe17

5 a0fafe17 - - - - 28aed2a
6

88542cb
1

6 88542cb
1

- - - - Abf7158
8

23a3393
9

7 23a3393
9

- - - - 09cf4f3c 2a6c760
5

Key Expansion Rationale
 designed to resist known attacks

 design criteria included

 knowing part key insufficient to find many more

 invertible transformation

 fast on wide range of CPU’s

 use round constants to break symmetry

 diffuse key bits into round keys

 enough non-linearity to hinder analysis

 simplicity of description

AES Decryption
 AES decryption is not identical to encryption since

steps done in reverse

 but can define an equivalent inverse cipher with steps
as for encryption
 but using inverses of each step

 with a different key schedule

 works since result is unchanged when
 swap byte substitution & shift rows

 swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects
 can efficiently implement on 8-bit CPU

 byte substitution works on bytes using a table of
256 entries

 shift rows is simple byte shift

 add round key works on byte XOR’s

 mix columns requires matrix multiply in GF(28)
which works on byte values, can be simplified to
use table lookups & byte XOR’s

Implementation Aspects
 can efficiently implement on 32-bit CPU

 redefine steps to use 32-bit words

 can precompute 4 tables of 256-words

 then each column in each round can be computed using
4 table lookups + 4 XORs

 at a cost of 4Kb to store tables

 designers believe this very efficient implementation
was a key factor in its selection as the AES cipher

AES Security

 AES was designed after DES.

 Most of the known attacks on DES were already tested on
AES.

 Brute-Force Attack

 AES is definitely more secure than DES due to the larger-size
key.

 Statistical Attacks

 Numerous tests have failed to do statistical analysis of the
ciphertext

 Differential and Linear Attacks

 There are no differential and linear attacks on AES as yet.

Implementation Aspects

 The algorithms used in AES are simple and can
be easily implemented using cheap processors
and a minimum amount of memory.

 Very efficient

 Implementation was a key factor in its selection
as the AES cipher

