

Why AES ?

 DES broken for small key size

 Demand: replacement of DES

 Triple-DES is secured……. ?

 NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 1998

 5 were shortlisted in Aug 1999

NIST’s requirements Competition

 Private key symmetric block cipher

 128-bit data, 128-bit keys

 Stronger & faster than Triple-DES

 Provide full specification & design details

 Both C & Java implementations

NIST Evaluation Criteria

 Criteria:
 Security – effort for practical cryptanalysis

 Cost – in terms of computational efficiency

 Algorithm & implementation characteristics

 ease of software & hardware implementation

 flexibility in encryption-decrypt and Keying

Shortlisted Candidates

 After testing and evaluation, shortlist in Aug-1999

 MARS - complex, fast, high security margin
 RC6 - simple, fast, low security margin
 Rijndael - fast, good security margin
 Serpent - slow, clean, high security margin
 Twofish - complex, fast, high security margin

The AES Cipher - Rijndael

 Rijndael was selected as the AES in Oct-2000
 Designed by Vincent Rijmen and Joan Daemen in

Belgium

 An iterative rather than Feistel cipher
 processes data (128 bits) as bytes (16 bytes)

 10 rounds

 Rijndael design:
 128 bits plain text and 128/192/256 bit keys,

 resistant against known attacks

 Both software and hardware friendly

AES Structure

7

AES

Plaintext (128 bits)

Ciphertext (128 bits)

Key (128-256 bits)

AES Rounds
 First 9 rounds are identical

 last round are a little different

AES Overview

• Round keys are derived from the cipher key
using Rijndael's key schedule

Key
Expansion

• AddRoundKey : Each byte of the state is
combined with the round key using bitwise xorInitial Round

• SubBytes : non-linear substitution step

• ShiftRows : transposition step

• MixColumns : mixing operation of each
column.

• AddRoundKey

Rounds

• SubBytes

• ShiftRows

• AddRoundKey
Final Round No MixColumns

Rijndael

AES-128
 Data block viewed as 4-by-4 table of bytes

 Represented as 4 by 4 matrix of 8-bit bytes.

 Key is expanded to array of 32 bits words

1 byte

AES Data Structure

Unit Transformation

Changing Plaintext to State

 Text: CRYPTOCLASSIITCS

 Hexadecimal Data:

02 11 18 0F 13 0D 02 0B 00 12 12 08 08 13 02 12

State:

02 13 00 08

11 0D 12 13

18 02 12 02

0F 0B 08 12

AES Round

Substitute Byte Transformation
 A simple substitution of each byte

 Uses one S-box of 16x16 bytes containing a permutation of all 256 8-bit
values

 Each byte of state is replaced by byte indexed by row (left 4-bits) &
column (right 4-bits)
 e.g. byte {95} is replaced by byte in row 9 column 5

 which has value {2A}

 S-box constructed using defined transformation of values in Galois
Field- GF(28)

SubBytes Operation

S1,1 = xy16 x’y’16

Sbox Construction
 Initialize the Sbox with byte values

1st row: 00 01 02 … 0F

2nd row: 10 11 12 … 1F

 Map each byte to its multiplicative inverse in the finite field GF(28); byte
00 is mapped to itself

 Consider each byte as (b7, b6, b5, b4, b3, b2, b1, b0). Apply the
transformation to each bit of each byte

bi‘ = bi + b(i+4)mod8+ b(i+5)mod8 + b(i+6)mod8 + b(i+7)mod8 + ci

+ is XOR and ci is the ith bit of byte C with the value (63) (say)

Substitute Byte Transformation

 Byte transformation:

b0’ 1 0 0 0 1 1 1 1 b0 1
b1’ 1 1 0 0 0 1 1 1 b1 1
b2’ 1 1 1 0 0 0 1 1 b2 0

b3’ = 1 1 1 1 0 0 0 1 x b3 + 0
b4’ 1 1 1 1 1 0 0 0 b4 0
b5’ 0 1 1 1 1 1 0 0 b5 1
b6’ 0 0 1 1 1 1 1 0 b6 1
b7’ 0 0 0 1 1 1 1 1 b7 0

Example: Input 95, multiplicative inverse of 95 in GF(28) = 8A.
After bit transformation the result is 2A (appears in row 9, column 5 of
the Sbox)

Inverse Byte Transformation
 The inverse transformation to each bit of each byte

bi‘ = b(i+2)mod8+ b(i+5)mod8 + b(i+7)mod8 + di

+ is XOR and di is the ith bit of byte D with the value.

D = 05 for C = (63)

B’ = XB + C

Y(XB + c) + D = B

YXB + YC + D = B

YX = I, YC = D , YC + D is null vector

AES SBox

Inverse SBox

Sample SubByte Transformation

 The SubBytes and InvSubBytes transformations are
inverses of each other.

ShiftRows
 Shifting, which permutes the bytes.

 A circular byte shift in each each
 1st row is unchanged

 2nd row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 In the encryption, the transformation is
called ShiftRows

 In the decryption, the transformation is
called InvShiftRows and the shifting is to the
right

ShiftRows Scheme

ShiftRows and InvShiftRows

MixColumns
 ShiftRows and MixColumns provide diffusion to the

cipher

 Each column is processed separately

 Each byte is replaced by a value dependent on all 4 bytes
in the column

 Effectively a matrix multiplication in GF(28) using prime
poly m(x) =x8+x4+x3+x+1

|02 03 01 01 |

|01 02 03 01 | x [S] = [S’]

|01 01 02 03 |

| 03 01 01 02|

MixClumns Scheme

The MixColumns transformation operates at the column level; it

transforms each column of the state to a new column.

MixColumn and InvMixColumn

Mix Columns Transformation
 Another way

 Each column of state is treated as 4-term polynomial with
coefficiens in GF(28). Each column is multiplied modulo
(1+x4) by the fixed polynomial a(x)

a(x) = {03}x3 + {01}x2 + {01}x + {02}

Similarly the inverse Mix Column transformation cabe
performed by multiplying each column by b(x) where

b(x) = {0B}x3 + {0D}x2 + {09}x + {0E}

Here, b(x) = a-1(x) mod (1 + x4)

AddRoundKey

 XOR state with 128-bits of the round key

 AddRoundKey proceeds one column at a time.

 adds a round key word with each state column matrix

 the operation is matrix addition

 Inverse for decryption identical

 since XOR own inverse, with reversed keys

AddRoundKey Scheme

AES Round

AES Key Scheduling

 takes 128-bits (16-bytes) key and expands into array of 44 32-
bit words [44 words = 4 words + 40 words = 128 bit key + 10
128 bit round keys]

AES Key Expansion
 takes 128-bit (16-byte) key and expands into array of

44/52/60 32-bit words

 start by copying key into first 4 words

 then loop creating words that depend on values in
previous & 4 places back

 in 3 of 4 cases just XOR these together

 1st word in 4 has rotate + S-box + XOR round constant on
previous, before XOR 4th back

AES Key Expansion

Key Expansion Scheme

Key Expansion submodule

 RotWord performs a one byte circular left shift on a word
For example:

RotWord[b0,b1,b2,b3] = [b1,b2,b3,b0]

 SubWord performs a byte substitution on each byte of
input word using the S-box

 SubWord(RotWord(temp)) is XORed with RCon[j] – the
round constant

Round Constant (RCon)
 RCON is a word in which the three rightmost bytes are zero

 It is different for each round and defined as:

RCon[j] = (RCon[j],0,0,0)

where RCon[1] =1 , RCon[j] = 2 * RCon[j-1]

 Multiplication is defined over GF(2^8) but can be implement in Table
Lookup

Key Expansion Example (1st Round)

• Example of expansion of a 128-bit cipher key

Cipher key = 2b7e151628aed2a6abf7158809cf4f3c

w0=2b7e1516 w1=28aed2a6 w2=abf71588 w3=09cf4f3c

i wi-1 RotWor
d

SubWor
d

Rcon[i/4
]

ti w[i-4] wi

4 09cf4f3c cf4f3c09 8a84eb
01

0100000
0

8b84eb
01

2b7e1516 a0fafe17

5 a0fafe17 - - - - 28aed2a
6

88542cb
1

6 88542cb
1

- - - - Abf7158
8

23a3393
9

7 23a3393
9

- - - - 09cf4f3c 2a6c760
5

Key Expansion Rationale
 designed to resist known attacks

 design criteria included

 knowing part key insufficient to find many more

 invertible transformation

 fast on wide range of CPU’s

 use round constants to break symmetry

 diffuse key bits into round keys

 enough non-linearity to hinder analysis

 simplicity of description

AES Decryption
 AES decryption is not identical to encryption since

steps done in reverse

 but can define an equivalent inverse cipher with steps
as for encryption
 but using inverses of each step

 with a different key schedule

 works since result is unchanged when
 swap byte substitution & shift rows

 swap mix columns & add (tweaked) round key

AES Decryption

Implementation Aspects
 can efficiently implement on 8-bit CPU

 byte substitution works on bytes using a table of
256 entries

 shift rows is simple byte shift

 add round key works on byte XOR’s

 mix columns requires matrix multiply in GF(28)
which works on byte values, can be simplified to
use table lookups & byte XOR’s

Implementation Aspects
 can efficiently implement on 32-bit CPU

 redefine steps to use 32-bit words

 can precompute 4 tables of 256-words

 then each column in each round can be computed using
4 table lookups + 4 XORs

 at a cost of 4Kb to store tables

 designers believe this very efficient implementation
was a key factor in its selection as the AES cipher

AES Security

 AES was designed after DES.

 Most of the known attacks on DES were already tested on
AES.

 Brute-Force Attack

 AES is definitely more secure than DES due to the larger-size
key.

 Statistical Attacks

 Numerous tests have failed to do statistical analysis of the
ciphertext

 Differential and Linear Attacks

 There are no differential and linear attacks on AES as yet.

Implementation Aspects

 The algorithms used in AES are simple and can
be easily implemented using cheap processors
and a minimum amount of memory.

 Very efficient

 Implementation was a key factor in its selection
as the AES cipher

