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Introduction

 Finite fields have become increasingly important in 
cryptography.  

 A number of cryptographic algorithms rely heavily on 
properties of finite fields, such as the AES, Elliptic Curve, 
IDEA, & various Public Key algorithms. 

 Groups, rings, and fields are the fundamental elements of 
abstract algebra



Group

 A Group {G, .}a set of elements with a binary operation 
.

 Obeys the following axioms:
 Closure: If a and b belong to G then a.b is also in G

 associative law: (a.b).c = a.(b.c) 

 has identity e: e.a = a.e = a 

 has inverses a-1: a.a-1 = e

 if commutative a.b = b.a

 then forms an abelian group



Cyclic Group

 define exponentiation as repeated application of 
operator

 example: a3 = a.a.a

 and let identity be: e=a0

 a group is cyclic if every element is a power of some 
fixed element

 ie b = ak for some a and every b in group

 a is said to be a generator of the group



Ring

 a set of elements with two operations (addition 
and multiplication) which form:

 an abelian group with addition operation 
 and multiplication:

 has closure
 is associative
 distributive over addition: a(b+c) = ab + ac

 if multiplication operation is commutative, it 
forms a commutative ring 

 if multiplication operation has an identity and no 
zero divisors, it forms an integral domain



Field

 a set of elements with two operations which form 
Integral Domain:

 Ring

 Multiplicative identity

 No zero divisors

Field:

 Multiplicative inverse: 

there exists a-1 in F, (a)a-1 =(a-1)a = 1



Divisors
 say a non-zero number b divides a if for some m have 
a=mb (a,b,m all integers) 

 that is b divides into a with no remainder 

 denote this b|a

 and say that b is a divisor of a

 eg. all of 1,2,3,4,6,8,12,24 divide 24 



Modular Arithmetic
 Modulo operator “a mod n” is remainder when a is divided 

by n
 Congruent modulo n: 

if (a mod n) = (b mod n) then a ≡ b mod n 
 when divided by n, a & b have same remainder 
 e.g. 13 mod 7 = 6;  41 mod 7 = 6 -> 13 ≡ 41 mod 7

b is called a residue of a mod n
 since with integers can always write: a = qn + b
 usually chose smallest positive remainder as residue

 ie. 0 <= b <= n-1 

 process is known as modulo reduction
 eg. -12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7 



Modular Arithmetic Operations

 Exhibits following three properties addition, 
subtraction  & multiplication 

 (a+b)mod n = [(a mod n) + (b mod n)] mod n 

 (a-b)mod n = [(a mod n) - (b mod n)] mod n 

 (axb)mod n = [(a mod n) x (b mod n)] mod n 



Modular Arithmetic

 can do modular arithmetic with any group of 
integers: Zn = {0, 1, … , n-1}

 form a commutative ring for addition

 with a multiplicative identity

 note some peculiarities

 if (a+b) = (a+c) mod n 

then b = c mod n

 but if (a.b) = (a.c) mod n 

then b = c mod n only if a is relatively prime to n



Modulo 8 Addition Example
+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6



Modulo 8 Multiplication Example
x 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 5 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 0 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1



Additive and Multiplicative Inverses Modulo 8 

0 0      -

1 7 1

2 6 -

3 5 3

4 4 -

5 3 5

6 2 -

7 1 7

w -w W-1



Greatest Common Divisor (GCD)

 a common problem in number theory

 GCD (a,b) of a and b is the largest number that divides 
evenly into both a and b 

 eg GCD(60,24) = 12

 often want no common factors (except 1) and hence 
numbers are relatively prime

 eg GCD(8,15) = 1

 hence 8 & 15 are relatively prime 



Euclidean Algorithm

 an efficient way to find the GCD(a,b)

 uses theorem that: 
 GCD(a,b) = GCD(b, a mod b)

 Euclidean Algorithm to compute GCD(a,b) is: 
EUCLID(a,b)

1. A = a; B = b 

2. if B = 0 return  A = gcd(a, b) 

3. R = A mod B 

4. A = B 

5. B = R 

6. goto 2

Stallings Book



Example GCD(1970,1066)
1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

Stallings Book



Galois Fields
 finite fields play a key role in cryptography

 can show number of elements in a finite field must be 
a power of a prime pn

 known as Galois fields

 denoted GF(pn)

 in particular often use the fields:

 GF(p)

 GF(2n)



Galois Fields GF(p)
 GF(p) is the set of integers {0,1, … , p-1} with 

arithmetic operations modulo prime p

 these form a finite field

 since have multiplicative inverses

 hence arithmetic is “well-behaved” and can do 
addition, subtraction, multiplication, and 
division without leaving the field GF(p)



GF(7) Multiplication Example 
 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Finding Inverses
EXTENDED EUCLID(m, b)
1. (A1, A2, A3)=(1, 0, m); 

(B1, B2, B3)=(0, 1, b)

2. if B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1 

return B3 = gcd(m, b); B2 = b–1 mod m

4. Q = A3 div B3

5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3)

6. (A1, A2, A3)=(B1, B2, B3)

7. (B1, B2, B3)=(T1, T2, T3)

8. goto 2



Inverse of 550 in GF(1759)
Q A1 A2 A3 B1 B2 B3

— 1 0 1759 0 1 550

3 0 1 550 1 –3 109

5 1 –3 109 –5 16 5

21 –5 16 5 106 –339 4

1 106 –339 4 –111 355 1



Polynomial Arithmetic
 can compute using polynomials

f(x) = anxn + an-1x
n-1 + … + a1x + a0 = ∑ aix

i

 nb. not interested in any specific value of x

 which is known as the indeterminate

 several alternatives available

 ordinary polynomial arithmetic

 poly arithmetic with coefficients mod p

 poly arithmetic with coefficients mod p and polynomials 
mod m(x)



Ordinary Polynomial Arithmetic

 add or subtract corresponding coefficients

 multiply all terms by each other

 eg
let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1

f(x) + g(x) = x3 + 2x2 – x + 3

f(x) – g(x) = x3 + x + 1

f(x) x g(x) = x5 + 3x2 – 2x + 2



Polynomial Arithmetic with Modulo 
Coefficients
 when computing value of each coefficient do 

calculation modulo some value
 forms a polynomial ring

 could be modulo any prime

 but we are most interested in mod 2
 ie all coefficients are 0 or 1

 eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1

f(x) + g(x) = x3 + x + 1

f(x) x g(x) = x5 + x2



Polynomial Division
 can write any polynomial in the form:

 f(x) = q(x) g(x) + r(x)

 can interpret r(x) as being a remainder

 r(x) = f(x) mod g(x)

 if have no remainder say g(x) divides f(x)

 if g(x) has no divisors other than itself & 1 say it is 
irreducible (or prime) polynomial

 arithmetic modulo an irreducible polynomial forms a 
field



Polynomial GCD
 can find greatest common divisor for polys

 c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest 
degree which divides both a(x), b(x)

 can adapt Euclid’s Algorithm to find it:
EUCLID[a(x), b(x)]
1. A(x) = a(x); B(x) = b(x)
2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]
3. R(x) = A(x) mod B(x)
4. A(x) ¨ B(x)
5. B(x) ¨ R(x)
6. goto 2



Modular Polynomial Arithmetic
 can compute in field GF(2n) 

 polynomials with coefficients modulo 2

 whose degree is less than n

 hence must reduce modulo an irreducible poly of 
degree n (for multiplication only)

 form a finite field

 can always find an inverse

 can extend Euclid’s Inverse algorithm to find



Example GF(23)



Computational Considerations
 since coefficients are 0 or 1, can represent any such 

polynomial as a bit string

 addition becomes XOR of these bit strings

 multiplication is shift & XOR
 long-hand multiplication

 modulo reduction done by repeatedly substituting 
highest power with remainder of irreducible poly (also 
shift & XOR)



Computational Example
 in GF(23)  have (x2+1) is 1012 & (x2+x+1) is 1112

 so addition is
 (x2+1) + (x2+x+1) = x 

 101 XOR 111 = 0102

 and multiplication is
 (x+1).(x2+1) = x.(x2+1) + 1.(x2+1) 

= x3+x+x2+1 = x3+x2+x+1 

 011.101 = 11112

 polynomial modulo reduction (get q(x) & r(x)) is
 (x3+x2+x+1 ) mod (x3+x+1) = 1.(x3+x+1) + (x2) = x2

 1111 mod 1011 = 1111 XOR 1011 = 01002



Using a Generator

 equivalent definition of a finite field

 a generator g is an element whose powers 
generate all non-zero elements
 in F have 0, g0, g1, …, gq-2

 can create generator from root of the 
irreducible polynomial

 then implement multiplication by adding 
exponents of generator


