

Finite Fields

Dept. of Computer Science & Engg. IIT Kharagpur, India

Dipanwita Roy Chowdhury

Introduction

- Finite fields have become increasingly important in cryptography.
- A number of cryptographic algorithms rely heavily on properties of finite fields, such as the AES, Elliptic Curve, IDEA, & various Public Key algorithms.
- Groups, rings, and fields are the fundamental elements of abstract algebra

Group

• A Group {G, .}a set of elements with a binary operation

• Obeys the following axioms:

- Closure: If a and b belong to G then a.b is also in G
- associative law: (a.b).c = a.(b.c)
- has identity e: e.a = a.e = a
- has inverses a⁻¹: a.a⁻¹ = e
- if commutative a.b = b.a
 - then forms an **abelian group**

Cyclic Group

- define exponentiation as repeated application of operator
 - example: $a^3 = a \cdot a \cdot a$
- and let identity be: $e=a^0$
- a group is cyclic if every element is a power of some fixed element
 - ie b = a^k for some a and every b in group
- a is said to be a generator of the group

Ring

- a set of elements with two operations (addition and multiplication) which form:
- an abelian group with addition operation
- and multiplication:
 - has closure
 - is associative
 - distributive over addition: a(b+c) = ab + ac
- if multiplication operation is commutative, it forms a commutative ring
- if multiplication operation has an identity and no zero divisors, it forms an integral domain

Field

- a set of elements with two operations which form **Integral Domain**:
 - Ring
 - Multiplicative identity
 - No zero divisors

Field:

• Multiplicative inverse:

there exists a^{-1} in F, (a) $a^{-1} = (a^{-1})a = 1$

Divisors

- say a non-zero number b divides a if for some m have a=mb (a, b, m all integers)
- that is **b** divides into **a** with no remainder
- denote this b | a
- and say that b is a divisor of a
- eg. all of 1,2,3,4,6,8,12,24 divide 24

Modular Arithmetic

- Modulo operator "a mod n" is remainder when a is divided by n
- Congruent modulo n:

if $(a \mod n) = (b \mod n)$ then $a \equiv b \mod n$

• when divided by *n*, a & b have same remainder

e.g. 13 mod 7 = 6; 41 mod 7 = 6 -> 13 ≡ 41 mod 7

b is called a residue of a mod n

- since with integers can always write: a = qn + b
- usually chose smallest positive remainder as residue

• ie. o <= b <= n-1

- process is known as modulo reduction
 - eg. -12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7

Modular Arithmetic Operations

- Exhibits following three properties addition, subtraction & multiplication
 - $(a+b) \mod n = [(a \mod n) + (b \mod n)] \mod n$
 - $(a-b) \mod n = [(a \mod n) (b \mod n)] \mod n$
 - (axb)mod n = [(a mod n) x (b mod n)] mod n

Modular Arithmetic

- can do modular arithmetic with any group of integers: Z_n = {0, 1, ..., n-1}
- > form a commutative ring for addition
- > with a multiplicative identity
- > note some peculiarities
 - if (a+b) = (a+c) mod n
 then b = c mod n
 - but if (a.b) = (a.c) mod n
 then b = c mod n only if a is relatively prime to n

Modulo 8 Addition Example + 0 1 2 3 4 5 6 7

0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication Example x 0 1 2 3 4 5 6 7

0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	5	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	0	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Additive and Multiplicative Inverses Modulo 8

W	-W	W-1
0	0	-
1	7	1
2	6	-
3	5	3
4	4	-
5	3	5
6	2	-
7	1	7

Greatest Common Divisor (GCD)

- a common problem in number theory
- GCD (a,b) of a and b is the largest number that divides evenly into both a and b
 - eg GCD(60,24) = 12
- often want no common factors (except 1) and hence numbers are relatively prime
 - eg GCD(8,15) = 1
 - hence 8 & 15 are relatively prime

Euclidean Algorithm

- an efficient way to find the GCD(a,b)
- uses theorem that:
 - $GCD(a,b) = GCD(b, a \mod b)$
- Euclidean Algorithm to compute GCD(a,b) is: EUCLID(a,b)

Example GCD(1970,1066)

904

62

$1970 = 1 \times 1066 +$
$1066 = 1 \times 904 + 1$
$904 = 5 \times 162 + 94$
$162 = 1 \times 94 + 68$
$94 = 1 \times 68 + 26$
$68 = 2 \times 26 + 16$
$26 = 1 \times 16 + 10$
$16 = 1 \times 10 + 6$
$10 = 1 \times 6 + 4$
$6 = 1 \times 4 + 2$
$4 = 2 \times 2 + 0$

- gcd(1066, 904)
- gcd(904, 162)
- gcd(162, 94)
- gcd(94, 68)
- gcd(68, 26)
- gcd(26, 16)
- gcd(16, 10)
- gcd(10, 6)
- gcd(6, 4)
 - gcd(4, 2)
 - gcd(2, 0)

Galois Fields

- finite fields play a key role in cryptography
- can show number of elements in a finite field must be a power of a prime pⁿ
- known as Galois fields
- denoted GF(pⁿ)
- in particular often use the fields:
 - GF(p)
 - GF(2ⁿ)

Galois Fields GF(p)

GF(p) is the set of integers {0,1, ..., p-1} with arithmetic operations modulo prime p

> these form a finite field

- since have multiplicative inverses
- hence arithmetic is "well-behaved" and can do addition, subtraction, multiplication, and division without leaving the field GF(p)

GF(7) Multiplication Example

\times 0 1 2 3 4 5 6

0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Finding Inverses

EXTENDED EUCLID(m, b)

- 1. (A1, A2, A3)=(1, 0, m); (B1, B2, B3)=(0, 1, b)
- **2. if** B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1

```
return B3 = gcd(m, b); B2 = b^{-1} \mod m
```

- 4. Q = A3 div B3
- 5. (T1, T2, T3)=(A1 Q B1, A2 Q B2, A3 Q B3)
- 6. (A1, A2, A3)=(B1, B2, B3)
- 7. (B1, B2, B3)=(T1, T2, T3)

8. goto 2

Inverse of 550 in GF(1759)								
	Q	A1	A2	A3	B1	B2	B3	
		1	0	1759	0	1	550	
	3	0	1	550	1	-3	109	
	5	1	-3	109	-5	16	5	
	21	-5	16	5	106	-339	4	
	1	106	-339	4	-111	355	1	

Polynomial Arithmetic

can compute using polynomials

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_0 = \sum a_i x^i$

- nb. not interested in any specific value of x
- which is known as the indeterminate
- several alternatives available
 - ordinary polynomial arithmetic
 - poly arithmetic with coefficients mod p
 - poly arithmetic with coefficients mod p and polynomials mod m(x)

Ordinary Polynomial Arithmetic

add or subtract corresponding coefficients
 multiply all terms by each other

eg
let
$$f(x) = x^3 + x^2 + 2$$
 and $g(x) = x^2 - x + 1$
 $f(x) + g(x) = x^3 + 2x^2 - x + 3$
 $f(x) - g(x) = x^3 + x + 1$
 $f(x) \times g(x) = x^5 + 3x^2 - 2x + 2$

Polynomial Arithmetic with Modulo Coefficients

- when computing value of each coefficient do calculation modulo some value
 - forms a polynomial ring
- could be modulo any prime
- but we are most interested in mod 2
 - ie all coefficients are o or 1

• eg. let
$$f(x) = x^3 + x^2$$
 and $g(x) = x^2 + x + 1$
 $f(x) + g(x) = x^3 + x + 1$
 $f(x) \ge g(x) = x^5 + x^2$

Polynomial Division

- can write any polynomial in the form:
 - f(x) = q(x) g(x) + r(x)
 - can interpret *r*(*x*) as being a remainder
 - $r(x) = f(x) \mod g(x)$
- if have no remainder say g(x) divides f(x)
- if g(x) has no divisors other than itself & 1 say it is
 irreducible (or prime) polynomial
- arithmetic modulo an irreducible polynomial forms a field

Polynomial GCD

- can find greatest common divisor for polys
 - c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest degree which divides both a(x), b(x)
- can adapt Euclid's Algorithm to find it: EUCLID[a(x), b(x)]

1.
$$A(x) = a(x); B(x) = b(x)$$

- **2.** if B(x) = 0 return A(x) = gcd[a(x), b(x)]
- **3.** $R(x) = A(x) \mod B(x)$
- **4.** A(x) " B(x)
- **5.** $B(x) \, \, {}^{"} R(x)$
- **6. goto** 2

Modular Polynomial Arithmetic

- > can compute in field GF(2ⁿ)
 - polynomials with coefficients modulo 2
 - whose degree is less than n
 - hence must reduce modulo an irreducible poly of degree n (for multiplication only)
- > form a finite field
- > can always find an inverse
 - can extend Euclid's Inverse algorithm to find

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111	
	+	0	1	х	x + 1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	
000	0	0	1	х	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	
001	1	1	0	x + 1	х	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$	
010	х	х	x + 1	0	1	$x^{2} + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	
011	x + 1	x + 1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	
100	x ²	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	0	1	х	x + 1	
101	$x^2 + 1$	$x^2 + 1$	x ²	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	х	
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x ²	$x^2 + 1$	x	x + 1	0	1	
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x ²	x + 1	x	1	0	
	(a) Addition									
		000	001	010	011	100	101	110	111	
	×	0	1	х	x + 1	x^2	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	
000	0	0	0	0	0	0	0	0	0	
001	1	0	1	х	x+1	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	
010	х	0	x	x ²	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$	
011	x + 1	0	x + 1	$x^{2} + x$	$x^2 + 1$	$x^2 + x + 1$	x ²	1	х	
100	x ²	0	x ²	x + 1	$x^2 + x + 1$	$x^{2} + x$	x	$x^2 + 1$	1	
101	$x^2 + 1$	0	$x^2 + 1$	1	x ²	х	$x^2 + x + 1$	x + 1	$x^{2} + x$	
110	$x^{2} + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	х	x ²	
111	2	0	.2 1	.2 . 1	r	1	2.		$r \pm 1$	

(b) Multiplication

Computational Considerations

- since coefficients are 0 or 1, can represent any such polynomial as a bit string
- addition becomes XOR of these bit strings
- multiplication is shift & XOR
 - long-hand multiplication
- modulo reduction done by repeatedly substituting highest power with remainder of irreducible poly (also shift & XOR)

Computational Example

- in $GF(2^3)$ have (x^2+1) is $101_2 \& (x^2+x+1)$ is 111_2
- so addition is
 - $(x^2+1) + (x^2+x+1) = x$
 - 101 XOR 111 = 010₂
- and multiplication is

•
$$(x+1).(x^2+1) = x.(x^2+1) + 1.(x^2+1)$$

= $x^3+x+x^2+1 = x^3+x^2+x+1$

- 011.101 = 1111₂
- polynomial modulo reduction (get q(x) & r(x)) is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1.(x^3+x+1) + (x^2) = x^2$
 - 1111 mod 1011 = 1111 XOR 1011 = 0100₂

Using a Generator

> equivalent definition of a finite field

> a generator g is an element whose powers generate all non-zero elements

in F have 0, g⁰, g¹, ..., g^{q-2}

- > can create generator from root of the irreducible polynomial
- > then implement multiplication by adding exponents of generator