
Grain - A Stream Cipher for Constrained

Environments

Martin Hell1, Thomas Johansson1 and Willi Meier2

1 Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin,thomas}@it.lth.se
2 FH Aargau, CH-5210 Windisch, Switzerland

meierw@fh-aargau.ch

Abstract. A new stream cipher, Grain, is proposed. The design tar-
gets hardware environments where gate count, power consumption and
memory is very limited. It is based on two shift registers and a nonlinear
output function. The cipher has the additional feature that the speed
can be increased at the expense of extra hardware. The key size is 80
bits and no attack faster than exhaustive key search has been identified.
The hardware complexity and throughput compares favourably to other
hardware oriented stream ciphers like E0 and A5/1.

1 Motivation

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g. speed, security and simplicity.
Comparing several ciphers, it is likely that one is faster on a 32 bit processor,
another is faster on an 8 bit processor and yet another one is faster in hardware.
The simplicity of the design is another factor that has to be taken into account,
but while the software implementation can be very simple, the hardware imple-
mentation might be quite complex.

There is a need for cryptographic primitives that have very low hardware
complexity. An RFID tag is a typical example of a product where the amount of
memory and power is very limited. These are microchips capable of transmitting
an identifying sequence upon a request from a reader. Forging an RFID tag can
have devastating consequences if the tag is used e.g. in electronic payments and
hence, there is a need for cryptographic primitives implemented in these tags.
Today, a hardware implementation of e.g. AES on an RFID tag is not feasible
due to the large number of gates needed. Grain is a stream cipher primitive that
is designed to be very easy and small to implement in hardware.

Many stream ciphers are based on linear feedback shift registers (LFSR), not
only for the good statistical properties of the sequences they produce, but also for
the simplicity and speed of their hardware implementation. Several recent LFSR
based stream cipher proposals, see e.g. [6, 7] and their predecessors, are based on
word oriented LFSRs. This allows them to be efficiently implemented in software



but it also allows them to increase the throughput since words instead of bits
are output. In hardware, a word oriented cipher is likely to be more complex
than a bit oriented one. We have addressed this issue by basing our design on
bit oriented shift registers with the extra feature of allowing an increase in speed
at the expense of more hardware. The user can decide the speed of the cipher
depending on the amount of hardware available.

The proposed primitive is a bit oriented synchronous stream cipher. In a
synchronous stream cipher the keystream is generated independently from the
plaintext. The design is based on two shift registers, one with linear feedback
(LFSR) and one with nonlinear feedback (NFSR). The LFSR guarantees a min-
imum period for the keystream and it also provides balancedness in the output.
The NFSR, together with a nonlinear output function introduces nonlinearity
to the cipher. The input to the NFSR is masked with the output of the LFSR
so that the state of the NFSR is balanced. Hence, we use the notation NFSR
even though this is actually a filter. What is known about cycle structures of
nonlinear feedback shift registers cannot immediately be applied here. Both shift
registers are 80 bits in size. The key size is 80 bits and the IV size is specified to
be 64 bits. The cipher is designed such that no attack faster than exhaustive key
search should be possible, hence the best attack should require a computational
complexity not significantly lower than 280.

An initial version of Grain (referred to as version 0) was submitted to eS-
TREAM, see www.ecrypt.eu.org/stream, and presented in [8]. Several re-
searchers independently discovered a weakness in the choice of output func-
tion, [3, 10, 12], allowing a rather efficient attack. The design of Grain in this
paper (referred to as version 1) has a slightly changed output function. Due to
a suggestion in [3], also the feedback function in the NFSR received a minor
change.

Grain provides a higher security than several other well known ciphers in-
tended to be used in hardware applications. Well known examples of such ciphers
are E0 used in Bluetooth and A5/1 used in GSM. These ciphers, while also hav-
ing a very small hardware implementation, have been proven to be very insecure.
Compared to E0 and A5/1, Grain provides higher security while maintaining a
small hardware complexity.

The paper is organized as follows. Section 2 provides a detailed description
of the design. Section 3 gives the design criterias and the design choices and the
strengths and limitations of the design are presented in Section 4. In Section 5
we consider the hardware implementation of the cipher and in Section 6 we give
the results of our security analysis. Section 7 concludes the paper.

2 Design Specification

This section specifies the details of the design. An overview of the different
blocks used in the cipher can be found in Fig. 1 and the specification will refer
to this figure. The cipher consists of three main building blocks, namely an
LFSR, an NFSR and an output function. The content of the LFSR is denoted by



si, si+1, . . . , si+79 and the content of the NFSR is denoted by bi, bi+1, . . . , bi+79.
The feedback polynomial of the LFSR, f(x) is a primitive polynomial of degree
80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80.

To remove any possible ambiguity we also define the update function of the
LFSR as

si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si.

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80+
+x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71+
+x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71+
+x28x35x43x47x52x59.

Again, to remove any possible ambiguity we also write the update function of
the NFSR. Note that the bit si which is masked with the input is included in
the update function below.

bi+80 = si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21+
+bi+14 + bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9+
+bi+60bi+52bi+45 + bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9+
+bi+60bi+52bi+37bi+33 + bi+63bi+60bi+21bi+15+
+bi+63bi+60bi+52bi+45bi+37 + bi+33bi+28bi+21bi+15bi+9+
+bi+52bi+45bi+37bi+33bi+28bi+21.

Fig. 1. The cipher.

The contents of the two shift registers represent the state of the cipher. From
this state, 5 variables are taken as input to a boolean function, h(x). This filter
function is chosen to be balanced, correlation immune of the first order and has



algebraic degree 3. The nonlinearity is the highest possible for these functions,
namely 12. The input is taken both from the LFSR and from the NFSR. The
function is defined as

h(x) = x1+x4+x0x3+x2x3+x3x4+x0x1x2+x0x2x3+x0x2x4+x1x2x4+x2x3x4

where the variables x0, x1, x2, x3 and x4 correspond to the tap positions si+3,
si+25, si+46, si+64 and bi+63 respectively. The output function is taken as

zi =
∑

k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63)

where A = {1, 2, 4, 10, 31, 43, 56}.

2.1 Key Initialization

Before any keystream is generated the cipher must be initialized with the key
and the IV. Let the bits of the key, k, be denoted ki, 0 ≤ i ≤ 79 and the bits
of the IV be denoted IVi, 0 ≤ i ≤ 63. The initialization of the key is done as
follows. First load the NFSR with the key bits, bi = ki, 0 ≤ i ≤ 79, then load the
first 64 bits of the LFSR with the IV, si = IVi, 0 ≤ i ≤ 63. The remaining bits
of the LFSR are filled with ones, si = 1, 64 ≤ i ≤ 79. Because of this the LFSR
cannot be initialized to the all zero state. Then the cipher is clocked 160 times
without producing any running key. Instead the output function is fed back and
xored with the input, both to the LFSR and to the NFSR, see Fig. 2.

Fig. 2. The key initialization.

3 Design Criteria

The design of the cipher is chosen to be as simple as possible for a hardware
implementation. The security requirements correspond to a computational com-
plexity of 280, equivalent to an exhaustive key search. To meet this requirement



it is necessary to build the cipher with a memory of 160 bits. Implementing
160 memory bits in hardware can be seen a lower bound for the complexity. To
develop a small hardware design we have to focus on minimizing the functions
that are used together with this memory. The functions used need to be small
in order to save gates but still large enough to provide high security. It is well
known that an LFSR with primitive feedback polynomial of degree d produces
an output with period 2d − 1. The LFSR in the cipher is of size 80 and since the
feedback polynomial is primitive it guarantees that the period is, with probabil-
ity 1 − 2−80, at least 280 − 1. Because of the NFSR and the fact that the input
to this is masked with the output of the LFSR the exact period will depend on
the key and the IV used. The input to the NFSR is masked with the output of
the LFSR in order to make sure that the NFSR state is balanced. The nonlinear
feedback is 2-resilient since the terms x80, x18 and x66 only appear linearily.

The filter function is quite small, only 5 variables and nonlinearity 12. How-
ever, this is partly compensated by the fact that one of the inputs is taken from
the NFSR. The input bit from the NFSR will depend nonlinearily on other bits
in the state, both from the LFSR and from the NFSR. The small filter function is
also compensated by adding 7 bits linearily from the NFSR at suitable positions
to form the output function.

In the key initialization phase the goal is to scramble the contents of the
shift registers before the running key is generated. The number of clockings is a
tradeoff between security and speed. If the cipher is to be reinitialized often with
a new IV, then the efficiency of the initialization is a possible bottleneck. Before
initialization the LFSR contains the IV and 16 ones. For initialization with two
different IVs, differing by only one bit, the probability that a shift register bit
is the same for both initializations should be close to 0.5. Simulations show that
this is achieved after 160 clockings. See Section 6.4 for further discussion about
this. Finally, no hidden weaknesses have been inserted by the designers.

3.1 Throughput Rate

Both shift registers are regularly clocked so the cipher will output 1 bit/clock.
It is possible to increase the speed of the cipher at the expense of more hard-
ware. This can very easily be done by just implementing the feedback functions,
f(x) and g(x) and the output function several times. In order to simplify this
implementation, the last 15 bits of the shift registers, si, 65 ≤ i ≤ 79 and
bi, 65 ≤ i ≤ 79 are not used in the feedback functions or in the input to the
filter function. This allows the speed to be easily multiplied by up to 16 if a
sufficient amount of hardware is available. An example of the implementation
when the speed is doubled can be seen in Fig. 3. Naturally, the shift registers
also need to be implemented such that each bit is shifted t steps instead of one
when the speed is increased by a factor t. By increasing the speed by a factor
16, the cipher outputs 16 bits/clock. Since, in the key initialization, the cipher
is clocked 160 times, the possibilities to increase the speed is limited to factors
≤ 16 that are divisible by 160. The number of clockings used in the key initial-



ization is then 160/t. Since the filter and feedback functions are small, it is quite
feasible to increase the throughput in this way.

Fig. 3. The cipher when the speed is doubled.

4 Strengths and Limitations

The design of a cipher needs to be focused on some specific properties. It is not
possible to have a design that is perfect for all purposes i.e., processors of all word
lengths, all hardware applications, all memory constraints etc. Grain is designed
to be very small in hardware, using as few gates as possible while maintaining
high security. The cipher is intended to be used in environments where gate
count, power consumption and memory needs to be very small. While Grain
is still possible to use in general application software, there are several ciphers
that are designed with software efficiency in mind and thus are more appropriate
when high speed in software is required. Because of this it does not make sense
to compare the software performance of Grain to other ciphers. To emphasize
the focus on hardware, no software speed measurements have been conducted.

The basic implementation has rate 1 bit/clock cycle. The speed of a word
oriented cipher is typically higher since the rate is then 1 word/clock. Grain is
bit oriented due to the high focus on small hardware complexity and this has
been compensated by the possibility to increase the speed at the cost of more
hardware. This allows a vendor to choose how fast the cipher should be according
to the amount of hardware available in the product produced.



5 Hardware Complexity

To get some practical indications on complexity and other important features of
a possible hardware implementation of the stream cipher, we performed a design
based on standard FPGA architectures.

Starting with Fig. 1 (normal operating mode) and Fig. 2 (key initialization)
we added a third mode (loading key bits into NFSR and IV into LFSR, as
described in Section 2.1). This whole circuit was described in VHDL (about
300 lines of code) depending on the parameter t as defined in Section 3.1. The
ALTERA MAX 3000A family was choosen since we have most experience with
the associated design equipment and it is seen as adequate for this purpose. MAX
3000A is a low end product using flash Memory as storage for the programming
data; i.e. these data are persistent, and no loading procedure is necessary as with
RAM-based FPGAs. The EPM3256 is the smallest chip of this family which
will meet our requirements (more than 160 flipflops and some combinatorial
logic). Using the ALTERA Quartus design tool, we carried out logical synthesis,
place/route and post-layout timing analysis. We found that t ≤ 4 fits into the
EPM3256, leading to a usage of about 90% of the 256 available macrocells.
The maximum clock frequency is in the range of 35–50 MHz, depending on the
operating mode and the output interface. The number of output bits per second
is t times clock frequency.

In order to make a fair comparison between different ciphers, the imple-
mentations has to be tested on the same FPGA. To highlight the performance
difference between different FPGAs we have simulated our design on two ad-
ditional FPGA families, namely the ALTERA MAX II and ALTERA Cyclone.
These two allowed the cipher to be clocked at higher speed and it also allowed
an implementation of the cipher when the speed was increased 16 times the
original speed, i.e. when t = 16. It should be mentioned that there are other
manufacturers of FPGAs (e.g. Actel, Xilinx), which may offer devices that will
meet all requirements too at lower prices. Some products are including security
mechanisms, prohibiting reverse engineering of a programmed chip.

The gate count for a function varies depending on the complexity and func-
tionality. The numbers are no natural constants and will depend on the imple-
mentation in an actual chip. We have chosen a gate count of 8 for a flip flop.
This figure ensures enough functionality for our application. Table 1 lists the
factors chosen in our implementation.
In our design we have calculated the gate count for t = 1, 2, 4, 8 and 16. Ta-
ble 2 shows the gate count and the corresponding throughput for the 3 different
FPGA/CPLDs. More details regarding the figures in the hardware implementa-
tion can be found in Appendix A.

This gate count can be compared to other hardware oriented stream ciphers,
e.g. E0 used in Bluetooth and A5/1 used in GSM. Using figures taken from [2],
the gate count for E0 is about the same as for Grain. A5/1 has a gate count
of approximately half. In all 3 ciphers, most of the gates are used for memory
implementation. Grain, E0 and A5/1 use 160, 128 and 64 bits memory respec-
tively. Moreover, the throughput of Grain also compares favourably to E0 and



Table 1. The gate count used for different functions.

Function Gate Count

D flip flop 8

NAND2 1

NAND3 1.5

NAND4 2

NAND5 2.5

NAND6 3

XOR2 2.5

MUX3 5

Table 2. The gate count and throughput of Grain for t = 1, 2, 4, 8 and 16.

t Gate Count
Throughput

MAX 3000A MAX II Cyclone

1 1450 49 Mbit/s 200 Mbit/s 282 Mbit/s

2 1637 98.4 Mbit/s 422 Mbit/s 576 Mbit/s

4 2010 196 Mbit/s 632 Mbit/s 872 Mbit/s

8 2756 — 1184 Mbit/s 1736 Mbit/s

16 4248 — 2128 Mbit/s 3136 Mbit/s

A5/1, mostly due to the fact that it can be increased efficiently with just a small
increase in gate count. Both E0 and A5/1 have been proven to be very insecure.
In [11], an attack against E0 using 235 frames and computational complexity 240

was shown. This attack is on the borderline of being practical. Also, several at-
tacks against A5/1 have been shown, see e.g. [1, 5, 13]. Grain has been designed
to provide much better security than both E0 and A5/1 while maintaining a low
gate count.

6 Cryptanalysis

In this section we consider some general attacks on stream ciphers and investi-
gate to which extent they can be applied to Grain. Resistance against all known
cryptanalytic attacks is the most important property of a new cipher. There
should be no attack faster than exhaustive key search. Initial cryptanalytic at-
tempts against the cipher show the following.

6.1 Correlations

Due to the statistical properties of maximum-length LFSR sequences, the bits in
the LFSR are (almost) exactly balanced. This may not be the case for a NFSR
when it is driven autonomously. However, as the feedback g(x) is xored with
an LFSR-state, the bits in the NFSR are balanced. Moreover, recall that g(x)



is a balanced function. Therefore, the bits in the NFSR may be assumed to be
uncorrelated to the LFSR bits.

The function h(x) is chosen to be correlation immune of first order. This does
not preclude that there are correlations of the output of h(x) to sums of inputs.
As one input comes from the NFSR and as h(x) is xored with 7 state bits of the
NFSR, correlations of the output of the generator to sums of LFSR-bits will be
small enough to prevent the attacks on version 0 of Grain in [3, 10, 12].

6.2 Algebraic Attack

A filter generator alone with output function h(x) of degree only three would
be very vulnerable to algebraic attacks. On the other hand, algebraic attacks
will not work for solving for the initial 160-bit state of the full generator, as the
update function of the NFSR is nonlinear, and the later state bits of the NFSR
as a function of the inital state bits will have varying but large algebraic degree.
Using key initialization, it may be possible to express the output of the generator
as a function of state bits of the LFSR alone. As the filter function h(x) has one
input coming from the NFSR, and h(x) is xored with a linear combination of
NFSR-state bits, the algebraic degrees of the output bits when expressed as a
function of LFSR-bits, are large in general, and varying in time. This will defeat
algebraic attacks.

6.3 Time/Memory/Data Tradeoff Attack

The cost of time/memory/data tradeoff attacks on stream ciphers is O(2n/2),
where n is the number of inner states of the stream cipher, [4]. To obey the mar-
gins set by this attack, n = 160 has been chosen. It is known that stream ciphers
with low sampling resistance have tradeoff attacks with fewer table lookups and
a wider choice of parameters, [4]. The sampling resistance of h(x) is reasonable:
This function does not become linear in the remaining variables by fixing less
than 3 of its 5 variables. Similarly, the variables occuring in monomials of g(x)
are sufficiently disjoint. Hence the resulting sampling resistance is large, and
thus time/memory/data tradeoff attacks are expected to have complexity not
lower than O(280).

6.4 Chosen-IV Attack

A necessary condition for defeating differential-like or statistical chosen-IV at-
tacks is that the initial states for any two chosen IV’s (or sets of IV’s) are
algebraically and statistically unrelated. The number of cycles in key initial-
ization has been chosen so that the Hamming weight of the differences in the
full initial 160-bit state for two IV’s after initialization is close to random. This
should prevent chosen-IV attacks.

It may be tempting to improve the efficiency of the key initialization by just
decreasing the number of initial clockings. Indeed, after only 80 clocks, all bits



in the state will depend on both the key and the IV. However, in a chosen-IV
attack it is possible to reinitialize the cipher with the same key but with an IV
that differs in only one position from the previous IV. Consider the case when
the number of initial clockings is 80 and the last bit of the IV is flipped i.e.,
s63 is flipped. This is the event that occurs if the IV is chosen as a sequence
number. Looking at the difference of the states after initialization it is clear that
several positions will be predictable. The bit s63 is not used in the feedback or
in the filter function, hence, the first register update will be the same in both
cases. Consequently, the bit s0 will be the same in both initializations. In the
next update, the flipped bit will be in position s62. This position is used in
the linear feedback of the LFSR, and consequently the bit s1 will always be
different for the two initializations. Similar arguments can be used to show that
the difference in the state will be deterministic in more than half of the 160 state
bits. This deterministic difference in the state can be exploited in a distinguishing
attack. Let x be the input variables to the output function, O, after the first
initialization and let x∆ be the input variables to the output function after
the second initialization. Now, compute the distribution of P (x, x∆). If this
distribution is biased, it is likely that the distribution of the difference in the
first output bit,

P (O(x) ⊕ O(x∆)),

is biased. Assume that

P (O(x) ⊕ O(x∆) = 0) = 1/2 + ε,

then the number of initializations we need will be in the order of 1/ε2. This attack
can be optimized by calculating which output bit will give the highest bias since
it is not necessarily the bits in the registers corresponding to the input bits
of O(x) that have deterministic difference after the initializations. This attack
shows that it is preferred that the probability that any state bit is the same after
initialization with two different IVs should be close to 0.5. As with the case of
80 initialization clocks, it is easy to show that after 96, 112 and 128 there are
also state bits that will always be the same or that will always differ.

6.5 Fault Attack

Amongst the strongest attacks conceivable on any cipher, are fault attacks. Fault
attacks against stream ciphers have been initiated in [9], and have shown to be
efficient against many known constructions of stream ciphers. This suggests that
it is hard to completely defeat fault attacks on stream ciphers. In the scenario
in [9] it is assumed that the attacker can apply some bit flipping faults to one
of the two feedback registers at his will. However he has only partial control
over their number, location, and exact timing, and similarly on what concerns
his knowledge. A stronger assumption one can make, is that he is able to flip a
single bit (at a time instance, and thus at a location, he does not know exactly).
In addition, he can reset the device to its original state and then apply another
randomly chosen fault to the device. We adapt the methods in [9] to the present



cipher. Thereby, we make the strongest possible assumption (which may not be
realistic) that an attacker can induce a single bit fault in the LFSR, and that he
is somehow able to determine the exact position of the fault. The aim is to study
input-output properties for h(x), and to derive information on the 5 inputs, out
of known input-output pairs (similar as for S-boxes in differential cryptanalysis
of DES). As long as the difference induced by the fault in the LFSR does not
propagate to position bi+63, the difference observed in the output of the cipher is
coming from inputs of h(x) from the LFSR alone. If an attacker is able to reset
the device and to induce a single bit fault many times and at different positions
that he can correctly guess from the output difference, we cannot preclude that
he will get information about a subset of the state bits in the LFSR. Such
an attack seems more difficult under the (more realistic) assumption that the
fault induced affects several state bits at (partially) unknown positions, since
in this case it is more difficult to determine the induced difference from output
differences.

Likewise, one can consider faults induced in the NFSR alone. These faults do
not influence the contents of the LFSR. However, faults in the NFSR propop-
agate nonlinearly and their evolution will be harder to predict. Thus, a fault
attack on the NFSR seems more difficult.

7 Conclusion

A new stream cipher, Grain, has been introduced. It is designed with small hard-
ware implementation in mind. A complete description of the algorithm as well
as a security analysis based on known attacks have been given. The construction
is based on two shift registers, one with linear feedback and one with nonlinear
feedback, and a nonlinear output function. The key size is 80 bits and no attack
with complexity better than exhaustive key search has been identified.

Grain is a bit oriented stream cipher producing 1 bit/clock in its simplest
implementation. However, as an important feature, it is very easy to increase
the rate up to 16 bits/clock if some additional hardware is used.

Acknowledgement

We are indebted to Werner Witz and Peter Steigmeier for carrying out an im-
plementation of Grain in hardware and extracting the data as given in Section 5.
We also thank A. Maximov, C. Berbain, H. Gilbert, H. Khazaei, M. Hassanzadeh
and M. Kiaei for identifying the weakness in version 0 of Grain.

References

1. E. Barkan, E. Biham and N. Keller. Instant Ciphertext-Only Cryptanalysis of GSM
Encrypted Communication. Crypto 2003, Springer Verlag, LNCS 2729, Oct 2003,
Pages 600–616



2. L. Batina, J. Lano, N. Mentens, S. B. Örs, B. Preneel and I. Verbauwhede. Energy,
Performance, Area Versus Security Trade-offs for Stream Ciphers. In The State

of the Art of Stream Ciphers: Workshop Record, Brugge, Belgium, October 2004,
pages 302–310, 2004.

3. C. Berbain and H. Gilbert. Cryptanalysis of Grain, draft. Private communication,
2005.

4. A. Biryukov, A. Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. Asiacrypt 2000, Springer Verlag, LNCS 1976, pp. 1–13.

5. A. Biryukov, A. Shamir and D. Wagner. Real Time Cryptanalysis of A5/1 on a
PC. FSE 2000, Springer Verlag, LNCS 1978, Jan 2001, pp. 1–13.

6. P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW. Selected
Areas in Cryptography, SAC 2002, Springer Verlag, LNCS 2595, pp. 47–61, 2002.

7. P. Hawkes and G. Rose. Primitive Specification for SOBER-128. IACR ePrint
Archive, http://eprint.iacr.org/2003/81/, 2003.

8. M. Hell, T. Johansson and W. Meier. Grain - A Stream Cipher for Constrained
Environments. In Workshop on RFID and Light-Weight Crypto: Workshop Record,

Graz, Austria, July 2005

9. J.J. Hoch, A. Shamir. Fault Analysis of Stream Ciphers. CHES 2004, Springer
Verlag, LNCS 3156, pp. 240–253.

10. S. Khazaei, M. Hassanzadeh and M. Kiaei. Distinguishing Attack on Grain, posted
on eSTREAM webpage. www.ecrypt.eu.org/stream/, 2005.

11. Y. Lu and S. Vaudenay. Cryptanalysis of Bluetooth Keystream Generator Two-
Level E0. Asiacrypt 2004, Springer Verlag, LNCS 3329, Nov 2004, pp 483–499.

12. A. Maximov. Cryptanalysis of the ”Grain” Family of Stream Ciphers, draft. Private
communication, 2005.

13. A. Maximov, T. Johansson and S. Babbage. An Improved Correlation Attack on
A5/1. Selected Areas in Cryptography, SAC 2004, Springer Verlag, LNCS 3357,
Jan 2004, Pages 1 - 18.

0
The work described in this paper has been supported in part by the European Commission through the IST
Programme under Contract IST-2002-507932 ECRYPT, as well as by Gebert Rüf Stiftung, and the National
Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation under grant number 5005-67322. The information in this
document reflects only the author’s views, is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.



A Hardware Figures

In Table 3 we summarize hardware figures when the implementation was simu-
lated on three different FPGAs. A fair comparison between different implemen-
tations and different ciphers requires that the same FPGA family is targeted.

Table 3. Hardware related figures for Grain.

Supplier ALTERA ALTERA ALTERA
FPGA/CPLD MAX 3000A MAX II Cyclone
Type EPM3256ATC144-7 EPM570T100C3 EP1C3T100C6
Total LABs [LE] [256] 57 291

t=1

Gate Count 1450 1450 1450
Max. Clock 49.2 MHz 200 MHz 282 MHz
%LAB [LE] usage [68%] 38% 8%
Throughput 49 Mbit/s 200 Mbit/s 282 Mbit/s

t=2

Gate Count 1637 1637 1637
Max. Clock 49.2 MHz 211 MHz 288 MHz
%LAB [LE] usage [75%] 42% 10%
Throughput 98.4 Mbit/s 422 Mbit/s 576 Mbit/s

t=4

Gate Count 2010 2010 2010
Max. Clock 49 MHz 158 MHz 218 MHz
%LAB [LE] usage [89%] 49% 12%
Throughput 196 Mbit/s 632 Mbit/s 872 Mbit/s

t=8

Gate Count 2756 2756
Max. Clock 148 MHz 217 MHz
%LAB [LE] usage 61% 11%
Throughput 1184 Mbit/s 1736 Mbit/s

t=16

Gate Count 4248 4248
Max. Clock 133 MHz 196 MHz
%LAB [LE] usage 85% 19%
Throughput 2128 Mbit/s 3136 Mbit/s

B Test Vectors

Grain is a bit oriented design and for simplicity of reading the test vectors below
are translated to hexadecimal strings. Hence, the most significant bit of the first
hex value represents index 0.

Key: 00000000000000000000

IV: 0000000000000000

Keystream: 7b978cf36846e5f4ee0b

Key: 0123456789abcdef1234

IV : 0123456789abcdef

Keystream: 42b567ccc65317680225

The reference implementation uses bytes and in this case the least significant bit
of the first byte will be treated as index 0. The test vectors are then given as:



Key: 00000000000000000000

IV: 0000000000000000

Keystream: dee931cf1662a72f77d0

Key: 0123456789abcdef1234

IV : 0123456789abcdef

Keystream: 7f362bd3f7abae203664


