Elliptic Curve Cryptography

Finite Elliptic Curves

$>$ Elliptic curve cryptography uses curves whose variables \& coefficients are finite
$>$ have two families commonly used:

- prime curves $\mathrm{E}_{\mathrm{p}}(\mathrm{a}, \mathrm{b})$ defined over Z_{p} ${ }^{\circ}$ use integers modulo a prime -best in software
- binary curves $\mathrm{E}_{2 \mathrm{~m}}(\mathrm{a}, \mathrm{b})$ defined over $\mathrm{GF}\left(\mathbf{2}^{\mathrm{n}}\right)$ ouse polynomials with binary coefficients obest in hardware

Elliptic Curves over GF(2^{m})

$>$ A finite field GF $\left(2^{\mathrm{m}}\right)$ consists of 2^{m} elements, together with addition and multiplication that can be defined over polynomials.
$>$ For Elliptic curves over GF($\left.2^{m}\right)$, we use a cubic equation where the variables and coefficients take on the values in $\mathrm{GF}\left(2^{m}\right)$.
$>$ The elliptic curve is of the form
$y^{2}+x y=x^{3}+a x+b$
Where x, y and $a, b \in G F\left(2^{m}\right)$ and
calculations are performed in $\mathrm{GF}\left(2^{m}\right)$ satisfying 4 $a^{3}+27 b^{2} \neq 0$

Elliptic Curve on a Binary field

- Consider $E 2^{\mathrm{m}}(\mathrm{a}, \mathrm{b})$ where $\mathrm{E}: \mathrm{y}^{2}+\mathrm{xy}=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b}$

For all points P and Q on $\mathrm{E2}^{\mathrm{m}}(\mathrm{a}, \mathrm{b})$

1. $\mathrm{P}+\mathrm{o}=\mathrm{P}$
2. If $P=(x p, y p)$, then $P+(x p, x p+y p)=0$.

The point ($x p, x p+y p$) is the negative of P, defined as $-P$.
3. If $P=(x p, y p), Q=(x q, y q)$ with $P \neq-Q$ and $P \neq Q$, then

$$
\mathrm{R}=\mathrm{P}+\mathrm{Q}=\left(\mathrm{x}_{\mathrm{R}}, \mathrm{y}_{\mathrm{R}}\right) \text { is determined by the following rules }
$$

$$
\mathrm{x}_{\mathrm{R}}=\lambda^{2}+\lambda+\mathrm{xp}+\mathrm{xq}+\mathrm{a}
$$

$$
y_{R}=\lambda\left(x p+x_{R}\right)+x_{R}+y p
$$

$$
\text { where, } \lambda=(y q+y p) /(x q+x p)
$$

Elliptic Curve on a Binary field

- Consider E2 ${ }^{\mathrm{m}}(\mathrm{a}, \mathrm{b})$ where $\mathrm{E}: \mathrm{y}^{2}+\mathrm{xy}=\mathrm{x}^{3}+\mathrm{ax}+\mathrm{b}$

4. If $P=(x p, y p)$, then
$R=2 P=\left(x_{R}, y_{R}\right)$ is determined by the following rules

$$
\begin{aligned}
& x_{R}=\lambda^{2}+\lambda+a \\
& y_{R}=x p+(\lambda+1) x_{R} \\
& \text { where, } \lambda=x p+y p / x p
\end{aligned}
$$

Scalar Multiplication: MSB first

- Require $\mathrm{k}=\left(\mathrm{k}_{\mathrm{m}-\mathrm{p}}, \mathrm{k}_{\mathrm{m}-2}, \ldots, \mathrm{k}_{\mathrm{o}}\right)_{2}, \mathrm{k}_{\mathrm{m}}=1$
- Compute $\mathrm{Q}=\mathrm{kP}$
- $\mathrm{Q}=\mathrm{P}$
- For $\mathrm{i}=\mathrm{m}-2$ to o
- $\mathrm{Q}=2 \mathrm{Q}$
- If $\mathrm{k}_{\mathrm{i}}=1$ then
- $\mathrm{Q}=\mathrm{Q}+\mathrm{P}$
- End if
- End for
- Return Q
- Requires m point doublings and (m-1)/2 point additions on the average

Example

- Compute ${ }_{7} \mathrm{P}$:
- $7=(111)_{2}$
- ${ }_{7} \mathrm{P}=2(2(\mathrm{P})+\mathrm{P})+\mathrm{P}=>2$ iterations are required
- Principle: First double and then add (accumulate)
- Compute 6P:
- $6=(110)_{2}$
- $6 \mathrm{P}=2(2(\mathrm{P})+\mathrm{P})$

Scalar Multiplication: LSB first

- Require $\mathrm{k}=\left(\mathrm{k}_{\mathrm{m}-1}, \mathrm{k}_{\mathrm{m}-2}, \ldots, \mathrm{k}_{\mathrm{o}}\right)_{2}, \mathrm{k}_{\mathrm{m}}=1$
- Compute Q=kP
- $\mathrm{Q}=\mathrm{o}, \mathrm{R}=\mathrm{P}$
- For $\mathrm{i}=\mathrm{o}$ to $\mathrm{m}-1$
- If $\mathrm{k}_{\mathrm{i}}=1$ then
- $\mathrm{Q}=\mathrm{Q}+\mathrm{R}$
- End if
- $R=2 R$
- End for
- Return Q
- On the average $\mathrm{m} / 2$ point Additions and $\mathrm{m} / 2$ point doublings

Example

- Compute ${ }_{7} \mathrm{P}, 7=(\mathrm{nr1})_{2}, \mathrm{Q}=\mathrm{o}, \mathrm{R}=\mathrm{P}$
- $\mathrm{Q}=\mathrm{Q}+\mathrm{R}=0+\mathrm{P}=\mathrm{P}, \mathrm{R}=2 \mathrm{R}=2 \mathrm{P}$
- $\mathrm{Q}=\mathrm{P}+2 \mathrm{P}=3 \mathrm{P}, \mathrm{R}=4 \mathrm{P}$
- $\mathrm{Q}=7 \mathrm{P}, \mathrm{R}=8 \mathrm{P}$
- Compute 6P, 6=(110) $)_{2}, \mathrm{Q}=0, \mathrm{R}=\mathrm{P}$
- $\mathrm{Q}=0, \mathrm{R}=2 \mathrm{R}=2 \mathrm{P}$
- $\mathrm{Q}=\mathrm{O}+2 \mathrm{P}=2 \mathrm{P}, \mathrm{R}=4 \mathrm{P}$
- $\mathrm{Q}=2 \mathrm{P}+4 \mathrm{P}=6 \mathrm{P}, \mathrm{R}=8 \mathrm{P}$

Weierstrass Point Addition

$$
y^{2}+x y=x^{3}+a x^{2}+b,(x, y) \in G F\left(2^{m}\right) \times G F\left(2^{m}\right)
$$

- Let, $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the curve.
- $-\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{x}_{1}+\mathrm{y}_{1}\right)$
- Let, $\mathrm{R}=\mathrm{P}+\mathrm{Q}=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$

$$
\begin{aligned}
& x_{3}=\left\{\begin{array}{c}
\left(\frac{y_{1}+y_{2}}{x_{1}+x_{2}}\right)^{2}+\frac{y_{1}+y_{2}}{x_{1}+x_{2}}+x_{1}+x_{2}+a ; P \neq Q \\
x_{1}^{2}+\frac{b}{x_{1}^{2}} ; P=Q
\end{array}\right. \\
& y_{3}=\left\{\begin{array}{c}
\left(\frac{y_{1}+y_{2}}{x_{1}+x_{2}}\right)\left(x_{1}+x_{3}\right)+x_{3}+y_{1} ; P \neq Q \\
x_{1}^{2}+\left(x_{1}+\frac{y_{1}}{x_{1}}\right) x_{3}+x_{3} ; P=Q
\end{array}\right.
\end{aligned}
$$

Weierstrass Point Addition

1. Point addition and doubling each require 1 inversion \& 2 multiplications

- 2. We neglect the costs of squaring and addition
- 3. Montgomery noticed that the x-coordinate of $2 P$ does not depend on the y-coordinate of P

Montgomery's method to perform scalar multiplication

- Input: k>o, P
- Output: Q=kP

1. Set $\mathrm{k}<-\left(\mathrm{k}_{1-1}, \ldots, \mathrm{k}_{1}, \mathrm{k}_{\mathrm{o}}\right)_{2}$
2. Set $P_{1}=P, P_{2}=2 P$
3. For i from l-2 to o

If $\mathrm{k}_{\mathrm{i}}=1$,
Set $\mathrm{P}_{1}=\mathrm{P}_{1}+\mathrm{P}_{2}, \mathrm{P}_{2}=2 \mathrm{P}_{2}$
else

$$
\text { Set } \mathrm{P}_{2}=\mathrm{P}_{2}+\mathrm{P}_{1}, \mathrm{P}_{1}=2 \mathrm{P}_{1}
$$

4. Return $\mathrm{Q}=\mathrm{P}_{1}$

Example

Compute ${ }_{7} \mathrm{P}$

- $7=(111)_{2}$
- Initialization:

$$
\mathrm{P}_{1}=\mathrm{P} ; \mathrm{P}_{2}=2 \mathrm{P}
$$

- Steps:
- $\mathrm{P}_{1}=3 \mathrm{P}, \mathrm{P}_{2}=4 \mathrm{P}$
- $\mathbf{P}_{1}=7 \mathbf{P}, \mathrm{P}_{2}=8 \mathrm{P}$

Compute 6P

- $7=(110)_{2}$
- Initialization:

$$
P_{1}=P ; P_{2}=2 P
$$

- Steps:
$-P_{1}=3 P, P_{2}=4 P$
$-P_{2}=7 P, P_{1}=6 P$

ECC Security

$>$ relies on elliptic curve logarithm problem
$>$ fastest method is "Pollard rho method"
$>$ compared to factoring, can use much smaller key sizes than with RSA, etc.
$>$ for equivalent key lengths computations are roughly equivalent
$>$ hence for similar security ECC offers significant computational advantages

Applications of ECC

- Many devices are small and have limited storage and computational power
- Where can we apply ECC?
- Wireless communication devices
- Smart cards
- Web servers that need to handle many encryption sessions
- Any application where security is needed but lacks the power, storage and computational power that is necessary for our current cryptosystems

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)

ECC-based scheme (size of \boldsymbol{n} in bits)

RSA/DSA (modulus size in bits)

56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

