Elliptic Curve Cryptography

Theorem:

Let E: $y^2 = x^3 + ax + b$ is an elliptic curve and Let P and Q be two points on E

- (a) If P = o then P + Q = Q
- (b) Otherwise if Q = o, then P + Q = P
- (c) Otherwise, write $P = (x_1, y_1)$ and $q = (x_2, y_2)$
- (d) If $x_1 = x_2$ and $y_1 = -y_2$, then P + Q = 0
- (e) P = P, assume $P \neq o$ and $Q \neq o$
- (f) Otherwise define

Contd. To next slide

Contd. $\Lambda = (y2 - y1) / (x2 - x1) \text{ if } P \neq Q$

$\Lambda = (3x1^2 + a) / (2y1)$ if P = Q

$$X3 = \lambda^2 - x1 - x2$$

 $Y3 = (\lambda (x1 - x3) - y1)$

Then P + Q = (x3, y3)

Proof: Parts (a) and (b) are clear. (d) Is the case that the line through P and Q is vertical, so P + Q = 0.

For (e), if P \neq Q then λ is the slope of the line through P and Q and if P = Q then λ is the slope of the tangent line at P. In either case, L: $y = \lambda x + c$ with $c = y1 - \lambda x1$

Proof (contd.)

Substituting L on E

 $(\lambda x + c)^2 = x^3 + ax + b$

 $x^{3} - \lambda^{2} x^{2} + (a - 2\lambda c) x + (b - c^{2}) = 0$

We know that this cubic equation has two root x1 and x2. If we cal thethird root as x3, then it factors as

 $x^3 - \lambda^2 x^2 + (a - 2\lambda c) x + (b - c^2) = (x - x1)(x - x2)(x - x3)$ Multiply and look at the coefficient of x^2 on each side.

Proof (contd.)

The coefficient of x^2 on the right hand side is

-x1 - x2 - x3

Which must equal to $-\lambda^2$, the coefficient of x^2 on the left hand side.

This solves $x^3 = \lambda^2 - x^1 - x^2$ and then y-coordinate of third intersection point of L and E

 $Y3 = \lambda x3 + c = \lambda x3 + c = \lambda x3 + y1 - \lambda x1$

 $= - (\lambda (x1 - x3) - y1)$

So the y-coordinate of (P + Q) is $(\lambda (x1 - x3) - y1)$

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- > have two families commonly used:
 - prime curves E_p(a,b) defined over Z_p
 use integers modulo a prime
 - best in software
 - binary curves E_{2m}(a,b) defined over GF(2ⁿ)
 use polynomials with binary coefficients
 best in hardware

Elliptic Curves over Finite Fields

> Define Elliptic curve over Fp as

 $y^2 = x^3 + ax + b$ with a, b ε Fp satisfying $4a^3 + 27b^2 \neq 0$

 $E(Fp) = \{(x,y), x, y \in Fp \text{ satisfy } y^2 = x^3 + ax + b\} U\{o\}, p \ge 3$

Example: Consider the elliptic curve

 $E: y^2 = x^3 + ax + b$ over the field F13

Elliptic Curve on a finite field

• Consider $y^2 = x^3 + 3x + 8 \pmod{13}$ $x = 0 \Rightarrow y^2 = 8 \Rightarrow 8 \text{ is not a square mod } 13$ $x = 1 \Rightarrow y^2 = 12 = 1 \Rightarrow y = 1,5 \pmod{13}$ $x = 1 \Rightarrow y^2 = 12 = 1 \Rightarrow y = 1,8 \pmod{13}$ $5^2 = 12 \mod{13}, 8^2 = 12 \mod{13}$ $x = 2 \Rightarrow y^2 = 22 = 9 \Rightarrow y = 2, 3 \pmod{13}$ $x = 2 \Rightarrow y^2 = 22 = 9 \Rightarrow y = 2, 10 \pmod{13}$ $3^2 = 9 \mod{13}, 10^2 = 9 \mod{13}$

Then points on the elliptic curve are
 E(F13) = {0, (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12, 2), (12, 11)}

Elliptic curve Addition over Finite Field

Theorem:

Let E be an elliptic curve over Fp and let P and Q be points on E(Fp)

- (a) The elliptic cure addition algorithm applied P and Q yields a point in E(Fp). We denote this point by P + Q
- (b) This addition law on E(Fp) satisfies all of the properties additions defined geometrically on elliptic curve i.e. E(Fp) forms a finite group.

Diffie-Hellman (DH) Key Exchange

Elliptic Curve Cryptography

- > ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- > need "hard" problem equiv to discrete log
 - Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- > Certicom example: $E_{23}(9,17)$

Elliptic Curve on a finite field

Example:

Consider the group E23(9, 17), E: $y^2 = x^3 + 9x + 17 \pmod{23}$

- What is discrete logarithm k of Q = (4,5) to the base P = (16,5)
 ?
- Brute Force : P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8,7);8P = (12, 17); 9P = (4, 5);

• k=9, the discrete logarithm of Q(4,5) to the base P(16,5)

ECC Diffie-Hellman

> can do key exchange analogous to D-H > users select a suitable curve E_a(a,b) > select base point $G=(x_1,y_1)$ • with large order n s.t. nG=O > A & B select private keys $n_A < n$, $n_B < n$ > compute public keys: $P_A = n_A G$, $P_B = n_B G$ > compute shared key: K=n_AP_B, K=n_BP_A same since K=n_An_BG > attacker would need to find k, hard

ECC Encryption/Decryption

- > several alternatives, will consider simplest
- > must first encode any message M as a point on the elliptic curve P_m
- > select suitable curve & point G as in D-H
- > each user chooses private key n_A<n</p>
- > and computes public key P_A=n_AG
- > to encrypt P_m : C_m={kG, P_m+kP_b}, k random
- > decrypt C_m compute:
 - $P_m + kP_b n_B(kG) = P_m + k(n_BG) n_B(kG) = P_m$

ECC Security

- relies on elliptic curve logarithm problem
- > fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA, etc.
- For equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Applications of ECC

- Many devices are small and have limited storage and computational power
- Where can we apply ECC?
 - Wireless communication devices
 - Smart cards
 - Web servers that need to handle many encryption sessions
 - Any application where security is needed but lacks the power, storage and computational power that is necessary for our current cryptosystems

Advantages of ECC

- Shorter key lengths
 - Encryption, Decryption and Signature Verification speed up
 - Storage and bandwidth savings

Advantage of ECC

- "Hard problem" analogous to discrete log
 - Q=kP, where Q,P belong to a prime curve given k,P → "easy" to compute Q given Q,P → "hard" to find k
 - known as the elliptic curve logarithm problem
 - k must be large enough

• ECC security relies on elliptic curve logarithm problem

- compared to factoring, can use much smaller key sizes than with RSA etc
- for similar security ECC offers significant computational advantages

Key Sizes for Equivalent Security

Symmetric	ECC-based	RSA/DSA
scheme	scheme	(modulus size in
(key size in bits)	(size of <i>n</i> in bits)	bits)

56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360