
Elliptic Curve Cryptography

Elliptic curve Addition Algorithm
Theorem:

Let E: y2 = x3 + ax + b is an elliptic curve and

Let P and Q be two points on E

(a) If P = 0 then P + Q = Q

(b) Otherwise if Q = 0, then P + Q = P

(c) Otherwise, write P = (x1, y1) and q = (x2, y2)

(d) If x1 = x2 and y1 = - y2, then P + Q = 0

(e) P = P, assume P ≠ 0 and Q ≠ 0

(f) Otherwise define λ
Contd. To next slide

Elliptic curve Addition Algorithm

Contd.

Λ = (y2 – y1) / (x2 – x1) if P ≠ Q

Λ = (3x12 + a) / (2 y1) if P = Q

X3 = λ2 - x1 – x2

Y3 = (λ (x1 – x3) – y1)

Then P + Q = (x3, y3)

Elliptic curve Addition Algorithm

Proof:

Parts (a) and (b) are clear.

(d) Is the case that the line through P and Q is
vertical, so P + Q = 0.

For (e), if P ≠ Q then λ is the slope of the line
through P and Q and if P = Q then λ is the slope
of the tangent line at P .

In either case, L: y = λ x + c with c = y1 – λ x1

Elliptic curve Addition Algorithm

Proof (contd.)

Substituting L on E

(λ x + c)2 = x3 + ax + b

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = 0

We know that this cubic equation has two root
x1 and x2. If we cal thethird root as x3, then it
factors as

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = (x – x1)(x –x2)(x – x3)

Multiply and look at the coefficient of x2 on each side.

Elliptic curve Addition Algorithm

Proof (contd.)

The coefficient of x2 on the right hand side is

– x1 – x2 – x3

Which must equal to – λ2 , the coefficient of x2 on
the left hand side.

This solves x3 = λ2 – x1 – x2 and then y-coordinate
of third intersection point of L and E

Y3 = λ x3 + c = λ x3 + c = λ x3 + y1 – λ x1

= – (λ (x1 – x3) – y1)

So the y-coordinate of (P + Q) is (λ (x1 – x3) – y1)

ם

Finite Elliptic Curves

➢ Elliptic curve cryptography uses curves
whose variables & coefficients are finite

➢ have two families commonly used:

⚫ prime curves Ep(a,b) defined over Zp

•use integers modulo a prime

•best in software

⚫ binary curves E2m(a,b) defined over GF(2n)

•use polynomials with binary coefficients

•best in hardware

Elliptic Curves over Finite Fields

➢Define Elliptic curve over Fp as

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 with a, b ε Fp satisfying 4 a3 + 27 b2 ≠ 0

E(Fp) = {(x,y), x, y ε Fp satisfy 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃} U {0}, p ≥ 3

Example: Consider the elliptic curve

E: 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 over the field F13

Elliptic Curve on a finite field
 Consider y2 = x3 + 3x + 8 (mod 13)

x = 0  y2 = 8  8 is not a square mod 13

x = 1  y2 = 12 = 1  y = 1,5 (mod 13)

x = 1  y2 = 12 = 1  y = 1,8 (mod 13)

52 = 12 mod 13, 82 = 12 mod 13

x = 2  y2 = 22 = 9  y = 2, 3 (mod 13)

x = 2  y2 = 22 = 9  y = 2, 10 (mod 13)

32 = 9 mod 13, 102 = 9 mod 13

 Then points on the elliptic curve are

E(F13) = {0, (1,5),(1,8), (2,3), (2,10), (9,6), (9, 7),(12, 2),(12, 11)}

Elliptic curve Addition over Finite Field

Theorem:

Let E be an elliptic curve over Fp and let P and
Q be points on E(Fp)

(a) The elliptic cure addition algorithm applied P
and Q yields a point in E(Fp). We denote this
point by P + Q

(b) This addition law on E(Fp) satisfies all of the
properties additions defined geometrically on
elliptic curve i.e. E(Fp) forms a finite group.

Diffie-Hellman (DH) Key Exchange

Elliptic Curve Cryptography

➢ ECC addition is analog of modulo multiply

➢ ECC repeated addition is analog of modulo
exponentiation

➢ need “hard” problem equiv to discrete log
⚫ Q=kP, where Q,P belong to a prime curve

⚫ is “easy” to compute Q given k,P

⚫ but “hard” to find k given Q,P

⚫ known as the elliptic curve logarithm problem

➢ Certicom example: E23(9,17)

Elliptic Curve on a finite field
Example:

Consider the group E23(9, 17), E: y2 = x3 + 9x + 17 (mod 23)

 What is discrete logarithm k of Q = (4,5) to the base P = (16,5)
?

 Brute Force : P = (16, 5); 2P = (20,20); 3P = (14, 14);

4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8,7);

8P = (12, 17); 9P = (4, 5);

 k= 9 , the discrete logarithm of Q(4,5) to the base P(16,5)

ECC Diffie-Hellman

➢ can do key exchange analogous to D-H

➢ users select a suitable curve Eq(a,b)

➢ select base point G=(x1,y1)
⚫ with large order n s.t. nG=O

➢A & B select private keys nA<n, nB<n

➢ compute public keys: PA=nAG, PB=nBG

➢ compute shared key: K=nAPB, K=nBPA

⚫ same since K=nAnBG

➢ attacker would need to find k, hard

ECC Encryption/Decryption

➢ several alternatives, will consider simplest

➢ must first encode any message M as a point on the
elliptic curve Pm

➢ select suitable curve & point G as in D-H

➢ each user chooses private key nA<n

➢ and computes public key PA=nAG

➢ to encrypt Pm : Cm={kG, Pm+kPb}, k random

➢ decrypt Cm compute:

Pm+kPb–nB(kG) = Pm+k(nBG)–nB(kG) = Pm

ECC Security

➢ relies on elliptic curve logarithm problem

➢ fastest method is “Pollard rho method”

➢ compared to factoring, can use much smaller key
sizes than with RSA, etc.

➢ for equivalent key lengths computations are
roughly equivalent

➢ hence for similar security ECC offers significant
computational advantages

Applications of ECC
 Many devices are small and have limited storage

and computational power

 Where can we apply ECC?
 Wireless communication devices

 Smart cards

 Web servers that need to handle many encryption
sessions

 Any application where security is needed but lacks
the power, storage and computational power that is
necessary for our current cryptosystems

Advantages of ECC
 Shorter key lengths

 Encryption, Decryption and Signature Verification
speed up

 Storage and bandwidth savings

Advantage of ECC
 “Hard problem” analogous to discrete log

 Q=kP, where Q,P belong to a prime curve

given k,P → “easy” to compute Q

given Q,P → “hard” to find k

 known as the elliptic curve logarithm problem

 k must be large enough

 ECC security relies on elliptic curve logarithm problem
 compared to factoring, can use much smaller key sizes

than with RSA etc

 for similar security ECC offers significant
computational advantages

Key Sizes for Equivalent Security

Symmetric
scheme

(key size in bits)

ECC-based
scheme

(size of n in bits)

RSA/DSA
(modulus size in

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

