
Elliptic Curve Cryptography



Elliptic curve Addition Algorithm
Theorem:

Let E: y2 = x3 + ax + b is an elliptic curve and 

Let P and Q be two points on E

(a) If P = 0  then P + Q = Q

(b) Otherwise if Q = 0, then P + Q = P

(c) Otherwise, write P = (x1, y1) and q = (x2, y2)

(d) If x1 = x2 and y1 = - y2, then P + Q = 0

(e) P = P,   assume P ≠ 0 and Q ≠ 0

(f) Otherwise define λ
Contd. To next slide



Elliptic curve Addition Algorithm

Contd.

Λ = (y2 – y1) / (x2 – x1)  if P  ≠ Q

Λ = (3x12 + a) / (2 y1)  if P  = Q

X3 = λ2  - x1 – x2 

Y3 = (λ (x1 – x3) – y1)

Then P + Q = (x3, y3)



Elliptic curve Addition Algorithm

Proof:

Parts (a) and (b) are clear.

(d) Is the case that the line through P and Q is 
vertical, so P + Q = 0.

For (e), if P ≠ Q then λ is the slope of the line 
through P and Q and if P = Q then λ is the slope 
of the tangent line at P .

In either case, L:  y = λ x + c  with c = y1 – λ x1



Elliptic curve Addition Algorithm

Proof (contd.)

Substituting L on E

(λ x + c)2 = x3 + ax + b

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = 0

We know that this cubic equation has two root 
x1 and x2. If we cal thethird root as x3, then it 
factors as

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = (x – x1)(x –x2)(x – x3)

Multiply and look at the coefficient of x2 on each side.



Elliptic curve Addition Algorithm

Proof (contd.)

The coefficient of x2 on the right hand side is

– x1 – x2 – x3 

Which must equal to – λ2  , the coefficient of x2 on 
the left hand side.

This solves x3 = λ2 – x1 – x2  and then y-coordinate 
of third intersection point of L and E

Y3 = λ x3 + c = λ x3 + c  = λ x3 + y1 – λ x1 

= – (λ (x1 – x3) – y1)

So the y-coordinate of  (P + Q) is (λ (x1 – x3) – y1)

ם



Finite Elliptic Curves

➢ Elliptic curve cryptography uses curves 
whose variables & coefficients are finite

➢ have two families commonly used:

⚫ prime curves Ep(a,b) defined over Zp

•use integers modulo a prime

•best in software

⚫ binary curves E2m(a,b) defined over GF(2n)

•use polynomials with binary coefficients

•best in hardware



Elliptic Curves over Finite Fields

➢Define Elliptic curve over Fp as

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 with a, b ε Fp satisfying 4 a3 + 27 b2 ≠  0

E(Fp) = {(x,y), x, y ε Fp satisfy 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃} U {0}, p ≥ 3

Example: Consider the elliptic curve

E: 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 over the field F13



Elliptic Curve on a finite field
 Consider y2 = x3 + 3x + 8 (mod 13)

x = 0  y2 = 8  8 is not a square mod 13 

x = 1  y2 = 12 = 1  y = 1,5 (mod 13)

x = 1  y2 = 12 = 1  y = 1,8 (mod 13)

52 = 12 mod 13,  82 = 12 mod 13

x = 2  y2 = 22 = 9  y = 2, 3 (mod 13)

x = 2  y2 = 22 = 9  y = 2, 10 (mod 13)

32 = 9 mod 13,  102 = 9 mod 13

 Then points on the elliptic curve are

E(F13) =  {0, (1,5),(1,8), (2,3), (2,10), (9,6), (9, 7),(12, 2),(12, 11)}



Elliptic curve Addition over Finite Field

Theorem:

Let E be an elliptic curve over Fp and let P and 
Q be points on E(Fp)

(a) The elliptic cure addition algorithm applied P 
and Q yields a point in E(Fp). We denote this 
point by   P + Q 

(b) This addition law on E(Fp) satisfies all of the 
properties additions defined geometrically on 
elliptic curve i.e. E(Fp) forms a finite group.



Diffie-Hellman (DH) Key Exchange



Elliptic Curve Cryptography

➢ ECC addition is analog of modulo multiply

➢ ECC repeated addition is analog of modulo 
exponentiation

➢ need “hard” problem equiv to discrete log
⚫ Q=kP, where Q,P belong to a prime curve

⚫ is “easy” to compute Q given k,P

⚫ but “hard” to find k given Q,P

⚫ known as the elliptic curve logarithm problem

➢ Certicom example: E23(9,17) 



Elliptic Curve on a finite field
Example:

Consider  the group E23(9, 17), E: y2 = x3 + 9x + 17 (mod 23)

 What is discrete logarithm k of Q = (4,5) to the base P = (16,5) 
?

 Brute Force :  P = (16, 5); 2P = (20,20); 3P = (14, 14); 

4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8,7); 

8P = (12, 17); 9P = (4, 5); 

 k= 9 , the discrete logarithm of Q(4,5) to the base P(16,5)



ECC Diffie-Hellman

➢ can do key exchange analogous to D-H

➢ users select a suitable curve Eq(a,b) 

➢ select base point G=(x1,y1)
⚫ with large order n s.t. nG=O

➢A & B select private keys nA<n, nB<n

➢ compute public keys: PA=nAG, PB=nBG

➢ compute shared key: K=nAPB, K=nBPA

⚫ same since K=nAnBG

➢ attacker would need to find k, hard



ECC Encryption/Decryption

➢ several alternatives, will consider simplest

➢ must first encode any message M as a point on the 
elliptic curve Pm

➢ select suitable curve & point G as in D-H

➢ each user chooses private key nA<n

➢ and computes public key PA=nAG

➢ to encrypt Pm : Cm={kG, Pm+kPb}, k random

➢ decrypt Cm compute: 

Pm+kPb–nB(kG) = Pm+k(nBG)–nB(kG) = Pm



ECC Security

➢ relies on elliptic curve logarithm problem

➢ fastest method is “Pollard rho method”

➢ compared to factoring, can use much smaller key 
sizes than with RSA, etc.

➢ for equivalent key lengths computations are 
roughly equivalent

➢ hence for similar security ECC offers significant 
computational advantages



Applications of ECC
 Many devices are small and have limited storage 

and computational power

 Where can we apply ECC?
 Wireless communication devices

 Smart cards

 Web servers that need to handle many encryption 
sessions

 Any application where security is needed but lacks 
the power, storage and computational power that is 
necessary for our current cryptosystems



Advantages of ECC
 Shorter key lengths

 Encryption, Decryption and Signature Verification 
speed up

 Storage and bandwidth savings



Advantage of ECC
 “Hard problem” analogous to discrete log

 Q=kP, where Q,P belong to a prime curve

given k,P → “easy” to compute Q

given Q,P  → “hard” to find k

 known as the elliptic curve logarithm problem

 k must be large enough

 ECC security relies on elliptic curve logarithm problem
 compared to factoring, can use much smaller key sizes 

than with RSA etc

 for similar security ECC offers significant 
computational advantages



Key Sizes for Equivalent Security

Symmetric 
scheme

(key size in bits)

ECC-based 
scheme

(size of n in bits)

RSA/DSA
(modulus size in 

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360


