
Elliptic Curve Cryptography



Elliptic curve Addition Algorithm
Theorem:

Let E: y2 = x3 + ax + b is an elliptic curve and 

Let P and Q be two points on E

(a) If P = 0  then P + Q = Q

(b) Otherwise if Q = 0, then P + Q = P

(c) Otherwise, write P = (x1, y1) and q = (x2, y2)

(d) If x1 = x2 and y1 = - y2, then P + Q = 0

(e) P = P,   assume P ≠ 0 and Q ≠ 0

(f) Otherwise define λ
Contd. To next slide



Elliptic curve Addition Algorithm

Contd.

Λ = (y2 – y1) / (x2 – x1)  if P  ≠ Q

Λ = (3x12 + a) / (2 y1)  if P  = Q

X3 = λ2  - x1 – x2 

Y3 = (λ (x1 – x3) – y1)

Then P + Q = (x3, y3)



Elliptic curve Addition Algorithm

Proof:

Parts (a) and (b) are clear.

(d) Is the case that the line through P and Q is 
vertical, so P + Q = 0.

For (e), if P ≠ Q then λ is the slope of the line 
through P and Q and if P = Q then λ is the slope 
of the tangent line at P .

In either case, L:  y = λ x + c  with c = y1 – λ x1



Elliptic curve Addition Algorithm

Proof (contd.)

Substituting L on E

(λ x + c)2 = x3 + ax + b

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = 0

We know that this cubic equation has two root 
x1 and x2. If we cal thethird root as x3, then it 
factors as

x3 - λ2 x2 + (a – 2 λ c) x + (b – c2) = (x – x1)(x –x2)(x – x3)

Multiply and look at the coefficient of x2 on each side.



Elliptic curve Addition Algorithm

Proof (contd.)

The coefficient of x2 on the right hand side is

– x1 – x2 – x3 

Which must equal to – λ2  , the coefficient of x2 on 
the left hand side.

This solves x3 = λ2 – x1 – x2  and then y-coordinate 
of third intersection point of L and E

Y3 = λ x3 + c = λ x3 + c  = λ x3 + y1 – λ x1 

= – (λ (x1 – x3) – y1)

So the y-coordinate of  (P + Q) is (λ (x1 – x3) – y1)

ם



Finite Elliptic Curves

➢ Elliptic curve cryptography uses curves 
whose variables & coefficients are finite

➢ have two families commonly used:

⚫ prime curves Ep(a,b) defined over Zp

•use integers modulo a prime

•best in software

⚫ binary curves E2m(a,b) defined over GF(2n)

•use polynomials with binary coefficients

•best in hardware



Elliptic Curves over Finite Fields

➢Define Elliptic curve over Fp as

𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 with a, b ε Fp satisfying 4 a3 + 27 b2 ≠  0

E(Fp) = {(x,y), x, y ε Fp satisfy 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃} U {0}, p ≥ 3

Example: Consider the elliptic curve

E: 𝒚𝟐 = 𝒙𝟑 + 𝒂𝒙 + 𝒃 over the field F13



Elliptic Curve on a finite field
 Consider y2 = x3 + 3x + 8 (mod 13)

x = 0  y2 = 8  8 is not a square mod 13 

x = 1  y2 = 12 = 1  y = 1,5 (mod 13)

x = 1  y2 = 12 = 1  y = 1,8 (mod 13)

52 = 12 mod 13,  82 = 12 mod 13

x = 2  y2 = 22 = 9  y = 2, 3 (mod 13)

x = 2  y2 = 22 = 9  y = 2, 10 (mod 13)

32 = 9 mod 13,  102 = 9 mod 13

 Then points on the elliptic curve are

E(F13) =  {0, (1,5),(1,8), (2,3), (2,10), (9,6), (9, 7),(12, 2),(12, 11)}



Elliptic curve Addition over Finite Field

Theorem:

Let E be an elliptic curve over Fp and let P and 
Q be points on E(Fp)

(a) The elliptic cure addition algorithm applied P 
and Q yields a point in E(Fp). We denote this 
point by   P + Q 

(b) This addition law on E(Fp) satisfies all of the 
properties additions defined geometrically on 
elliptic curve i.e. E(Fp) forms a finite group.



Diffie-Hellman (DH) Key Exchange



Elliptic Curve Cryptography

➢ ECC addition is analog of modulo multiply

➢ ECC repeated addition is analog of modulo 
exponentiation

➢ need “hard” problem equiv to discrete log
⚫ Q=kP, where Q,P belong to a prime curve

⚫ is “easy” to compute Q given k,P

⚫ but “hard” to find k given Q,P

⚫ known as the elliptic curve logarithm problem

➢ Certicom example: E23(9,17) 



Elliptic Curve on a finite field
Example:

Consider  the group E23(9, 17), E: y2 = x3 + 9x + 17 (mod 23)

 What is discrete logarithm k of Q = (4,5) to the base P = (16,5) 
?

 Brute Force :  P = (16, 5); 2P = (20,20); 3P = (14, 14); 

4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8,7); 

8P = (12, 17); 9P = (4, 5); 

 k= 9 , the discrete logarithm of Q(4,5) to the base P(16,5)



ECC Diffie-Hellman

➢ can do key exchange analogous to D-H

➢ users select a suitable curve Eq(a,b) 

➢ select base point G=(x1,y1)
⚫ with large order n s.t. nG=O

➢A & B select private keys nA<n, nB<n

➢ compute public keys: PA=nAG, PB=nBG

➢ compute shared key: K=nAPB, K=nBPA

⚫ same since K=nAnBG

➢ attacker would need to find k, hard



ECC Encryption/Decryption

➢ several alternatives, will consider simplest

➢ must first encode any message M as a point on the 
elliptic curve Pm

➢ select suitable curve & point G as in D-H

➢ each user chooses private key nA<n

➢ and computes public key PA=nAG

➢ to encrypt Pm : Cm={kG, Pm+kPb}, k random

➢ decrypt Cm compute: 

Pm+kPb–nB(kG) = Pm+k(nBG)–nB(kG) = Pm



ECC Security

➢ relies on elliptic curve logarithm problem

➢ fastest method is “Pollard rho method”

➢ compared to factoring, can use much smaller key 
sizes than with RSA, etc.

➢ for equivalent key lengths computations are 
roughly equivalent

➢ hence for similar security ECC offers significant 
computational advantages



Applications of ECC
 Many devices are small and have limited storage 

and computational power

 Where can we apply ECC?
 Wireless communication devices

 Smart cards

 Web servers that need to handle many encryption 
sessions

 Any application where security is needed but lacks 
the power, storage and computational power that is 
necessary for our current cryptosystems



Advantages of ECC
 Shorter key lengths

 Encryption, Decryption and Signature Verification 
speed up

 Storage and bandwidth savings



Advantage of ECC
 “Hard problem” analogous to discrete log

 Q=kP, where Q,P belong to a prime curve

given k,P → “easy” to compute Q

given Q,P  → “hard” to find k

 known as the elliptic curve logarithm problem

 k must be large enough

 ECC security relies on elliptic curve logarithm problem
 compared to factoring, can use much smaller key sizes 

than with RSA etc

 for similar security ECC offers significant 
computational advantages



Key Sizes for Equivalent Security

Symmetric 
scheme

(key size in bits)

ECC-based 
scheme

(size of n in bits)

RSA/DSA
(modulus size in 

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360


