Elliptic Curve Cryptography

Elliptic curve Addition Algorithm

Theorem:

Let $E: y^{2} \equiv x^{3}+a x+b$ is an elliptic curve and Let P and Q be two points on E
(a) If $P=0$ then $P+Q=Q$
(b) Otherwise if $\mathrm{Q}=0$, then $\mathrm{P}+\mathrm{Q}=\mathrm{P}$
(c) Otherwise, write $P=\left(x 1, y_{1}\right)$ and $q=\left(x_{2}, \mathrm{y}_{2}\right)$
(d) If $\mathrm{x} 1=\mathrm{x} 2$ and $\mathrm{y} 1=-\mathrm{y} 2$, then $P+Q=0$
(e) $P=P$, assume $P \neq 0$ and $Q \neq 0$
(๓) Otherwise define λ

Contd. To next slide

Elliptic curve Addition Algorithm

Contd.
$\Lambda=(y 2-y 1) /(x 2-x 1)$ if $P \neq Q$
$\Lambda \equiv\left(3 x 1^{2}+a\right) /(2 y 1)$ if $P \equiv Q$
$X 3=\lambda^{2}-x 1-x 2$
$Y 3 \equiv(\lambda(x 1-x 3)-y 1)$
Then $P+Q \equiv(x 3, y 3)$

Elliptic curve Addition Algorithm

Proof:

Parts (a) and (b) are clear.
(d) Is the case that the line through P and Q is vertical, so $P+Q=0$.

For (e), if $\mathrm{P} \neq \mathrm{Q}$ then λ is the slope of the line through P and Q and if $P=Q$ then λ is the slope of the tangent line at P.
In either case, L: $\mathrm{y}=\lambda \mathrm{x}+\mathrm{c}$ with $\mathrm{c} \equiv \mathrm{y} 1-\lambda \times 1$

Elliptic curve Addition Algorithm

Proof (contd.)

Substituting L on E
$(\lambda x+c)^{2}=x^{3}+a x+b$
$x^{3}-\lambda^{2} x^{2}+(a-2 \lambda c) x+\left(b-c^{2}\right)=0$
We know that this cubic equation has two root $x 1$ and $x 2$. If we cal thethird root as $\times 3$, then it factors as

$$
x^{3}-\lambda^{2} x^{2}+(a-2 \lambda c) x+\left(b-c^{2}\right)=(x-x 1)(x-x 2)(x-x 3)
$$

Multiply and look at the coefficient of x^{2} on each side.

Elliptic curve Addition Algorithm

Proof (contd.)
The coefficient of x^{2} on the right hand side is

$$
-x 1-x 2-x 3
$$

Which must equal to $-\lambda^{2}$, the coefficient of x^{2} on the left hand side.
This solves $x 3=\lambda^{2}-x 1-x 2$ and then y-coordinate of third intersection point of L and E

$$
\begin{aligned}
Y 3 & \equiv \lambda x 3+c \equiv \lambda x 3+c \equiv \lambda x 3+y 1-\lambda x 1 \\
& \equiv-(\lambda(x 1-x 3)-y 1)
\end{aligned}
$$

So the y-coordinate of $(P+Q)$ is $(\lambda(x 1-x 3)-y 1)$

Finite Elliptic Curves

$>$ Elliptic curve cryptography uses curves whose variables \& coefficients are finite
$>$ have two families commonly used:

- prime curves $\mathrm{E}_{\mathrm{p}}(\mathrm{a}, \mathrm{b})$ defined over Z_{p} ${ }^{\circ}$ use integers modulo a prime -best in software
- binary curves $\mathrm{E}_{2 \mathrm{~m}}(\mathrm{a}, \mathrm{b})$ defined over $\mathrm{GF}\left(\mathbf{2}^{\mathrm{n}}\right)$ ouse polynomials with binary coefficients best in hardware

Elliptic Curves over Finite Fields

$>$ Define Elliptic curve over Fp as

$$
y^{2}=x^{3}+a x+b \text { with } \mathbf{a}, \mathbf{b} \boldsymbol{\varepsilon} \mathbf{F p} \text { satisfying } 4 a^{3}+27 b^{2} \neq 0
$$

$$
E(F p)=\left\{(x, y), x, y \in F p \text { satisfy } y^{2}=x^{3}+a x+b\right\} U\{o\}, p \geq 3
$$

Example: Consider the elliptic curve

$$
E: y^{2}=x^{3}+a x+b \text { over the field F13 }
$$

Elliptic Curve on a finite field

- Consider $y^{2}=x^{3}+3 x+8(\bmod 13)$
$x=0 \Rightarrow y^{2}=8 \Rightarrow 8$ is not a square $\bmod 13$
$\mathrm{x}=1 \Rightarrow \mathrm{y}^{2}=12=1 \Rightarrow \mathrm{y}=1,5(\bmod 13)$
$\mathrm{x}=1 \Rightarrow \mathrm{y}^{2}=12=1 \Rightarrow \mathrm{y}=1,8(\bmod 13)$
$5^{2}=12 \bmod 13,8^{2}=12 \bmod 13$
$x=2 \Rightarrow y^{2}=22=9 \Rightarrow y=2,3(\bmod 13)$
$x=2 \Rightarrow y^{2}=22=9 \Rightarrow y=2,10(\bmod 13)$
$3^{2}=9 \bmod 13,10^{2}=9 \bmod 13$
- Then points on the elliptic curve are $E\left(F_{13}\right)=\{0,(1,5),(1,8),(2,3),(2,10),(9,6),(9,7),(12,2),(12,11)\}$

Elliptic curve Addition over Finite Field

Theorem:

Let E be an elliptic curve over $F p$ and let P and Q be points on $E(F p)$
(3) The elliptic cure addition algorithm applied P and Q yields a point in $\mathrm{E}(\mathrm{Fp})$. We denote this point by $\mathrm{P}+\mathrm{Q}$
(b) This addition law on $\mathrm{E}(\mathrm{Fp})$ satisfies all of the properties additions defined geometrically on elliptic curve i.e. $\mathrm{E}(\mathrm{Fp})$ forms a finite group.

Diffie-Hellman (DH) Key Exchange

User A

Elliptic Curve Cryptography

$>$ ECC addition is analog of modulo multiply
$>$ ECC repeated addition is analog of modulo exponentiation
$>$ need "hard" problem equiv to discrete log

- $\mathrm{Q}=\mathrm{kP}$, where Q, P belong to a prime curve
- is "easy" to compute Q given k, P
- but "hard" to find k given Q,P
- known as the elliptic curve logarithm problem
$>$ Certicom example: $\mathrm{E}_{23}(9,17)$

Elliptic Curve on a finite field

Example:
Consider the group E23(9, 17), E: $y^{2}=x^{3}+9 x+17(\bmod 23)$

- What is discrete logarithm k of $Q=(4,5)$ to the base $P=(16,5)$?
- Brute Force : $\mathrm{P}=(16,5) ; 2 \mathrm{P}=(20,20) ; 3 \mathrm{P}=(14,14)$;

$$
\begin{aligned}
& 4 \mathrm{P}=(19,20) ; 5 \mathrm{P}=(13,10) ; 6 \mathrm{P}=(7,3) ; 7 \mathrm{P}=(8,7) ; \\
& 8 \mathrm{P}=(12,17) ; 9 \mathrm{P}=(4,5) ;
\end{aligned}
$$

- $\mathrm{k}=9$, the discrete logarithm of $\mathrm{Q}(4,5)$ to the base $\mathrm{P}(16,5)$

ECC Diffie-Hellman

$>$ can do key exchange analogous to D-H
$>$ users select a suitable curve $\mathrm{E}_{\mathrm{q}}(\mathrm{a}, \mathrm{b})$
$>$ select base point $\mathrm{G}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

- with large order n s.t. $n G=O$
$>$ A \& B select private keys $n_{A}<n, n_{B}<n$
$>$ compute public keys: $P_{A}=n_{A} G, P_{B}=n_{B} G$
$>$ compute shared key: $K=n_{A} P_{B}, K=n_{B} P_{A}$
- same since $K=n_{A} n_{B} G$
$>$ attacker would need to find k, hard

ECC Encryption/Decryption

$>$ several alternatives, will consider simplest
$>$ must first encode any message M as a point on the elliptic curve P_{m}
$>$ select suitable curve \& point G as in D-H
$>$ each user chooses private key $n_{A}<n$
$>$ and computes public key $P_{A}=n_{A} G$
$>$ to encrypt $P_{m}: C_{m}=\left\{k G, P_{m}+k P_{b}\right\}$, k random
$>$ decrypt C_{m} compute:

$$
\mathrm{P}_{\mathrm{m}}+k \mathrm{P}_{\mathrm{b}}-\mathrm{n}_{\mathrm{B}}(k G)=\mathrm{P}_{\mathrm{m}}+k\left(\mathrm{n}_{\mathrm{B}} G\right)-\mathrm{n}_{\mathrm{B}}(k G)=\mathrm{P}_{\mathrm{m}}
$$

ECC Security

$>$ relies on elliptic curve logarithm problem
$>$ fastest method is "Pollard rho method"
$>$ compared to factoring, can use much smaller key sizes than with RSA, etc.
$>$ for equivalent key lengths computations are roughly equivalent
$>$ hence for similar security ECC offers significant computational advantages

Applications of ECC

- Many devices are small and have limited storage and computational power
- Where can we apply ECC?
- Wireless communication devices
- Smart cards
- Web servers that need to handle many encryption sessions
- Any application where security is needed but lacks the power, storage and computational power that is necessary for our current cryptosystems

Advantages of ECC

- Shorter key lengths
- Encryption, Decryption and Signature Verification speed up
- Storage and bandwidth savings

Advantage of ECC

- "Hard problem" analogous to discrete log
- $\mathbf{Q}=\mathrm{kP}$, where Q, P belong to a prime curve given $\mathrm{k}, \mathrm{P} \rightarrow$ "easy" to compute Q given $\mathrm{Q}, \mathrm{P} \rightarrow$ "hard" to find k
- known as the elliptic curve logarithm problem
- k must be large enough
- ECC security relies on elliptic curve logarithm problem
- compared to factoring, can use much smaller key sizes than with RSA etc
- for similar security ECC offers significant computational advantages

Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of \boldsymbol{n} in bits)	RSA/DSA (modulus size in bits)
56	112	
80	160	512
112	224	1024
128	256	2048
192	384	3072
256	512	7680

