Discrete Logarithms and Diffie Hellman Key Exchange

Powers of an Integer, Modulo n

- Euler's Theorem

> For every a and n that are relatively prime, $\mathrm{a}^{\Phi(\mathrm{n})} \equiv 1 \mathrm{mod} \mathrm{n}, \Phi(\mathrm{n})$ is Euler's Totient function.

- Consider more general expression:

$$
\mathrm{a}^{\mathrm{m}} \equiv 1 \bmod \mathrm{n} \text {, where a and } \mathrm{n} \text { are relatively prime }
$$

The least positive exponent m for which equation holds is referred as

- the order of a (mod n)
- the exponent to which a belongs (mod n)
- the length of the period generated by a

Period

Example: Consider the powers of 7 modulo 19

- $7^{1}=$ $7 \bmod 19$
- $7^{2}=49=2 \times 19+11=\quad 11 \bmod 19$
- $7^{3}=343=18 \times 19+1=\quad 1 \bmod 19$
- $7^{4}=2401=126 \times 19+7=7 \bmod 19$
- $7^{5}=16807=884 \times 19+11=11 \bmod 19$

The sequence is periodic and the length of the period is the smallest positive exponent m such that $7^{\mathrm{m}} \equiv 1 \mathrm{mod} 19$ Here, $7^{3} \equiv 1 \bmod 19$, So the period is 3

Powers of Integers, Modulo 19

| a | a^{2} | a^{3} | a^{4} | a^{5} | a^{6} | a^{7} | a^{8} | a^{9} | a^{10} | a^{11} | a^{12} | a^{13} | a^{14} | a^{15} | a^{16} | a^{17} | a^{18} |
| :--- |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2 | 4 | 8 | 16 | 13 | 7 | 14 | 9 | 18 | 17 | 15 | 11 | 3 | 6 | 12 | 5 | 10 | 1 |
| 3 | 9 | 8 | 5 | 15 | 7 | 2 | 6 | 18 | 16 | 10 | 11 | 14 | 4 | 12 | 17 | 13 | 1 |
| 4 | 16 | 7 | 9 | 17 | 11 | 6 | 5 | 1 | 4 | 16 | 7 | 9 | 17 | 11 | 6 | 5 | 1 |
| 5 | 6 | 11 | 17 | 9 | 7 | 16 | 4 | 1 | 5 | 6 | 11 | 17 | 9 | 7 | 16 | 4 | 1 |
| 6 | 17 | 7 | 4 | 5 | 11 | 9 | 16 | 1 | 6 | 17 | 7 | 4 | 5 | 11 | 9 | 16 | 1 |
| 7 | 11 | 1 | 7 | 11 | 1 | 7 | 11 | 1 | 7 | 11 | 1 | 7 | 11 | 1 | 7 | 11 | 1 |
| 8 | 7 | 18 | 11 | 12 | 1 | 8 | 7 | 18 | 11 | 12 | 1 | 8 | 7 | 18 | 11 | 12 | 1 |

Powers of Integers, Modulo 19

$a \quad a^{2} a^{3} a^{4} a^{5} a^{6} a^{7} a^{8} a^{9} a^{10} a^{11} a^{12} a^{13} \quad a^{14} a^{15} a^{16} a^{17} a^{18}$
$\begin{array}{llllllllllllllllll}9 & 5 & 7 & 6 & 16 & 11 & 4 & 17 & 1 & 9 & 5 & 7 & 6 & 16 & 11 & 4 & 17 & 1\end{array}$ $\begin{array}{llllllllllllllllll}10 & 5 & 12 & 6 & 3 & 11 & 15 & 17 & 18 & 9 & 14 & 7 & 13 & 16 & 8 & 4 & 2 & 1\end{array}$ $\begin{array}{llllllllllllllllll}11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1 & 11 & 7 & 1\end{array}$ $\begin{array}{llllllllllllllllll}12 & 11 & 18 & 7 & 8 & 1 & 12 & 11 & 18 & 7 & 8 & 1 & 12 & 11 & 18 & 7 & 8 & 1\end{array}$ $\begin{array}{llllllllllllllllll}13 & 17 & 12 & 4 & 14 & 11 & 10 & 16 & 18 & 6 & 2 & 7 & 15 & 5 & 8 & 9 & 3 & 1\end{array}$ $\begin{array}{llllllllllllllllll}14 & 6 & 8 & 17 & 10 & 7 & 3 & 4 & 18 & 5 & 13 & 11 & 2 & 9 & 12 & 16 & 15 & 1\end{array}$ $\begin{array}{llllllllllllllllll}15 & 16 & 12 & 9 & 2 & 11 & 13 & 5 & 18 & 4 & 3 & 7 & 10 & 17 & 8 & 6 & 14 & 1\end{array}$ $\begin{array}{llllllllllllllllll}16 & 9 & 11 & 5 & 4 & 7 & 17 & 6 & 1 & 16 & 9 & 11 & 5 & 4 & 7 & 17 & 6 & 1\end{array}$ $\begin{array}{llllllllllllllllll}17 & 4 & 11 & 16 & 6 & 7 & 5 & 9 & 1 & 17 & 4 & 11 & 16 & 6 & 7 & 5 & 9 & 1\end{array}$ $\begin{array}{llllllllllllllllll}18 & 1 & 18 & 1 & 18 & 1 & 18 & 1 & 18 & 1 & 18 & 1 & 18 & 1 & 18 & 1 & 18 & 1\end{array}$

Primitive Root

- The length of the sequence:
- All sequences end in 1
- The length of a sequence divides $\Phi(19)=18$
- Some of the sequences are of length 18 . Base integer a generates the set of nonzero integers modulo 19.

Definition: The highest possible exponent to which a number can belong $(\bmod n)$ is $\Phi(\mathrm{n})$. If a number is of order $\Phi(\mathrm{n})$, it is referred to as a primitive root of n . For the prime number 19, primitive roots are

$$
2,3,10,13,14,15
$$

- Not all integers have primitive root. Integers with primitive roots are of the form $\mathbf{2}, \mathbf{4}, \mathbf{p}^{\alpha}$ and $2 \mathbf{p}^{\alpha}$, where p is odd prime ans α is a positive integer.

Indices

- With ordinary positive real number, the logarithm function is the inverse of exponentiation.
For base x and a value y,

$$
y=x^{\log _{x}(y)}
$$

$$
\begin{aligned}
& \log _{x}(1)=0 \\
& \log _{x}(x)=1 \\
& \log _{x}(y z)=\log _{x}(y)+\log _{x}(z) \\
& \log _{x}\left(y^{r}\right)=r x \log _{x}(y)
\end{aligned}
$$

Indices for Modular Arithmetic

- For a primitive root a with some prime number p, the powers of a from 1 through ($\mathrm{p}-1$) produce each integer from 1 through ($\mathrm{p}-1$) [true for non-prime also]
- Any integer b can be expressed as

$$
\mathrm{b} \equiv \mathrm{r} ; \bmod \mathrm{p} \text {, where } \mathrm{o} \leq \mathrm{r} \leq(\mathrm{p}-1)
$$

So, $\quad b \equiv a^{1} \bmod p$, where $o \leq i \leq(p-1)$
Here, i is referred to as the index of the number b for the base a $(\bmod p)$

$$
\mathbf{i}=\operatorname{ind}_{\mathrm{a}, \mathrm{p}}(\mathrm{~b})
$$

$$
\operatorname{ind}_{a, p}(1)=0, \text { because } a^{0} \bmod p=1 \bmod p=1
$$

$$
\operatorname{ind}_{a, p}(a)=1, \text { because } a^{1} \bmod p=a
$$

Indices for Modular Arithmetic

Example: Consider, non-prime modulus $\mathrm{n}=9$
Here, $\Phi(9)=6$ and $\mathrm{a}=2$ is a primitive root

- $2^{0}=1$
- $2^{1}=2$
- $2^{2}=4$
- $2^{3}=8$
- $2^{4}=7$
- $2^{5}=\quad 5(\bmod 9)$
- $2^{6}=1$

Numbers with given indices $(\bmod 9)$ for the root $a=2$

Index	0	1	2	3	4	5
Number	1	2	4	8	7	5

Indices for Modular Arithmetic

Example: Consider, non-prime modulus $\mathrm{n}=9$
Here, $\Phi(9)=6$ and $\mathrm{a}=2$ is a primitive root
Rearrange the table to make the remainders relatively prime to 9

Number	1	2	4	5	7	8
Index	0	1	2	5	4	3

Rules of Indices for Modular Arithmetic

- Rules of modular multiplication $x y \bmod p=(x \bmod p)(y \bmod p)$
$\mathrm{a}^{\text {ind } \mathrm{a}, \mathrm{p}(\mathrm{xy}) \bmod \mathrm{p}}=\left(\mathrm{a}^{\text {ind } \mathrm{a}, \mathrm{p}(\mathrm{x}) \bmod \mathrm{p}}\right)\left(\mathrm{a}^{\text {ind } \mathrm{a}, \mathrm{p}(\mathrm{y}) \bmod \mathrm{p}}\right)$

$$
=\left(\mathrm{a}^{\text {ind } \mathrm{a}, \mathrm{p}(\mathrm{x})+\text { ind } \mathrm{a}, \mathrm{p}(\mathrm{y})}\right) \bmod \mathrm{p}
$$

Rules of Indices for Modular Arithmetic

- Euler's Theorem: $\mathrm{a}^{\Phi(\mathrm{n})} \equiv 1 \bmod \mathrm{n}$

Any positive integer z can be expressed in the form

$$
\mathrm{z}=\mathrm{q}+\mathrm{k} \Phi(\mathrm{n})
$$

$$
\mathrm{a}^{\mathrm{z}} \equiv \mathrm{a}^{\mathrm{q}} \bmod \mathrm{n}, \text { if } \mathrm{z}=\mathrm{q} \bmod \Phi(\mathrm{n})
$$

Applying this equality to modular indices,
ind $_{\mathrm{a}, \mathrm{p}}(\mathrm{xy})=\left(\operatorname{ind}_{\mathrm{a}, \mathrm{p}}(\mathrm{x})+\operatorname{ind}_{\mathrm{a}, \mathrm{p}}(\mathrm{y})\right) \bmod \Phi(\mathrm{p})$
Generalizing,
$\operatorname{ind}_{\mathrm{a}, \mathrm{p}}\left(\mathrm{y}^{\mathrm{r}}\right)=\left(\mathrm{r} \mathrm{x}\right.$ ind $\left.\mathrm{a}_{\mathrm{a}, \mathrm{p}}(\mathrm{y})\right) \bmod \Phi(\mathrm{p})$

Discrete Logarithm Problem

- Consider the equation

$$
y=g^{x} \bmod p
$$

- Given g, x, and p , it is a straightforward matter to calculate y
- However, given y, g, and p it is in general very difficult to calculate x take the discrete logarithm)
- The difficulty seems to be on the same order of magnitude as that of factoring primes required for RSA.

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie \& Hellman in 1976 along with the exposition of public key concepts
- note: now know that Williamson (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

> a public-key distribution scheme

- cannot be used to exchange an arbitrary message
- rather it can establish a common key
- known only to the two participants
$>$ value of key depends on the participants (and their private and public key information)
$>$ based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
> security relies on the difficulty of computing discrete logarithms (similar to factoring) - hard

Diffie-Hellman Setup

- all users agree on global parameters:
- large prime integer or polynomial q
- a being a primitive root $\bmod q$
- each user (eg. A) generates their key
- chooses a secret key (number): $\mathrm{x}_{\mathrm{A}}<\mathrm{q}$
- compute their public key: $\mathrm{y}_{\mathrm{A}}=\mathrm{a}^{\mathrm{x}_{\mathrm{A}}} \bmod \mathrm{q}$
- each user makes public that key y_{A}

Diffie-Hellman Key Exchange

- shared session key for users $A \& B$ is $K_{A B}$:

$$
\begin{aligned}
& K_{A B}=a^{x_{A} \cdot x_{B}} \bmod q \\
& =y_{A}{ }^{x_{B}} \bmod q \text { (which } B \text { can compute) } \\
& =y_{B}{ }^{x_{A}} \bmod q \text { (which } A \text { can compute) }
\end{aligned}
$$

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice \& Bob who wish to swap keys:
- agree on prime $q=353$ and $a=3$
- select random secret keys:
- A chooses $x_{A}=97, B$ chooses $x_{B}=233$
- compute respective public keys:
- $\mathrm{y}_{\mathrm{A}}=3^{97} \bmod 353=40$
(Alice)
- $\mathrm{y}_{\mathrm{B}}=3^{233} \bmod 353=248 \quad$ (Bob)
- compute shared session key as:
- $\mathrm{K}_{\mathrm{AB}}=\mathrm{y}_{\mathrm{B}}{ }^{\mathrm{X}_{\mathrm{A}}} \bmod 353=248^{97}=160 \quad$ (Alice)
- $\mathrm{K}_{\mathrm{AB}}={ }^{\mathrm{Y}_{\mathrm{A}}}{ }^{\mathrm{X}_{\mathrm{B}}} \bmod 353=40^{233}=160 \quad$ (Bob)

Key Exchange Protocols

- users could create random private/public D-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to a meet-in-the-Middle Attack
- authentication of the keys is needed

