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Powers of an Integer, Modulo n

 Euler’s Theorem

For every a and n that are relatively prime, 

aΦ(n) = 1 mod n, Φ(n) is Euler’s Totient function.

 Consider more general expression:

am = 1 mod n, where a and n are relatively prime

The least positive exponent m for which equation holds 
is referred as

 the order of a (mod n)

 the exponent to which a belongs (mod n)

 the length of the period generated by a 



Period 
Example: Consider the powers of 7 modulo 19

 71 = 7 mod 19

 72 = 49 = 2 x 19 + 11  = 11 mod 19

 73 = 343 = 18 x 19 + 1  = 1 mod 19

 74 = 2401 = 126 x 19 + 7  = 7 mod 19

 75 = 16807 = 884 x 19 + 11  = 11 mod 19

The sequence is periodic and the length of the period is 
the smallest positive exponent m such that 7m = 1 mod 19 

Here, 73 = 1 mod 19,  So the period is 3



Powers of Integers, Modulo 19

a    a2    a3    a4    a5    a6   a7   a8    a9    a10    a11    a12   a13      a14   a15   a16    a17    a18

1     1    1     1     1     1     1    1     1    1      1      1     1       1     1     1     1      1

2    4    8   16   13    7   14   9   18  17    15    11     3      6    12   5    10     1

3     9    8    5   15    7   2    6   18   16   10   11     14     4    12   17   13     1

4    16   7    9  17    11    6   5    1    4    16    7     9     17    11    6    5      1

5     6   11   17   9    7   16   4    1    5    6     11    17     9     7    16    4     1  

6    17   7   4    5    11    9   16   1    6    17    7    4      5     11    9    16     1  

7    11    1    7    11    1 7    11    1 7    11     1 7      11     1     7    11      1

8    7    18  11    12   1    8    7    18  11    12   1 8      7    18    11   12      1



Powers of Integers, Modulo 19
a    a2    a3    a4    a5    a6   a7   a8    a9    a10    a11    a12   a13      a14   a15   a16    a17    a18

9    5    7    6     16     11    4    17     1     9    5    7    6    16   11   4    17  1

10    5  12   6     3      11    15   17    18    9   14    7     13  16    8   4   2   1

11 7    1    11    7      1      11    7    1      11    7    1      11    7    1   11    7   1

12   11  18     7    8      1     12   11  18     7    8      1     12   11  18     7    8  1  

13   17   12    4   14     11    10  16   18   6   2       7    15     5    8     9   3  1   

14   6    8    17   10     7     3    4     18   5   13     11    2     9   12    16   15  1 

15  16   12    9     2     11    13    5     18   4   3      7    10   17 8 6 14 1

16 9   11   5    4    7   17    6    1   16   9    11    5      4      7    17     6   1      
17 4   11   16   6   7    5    9    1    17   4    11   16     6      7    5      9     1   
18 1  18   1    18   1    18   1    18    1    18   1    18    1    18      1     18     1



Primitive Root
 The length of the sequence:

 All sequences end in 1
 The length of a sequence divides Φ(19) = 18
 Some of the sequences are of length 18. Base integer a 

generates the set of nonzero integers modulo 19. 

Definition: The highest possible exponent to which a 
number can belong (mod n) is Φ(n). If a number is of 
order Φ(n), it is referred to as a primitive root of n.
For the prime number 19, primitive roots are

2, 3, 10, 13, 14, 15
 Not all integers have primitive root. Integers with 

primitive roots are of the form 2, 4, pαand 2pα , where p 
is odd prime ans α is a positive integer.



Indices

 With ordinary positive real number, the logarithm 
function is the inverse of exponentiation. 

For base x and a value y,

y = x log x(y)

log x(1)  = 0

log x(x)  = 1

log x(yz)  = log x(y) + log x(z) 

log x(y
r)  = r x log x(y) 



Indices for Modular Arithmetic

 For a primitive root a with some prime number p, the powers 
of a from 1 through (p-1) produce each integer from 1 through 
(p-1) [true for non-prime also]

 Any integer b can be expressed as
b = r mod p, where 0 ≤ r ≤ (p-1)

So,      b = ai mod p, where 0 ≤ i ≤ (p-1)

Here, i is referred to as the index of the number b for the base a 
(mod p) 

i = ind a,p(b)  

 ind a,p(1) = 0, because a
0 

mod p = 1 mod p = 1

 ind a,p(a) = 1, because a
1 

mod p = a



Indices for Modular Arithmetic 

Example: Consider, non-prime modulus n = 9

Here, Φ(9) = 6 and a = 2 is a primitive root
 20 = 1   

 21 = 2

 22 = 4

 23 = 8

 24 = 7

 25 = 5 (mod 9)

 26 = 1

Numbers with given indices (mod 9) for the root a = 2

Index 0 1 2 3 4 5

Number 1 2 4 8 7 5



Indices for Modular Arithmetic 

Example: Consider, non-prime modulus n = 9

Here, Φ(9) = 6 and a = 2 is a primitive root

Rearrange the table to make the remainders relatively prime 
to 9

Number 1 2 4 5 7 8

Index 0 1 2 5 4 3



Rules of Indices for Modular Arithmetic

 Rules of modular multiplication

xy mod p = (x mod p)(y mod p)

a ind a,p(xy)  mod p  = (a ind a,p(x)  mod p )(a ind a,p(y)  mod p )

= (a ind a,p(x) + ind a,p(y)) mod p



Rules of Indices for Modular Arithmetic

 Euler’s Theorem: aΦ(n) = 1 mod n

Any positive integer z can be expressed in the form 

z = q + kΦ(n) 

az = aq mod n, if z = q mod Φ(n) 

Applying this equality to modular indices,

ind a,p(xy)   = (ind a,p(x) + ind a,p(y) ) mod Φ(p)

Generalizing,

ind a,p(y r)   = (r x ind a,p(y) ) mod Φ(p)



Discrete Logarithm Problem

 Consider the equation

y = g x   mod p

 Given g, x, and p, it is a straightforward matter to calculate 
y

 However, given y, g, and p it is in general very difficult to 
calculate x take the discrete logarithm)

 The difficulty seems to be on the same order of magnitude 
as that of factoring primes required for RSA.



Diffie-Hellman Key Exchange
 first public-key type scheme proposed 

 by Diffie & Hellman in 1976 along with the exposition 
of public key concepts

 note: now know that Williamson (UK CESG) secretly 
proposed the concept in 1970 

 is a practical method for public exchange of a secret 
key

 used in a number of commercial products



Diffie-Hellman Key Exchange

➢ a public-key distribution scheme 

⚫ cannot be used to exchange an arbitrary message 

⚫ rather it can establish a common key 

⚫ known only to the two participants 

➢ value of key depends on the participants (and their private 
and public key information) 

➢ based on exponentiation in a finite (Galois) field (modulo 
a prime or a polynomial) - easy

➢ security relies on the difficulty of computing discrete 
logarithms (similar to factoring) – hard



Diffie-Hellman Setup
 all users agree on global parameters:

 large prime integer or polynomial q

 a being a primitive root mod q

 each user (eg. A) generates their key

 chooses a secret key (number): xA < q 

 compute their public key: yA = a
xA mod q

 each user makes public that key yA



Diffie-Hellman Key Exchange
 shared session key for users A & B is KAB: 

KAB = a
xA.xB mod q

= yA
xB mod q  (which B can compute) 

= yB
xA mod q  (which A can compute) 

 KAB is used as session key in private-key encryption 
scheme between Alice and Bob

 if Alice and Bob subsequently communicate, they 
will have the same key as before, unless they 
choose new public-keys 

 attacker needs an x, must solve discrete log



Diffie-Hellman Example 

 users Alice & Bob who wish to swap keys:

 agree on prime q=353 and a=3

 select random secret keys:
 A chooses xA=97, B chooses xB=233

 compute respective public keys:
 yA=3

97 
mod 353 = 40 (Alice)

 yB=3
233

mod 353 = 248 (Bob)

 compute shared session key as:
 KAB= yB

xA mod 353 = 248
97

= 160 (Alice)

 KAB= yA
xB mod 353 = 40

233
= 160 (Bob)



Key Exchange Protocols

 users could create random private/public D-H keys 
each time they communicate

 users could create a known private/public D-H key 
and publish in a directory, then consulted and used 
to securely communicate with them

 both of these are vulnerable to a meet-in-the-Middle 
Attack

 authentication of the keys is needed


