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1. Introduction

Geometry is an essential branch of Mathematics. It deals with the proper-
ties of figures in a plane or in space [7]. Perhaps, the most influencial book of
all time, is ‘Euclids Elements’, written in around 3000 BC [14]. Since Euclid,
geometry usually meant the geometry of Euclidean space of two-dimensions
(2-D, Plane geometry) and three-dimensions (3-D, Solid geometry). A close
scrutiny of the basis for the traditional Euclidean geometry, had revealed the
independence of the parallel axiom from the others and consequently, non-
Euclidean geometry was born and in projective geometry, new “points” (i.e.,
points at infinity and points with complex number coordinates) were intro-
duced [1, 3, 9, 26]. In the eighteenth century, under the influence of Steiner,
Von Staudt, Chasles and others, projective geometry became one of the chief
subjects of mathematical research [7]. Its popularity was partly due to its great
aesthetic charm and partly due to its intimate connection with non-Euclidean
geometry and algebra [7].

Also, conic sections are the curves obtained by intersecting a circular cone by
a plane: ellipse (including circles), parabolas and hyperbolas [26]. Beginning
from the early age of mathematics as a science, we repeatedly face the division
of different mathematical objects into three main classes. In very different
areas, these classes preserve the names obtained by the very first example- the
classification of conic sections: elliptic, parabolic and hyperbolic which will
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be abbreviated as EPH- classification. Many authors have put forward their
ideas, in this regard from different considerations [4, 8, 10, 12, 16, 18, 19].
In our work, we describe geometry of two-dimensional spaces in the spirit of
the Erlangen Program of Felix Klein, influenced by the works of M. Sophus
Lie. A point transformation of the plane onto itself that carries “circle” into
“circle”, is called a circular or a Möbius transformation [9]. In our case,
we study objects in a plane and their properties which are invariant under
Möbius transformations of the group SL2(R). We also introduce the projective
coordinates and compactification for the three EPH cases.

2. SL2(R) group and Clifford Algebras in EPH cases

The group SL2(R) is considered as the simplest of the noncompact semisim-
ple Lie groups. We use representations of the group SL2(R) in Clifford algebras
with two generators. In forming the foundations for elliptic, parabolic and hy-
perbolic cases, we consider Clifford algebras to be a very suitable candidate.
There will be three different Clifford algebras Cℓ(e), Cℓ(p) and Cℓ(h) corre-
sponding to elliptic, parabolic, and hyperbolic cases respectively. The notation
Cℓ(a) refers to any of these three algebras.

A Clifford algebra Cℓ(a) as a 4-dimensional linear space is spanned by 1,
e1, e2, e1e2 with non-commutative multiplication defined by the identities, in
Lounesto [21]:

e2
1 = −1, e2

2 =





−1, for Cℓ(e)—elliptic case
0, for Cℓ(p)—parabolic case
1, for Cℓ(h)—hyperbolic case

, e1e2 = −e2e1.

(2.1)
It contains both the plane E and the vector plane R

a so that

R
a is spanned by e1 and e2, E is spanned by 1 and e1e2(= e12).

The only common point of the two planes is the zero 0. The two planes are
both parts of the same algebra Cℓ(a). The vector plane R

a and the plane
E are incorporated as separate substructures in the Clifford algebra Cℓ(a) =
Cℓ(a)+ ⊕ Cℓ(a)− so that the plane E is the even part Cℓ(a)+ and the vector
plane R

a is the odd part Cℓ(a)−. The names even and odd mean that the
elements are products of an even or odd numbers of vectors. We then have
the following inclusions

Cℓ(a)+ Cℓ(a)+ ⊂ Cℓ(a)+,

Cℓ(a)− Cℓ(a)+ ⊂ Cℓ(a)−,

Cℓ(a)+ Cℓ(a)− ⊂ Cℓ(a)−,

Cℓ(a)− Cℓ(a)− ⊂ Cℓ(a)+.
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These observations are expressed by saying that the Clifford algebra Cℓ(a) has
an even-odd grading. We take u, v as coordinates on our axes, see Figure 1.
Next we define projection on axes as E1(ue1 +ve2) = u and E2(ue1 +ve2) = v.

U, e1

V , e2

u

v

Figure 1. Correspondence between notations on R
a.

The group SL2(R) (Lang [20]) consists of 2 × 2 matrices
(

a b
c d

)
, with a, b, c, d ∈ R and the determinant ad − bc = 1.

The transformation T defined by w = T (z) = az+b
cz+d

, where a, b, c, d are com-
plex constants, ad − bc 6= 0 and w, z are complex variables is called a bilinear
transformation or a Möbius transformation or a linear fractional transforma-
tion. The constant ad − bc is called the determinant of the transformation.
This transformation is said to be normalized if ad − bc = 1. The Möbius
transformation above, is undefined when the denominator is a divisor of zero.

The two-dimensional subalgebra of Cℓ(e) spanned by 1 and i = e2e1 = −e1e2

is isomorphic to (and can replace in all calculations!) the field of complex
numbers C. For any Cℓ(a), we identify R

2 with the set of vectors w = ue1+ve2,
where (u, v) ∈ R

2.

(e) In the elliptic case of Cℓ(e), this maps

(u, v) 7−→ e1(u + iv) = e1z, with z = u + iv a standard complex number.
(2.2)

Similarly, as seen in Yaglom [28] and in Kisil [19],
(p) in the parabolic case ǫ = e2e1 (such that ǫ2 = 0) is known as dual unit

and all expressions u + ǫv, where u, v ∈ R form dual numbers, and
(h) in the hyperbolic case e = e2e1 (such that e2 = 1) is known as dou-

ble unit and all expressions u + ev, where u, v ∈ R constitute double
numbers.

We denote R
2 by R

e, R
p or R

h to highlight which of the Clifford algebras
is used in the present context. The notation R

a assumes Cℓ(a).
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An isomorphic realisation of SL2(R) [15, 20, 27] with the same multiplica-

tion is obtained if we replace a matrix

(
a b
c d

)
by

(
a −be1

ce1 d

)
within any

Cℓ(a). The advantage of the latter form is that we can define the Möbius trans-
formation of R

a → R
a for all three algebras Cℓ(a) by the same expression:

(
a −be1

ce1 d

)
: ue1 + ve2 7−→ a(ue1 + ve2) − be1

ce1(ue1 + ve2) + d
, (2.3)

where the expression a
b

in a non-commutative algebra is always understood as

ab−1, (Cnops [5, 6]). Therefore ac
bc

= a
b

but ca
cb

6= a
b

in general.
Again in the elliptic case the transformation (2.3) is equivalent to

(
a −be1

ce1 d

)
: e1z 7−→ e1(a(u + e2e1v) − b)

−c(u + e2e1v) + d
= e1

az − b

−cz + d
, where z = u+iv,

which is the standard form of a Möbius transformation. One can straight-
forwardly verify that the map (2.3) is a left action of SL2(R) on R

a, i.e.
g1(g2w) = (g1g2)w.

To study the finer structure of Möbius transformations, it is useful to de-
compose an element g of SL2(R) into the product g = gagngk:(

a −be1

ce1 d

)
=

(
α−1 0
0 α

)(
1 χe1

0 1

)(
cos φ e1 sinφ

e1 sin φ cos φ

)
, (2.4)

where the values of parameters are as follows:

α =
√

c2 + d2, χ =
d − a(c2 + d2)

c
=

−b(c2 + d2) − c

d
, φ = tan−1 c

d
.

(2.5)
Consequently cos φ = d√

c2+d2
and sin φ = c√

c2+d2
. The product (2.4) gives a

realisation of the Iwasawa decomposition for semisimple Lie group SL2(R) =
ANK, where A is diagonal, N is nilpotent and K is maximal compact and A
normalizes N (Lang [20, § III.1]).

In all three EPH cases, the subgroups A and N act through Möbius trans-
formations uniformly: For any type of the Clifford algebra Cℓ(a), the subgroup
N defines shifts ue1 + ve2 7→ (u + χ)e1 + ve2 along the “real” axis U by χ.
The subgroup A defines dilations ue1 + ve2 7→ α−2(ue1 + ve2) by the factor
α−2 which fixes origin (0, 0). By contrast the actions of the subgroup K is
significantly different between the EPH cases and correlates with the names
chosen for Cℓ(e), Cℓ(p), Cℓ(h).

3. (Non)-Invariance of the upper half plane

The important difference between the hyperbolic case and the two others
(elliptic and parabolic), is that
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Theorem 3.1. In the elliptic and parabolic cases, the upper half plane in R
a is

preserved by Möbius transformations from SL2(R). However in the hyperbolic
case, any point (u, v) with v > 0 can be mapped to an arbitrary point (u′, v′)
with v′ 6= 0.

Proof. We know by equation (2.3) that the Möbius mapping is given by
(

a −be1

ce1 d

)
: ue1 + ve2 −→ a(ue1 + ve2) − be1

ce1(ue1 + ve2) + d
,

(
a b
c d

)
∈ SL2(R). (3.1)

As defined in earlier e2
1 = −1 in all the three EPH cases but e2

2 may be
−1, 0 or 1 respectively.
Now the inverse of the denominator of the Möbius transformation exists when
the denominator is not a divisor of zero i.e.

(
ce1(ue1 + ve2) + d

)
is not a

divisor of zero.

Therefore
(
(d− cu)+ cve12

)−1

=
(
(d− cu)− cve12

)(
(d− cu)2 − c2v2e2

2

)−1

.

This is equivalent to v 6= 0 and u 6= d/c in the elliptic case.
We now show that the upper half plane is preserved in the elliptic and

parabolic cases but not in the hyperbolic case. To this end we decompose the
Möbius transformation into coordinates:

aue1 + ave2 − be1

d − cu + cve12

= u′e1 + v′e2, (3.2)

where u′ =
(au − b)(d − cu) + acv2e2

2

(d − cu)2 − c2v2e2
2

and v′ =
v

(d − cu)2 − c2v2e2
2

.

So, we now know the coordinate-wise form of the Möbius transformation in
R

a.

Now we want to know whether v > 0 implies E2

(
aw−be1

ce1w+d

)
= v′ > 0, where

E2 as is defined in the notation (see Section 2) and w = ue1 + ve2. There are
three cases:

(1) Elliptic Case: Here e2
2 = −1, this gives from equation (3.2),

u′ =
(au − b)(d − cu) − acv2

(d − cu)2 + c2v2
and v′ =

v

(d − cu)2 + c2v2
. (3.3)

If v > 0 then v′ > 0 as cu 6= d. Therefore the upper half plane is
preserved.

(2) Parabolic Case: Here we have e2
2 = 0, this gives from equation (3.2),

u′ =
(au − b)

(d − cu)
and v′ =

v

(d − cu)2
. (3.4)

If v > 0 then v′ > 0 as cu 6= d. Therefore the upper half plane is
preserved.



6 Debapriya Biswas

(3) Hyperbolic Case: Here e2
2 = 1, this gives from equation (3.2),

u′ =
(au − b)(d − cu) + acv2

(d − cu)2 − c2v2
and v′ =

v

(d − cu)2 − c2v2
. (3.5)

If v > 0 then v′ may have an arbitrary sign. Therefore the upper half
plane is not preserved.

Hence it can also be shown that in the hyperbolic case any point (u, v) with
v > 0 can be mapped to an arbitrary point (u′, v′) with v′ 6= 0. For example,
the point (0, 1) can be mapped to the point (0,−1) by the Möbius transforma-

tion

(
−2

√
5e1√

5e1 2

)
∈ SL2(R). In other words

(
−2

√
5e1√

5e1 2

)
: e2 −→ −e2.

Special Case: If v = 0, then the Möbius mapping (3.1) becomes

(
a −be1

ce1 d

)
: ue1 −→ au − b

d − cu
e1,

regardless of the value of e2
2. This means that on the boundary the value of

e2
2 becomes irrelevant. �

Remark 3.2. In the elliptic case we observe that divisors of zero exist if v 6= 0
and d − cu 6= 0. This reduces to v 6= 0 and u 6= d/c, under the assumption
that c 6= 0. If c = 0, then d − cu is non-zero, since d is non-zero. Hence it is
irrelevant to our question of finding a non-zero denominator.

4. Compactification of R
a

4.1. Divisors of Zero: We know that division is not possible when denom-
inator is a divisor of zero ie., it is not invertible. For the elliptic case where
e2
2 = −1, the denominator of equation (3.3) vanishes when

(d − cu)2 + c2v2 = 0

⇒ d − cu = 0 and v = 0

⇒ u = d/c and v = 0, (4.1)

which is a single point. For the parabolic case where we have e2
2 = 0, the

denominator of equation (3.4) vanishes when

(d − cu)2 = 0

⇒ d − cu = 0

⇒ u = d/c, (4.2)
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which is the equation of a line parallel to the V -axis. For the hyperbolic case
where e2

2 = 1, the denominator of equation (3.5) vanishes when

(d − cu)2 − c2v2 = 0

⇒ d − cu = ±cv

⇒ u = d/c ± v, (4.3)

which is the equation of a light cone not, passing through the origin. Therefore
the Möbius transformation (3.1) becomes infinite for these divisors of zero. As
a result, we need to compactify our three EPH spaces with points at infinity
which in turn can be parametrised with these divisors of zero.

4.2. Projective Coordinates: The standard way of nice representations of
points at infinity, is done by using projective coordinates. It is a well-known
fact that Möbius transformation can be linearised by transition into suit-
able projective space [23, Cha. 1]. Following [24, §4.2] we consider the one-
dimensional projective space P1(Ra, E) and the point element of P1(R

a, E)
represents the line {[tw1, tz1] | t ∈ E}, where the planes R

a and E as is ex-
plained in Section 2. The symbol [w1, z1], where w1 = u1e1 + v1e2 ∈ R

a and
z1 = x1 + y1e12 ∈ E, with w1, z1 6= (0, 0), together with the equivalence rela-
tion [w1, z1] ∼ [tw1, tz1], where t ∈ the even Clifford algebra E, which is not
a zero-divisor, are called projective coordinates or homogeneous coordinates of
the point p = [w1, z1].

Coordinates in the usual sense may be defined as follows. As long as z1 is
not a divisor of zero, the point p = [w1, z1] may be uniquely written in the
form p = [w, 1], where w = w1/z1 ∈ R

a. This is because w is a vector as
the numerator w1 belongs to the odd part Cℓ(a)− of Cℓ(a), see Section 2 and
the denominator z1 belongs to the even part Cℓ(a)+ of Cℓ(a). Hence the whole
fraction belongs to the odd part. Therefore we can write w = ue1 + ve2 ∈ R

a.
The points at infinity are represented by [w1, z1], where z1 is a divisor of zero.

4.3. Compactification: The natural action of SL2(R) on (Ra, E) induces an
action on P1(R

a, E), which is transitive. In terms of projective or homogeneous
coordinates [w1, z1], the action is simply matrix multiplication as, just like a
linear transformation of R

2 is represented by a real 2 × 2 matrix, so a linear
transformation of the space (Ra, E) is represented by a 2 × 2 matrix:

(
w1

z1

)
7→

(
w′

1

z′1

)
=

(
a −be1

ce1 d

)(
w1

z1

)
=

(
aw1 − be1z1

ce1w1 + dz1

)
.

But if [w1, z1] and [w′
1, z

′
1] are considered as the homogeneous coordinates

in the space (Ra, E) of the point p = (w1/z1) in R
a and its image point

p′ = (w′
1/z

′
1), then the above linear transformation of (Ra, E) induces the

following (non-linear) Möbius transformation of R
a given by:
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p =
w1

z1

7→ p′ =
w′

1

z′
1

=
aw1 − be1z1

ce1w1 + dz1

=
ap − be1

ce1p + d
=

a(ue1 + ve2) − be1

ce1(ue1 + ve2) + d
, (4.4)

where p = w1/z1 = ue1+ve2 ∈ R
a provided z1 is not a divisor of zero. Thus we

see that the action on the projective space is the same as the action given by
equation (3.1). Also the mapping given by equation (4.4) is defined when the
denominator (ce1(ue1 + ve2) + d) is not a divisor of zero. Otherwise (4.4) is
interpreted as ∞ and the divisors of zero are given by equations (4.1) — (4.3).
In the elliptic case, we can explicitly assign the point [1 : 0] to ∞.

Indeed the initial space R
a is not a closed set under Möbius transforma-

tions. It is well-known that in the elliptic case the problem is solved by the
compactification of R

e with a point ∞ at infinity. Thus in each EPH case the
correct compactification is done by

R
a ∪ {points at infinity parametrised by divisors of zero in each case} ,

see [12] and [13] for more details. It is common to identify the compactification

Ṙ
e of the space R

e with a Riemann sphere. This model can be visualised by
the stereographic projection [2, § 18.1.4]. A similar model can be provided
for the parabolic and hyperbolic spaces as well [13]. Indeed the space R

a can
be identified with a corresponding surface of constant curvature: the sphere
(e2

2 = −1), the cylinder ( e2
2 = 0), or the one-sheet hyperboloid (e2

2 = 1). The
map of a surface to R

a is given by the polar projection, see [13, Fig. 1]. These
surfaces provide “compact” model of the corresponding R

a in the sense that
Möbius transformations which are lifted from R

a by the projection are not
singular on those surfaces.

The hyperbolic case however has its own caveats which can be easily seen in
the above cited paper, for example. A compactification of the hyperbolic space
R

h by a light cone at infinity will indeed produce a closed Möbius invariant
object. However it will not be satisfactory for some other reasons explained
below.

The lack of invariance in the hyperbolic case (see Theorem 3.1) has many
important consequences in seemingly different areas, for example:

Geometry: R
h is not split by the real axis into two disjoint pieces: there

is a continuous path (through the light cone at infinity) from the up-
per half plane to the lower which does not cross the real axis (see the
sin-like joined two sheets of the hyperbola in Figure 3(a)). In other
words by [17] we cannot separate R

h into interior and exterior of the
unit cycle (cf. Definition 4.4).

Physics: There is no Möbius invariant way to separate “past” and “fu-
ture” parts of the light cone [25], i.e. there is a continuous family
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1 U

1

V

t = 0

→ 1 U

1

V

t = e−3

→ 1 U

1

V

t = e−2

→ 1 U

1

V

t = e−1

1 U

1

V

t = 1

→ 1 U

1

V

t = e

→ 1 U

1

V

t = e2

→ 1 U

1

V

t = e3

Figure 2. Eight frames from a continuous transformation
from future to the past parts of the light cone.

of Möbius transformations reversing the arrow of time. For example,

the family of matrices

(
1 −te2

te2 1

)
, t ∈ [0,∞) provide the transfor-

mations and Figure 2 presents images for eight values of t. On this
picture the positive direction of the U -axis is transformed at the end
to the negative. This means we cannot separate the time axis into the
“future” and the “past” halves, see [17].

Analysis: There is no possibility to split L2(R) space of functions into
a direct sum of the Hardy-like space of functions having an analytic
extension into the upper half plane and its non-trivial complement,
i.e. any function from L2(R) has an “analytic extension” into the
upper half plane, see [16]. In other words we cannot get a direct sum
decomposition

L2 = H2 ⊕ H
⊥
2 ,

where H2 consists of a sort of “analytic function” and H
⊥
2 is non-trivial.

This happens because Möbius transformations mix both sets in each case.
All the above problems can be resolved in the following way, see [16, § A.2].
We take two copies R

h
+ and R

h
− of R

h, depicted by the squares ACA′C ′′ and
A′C ′A′′C ′′ in Figure 3 correspondingly. The boundaries of these squares rep-
resent light cones at infinity. We glue R

h
+ and R

h
− in such a way that the con-

struction is conformally invariant. In other words the construction is invariant
under the natural action of the Möbius transformations. That is achieved if
in Figure 3 the letters A,A′, A′′ are identified, the letters B,B′ are identified,

etc. This aggregate denoted by R̃
h is a two-fold cover of R

h. The hyperbolic



10 Debapriya Biswas

(a) C

E
′

A
′

D
′

C
′

B
′

A
′′

D
′′

C
′′

E
′′

A

B

1

1

(b) C

E
′

A
′

D
′

C
′

B
′

A
′′

D
′′

C
′′

E
′′

A

B

1

1

Figure 3. Hyperbolic objects in the double cover of R
h:

(a) the “upper” half plane; (b) the unit cycle.

“upper” half plane in R̃
h consists of the upper half plane in R

h
+ and the lower

one in R
h
−, cf. Figure 3(a). In other words, if the Möbius transformation acts

on a vector in the hyperbolic “upper” half plane in R̃
h then the resulting image

vector will also lie in the hyperbolic “upper” half plane in R̃
h.

A similar conformally invariant two-fold cover of the Minkowski space-time
was constructed in [25, § III.4] in connection with the red shift problem in
extragalactic astronomy. It is well-known that the Cayley transform maps
the upper half plane to the unit disk and the “real” axis to the unit cycle

(cf. Definition 4.4). In our case R̃
h, the two-fold cover of R

h, is topologically
equivalent to the object known as a crosscap [11, p. 117], see Figure 3.

Remark 4.1. (1) The hyperbolic orbit of the subgroup K in R̃
h consists

of two branches of the hyperbola passing through (0, v) in R
h
+ and

(0,−v−1) in R
h
−, see Figure 3. As explained in Remark 2.15 in [18],

they both have the same focal length.
(2) The “upper” half plane is bounded by two disjoint “real” axes denoted

by AA′ and C ′C ′′ on Figure 3.

It may be worthwhile to state that for studying the hyperbolic Cayley trans-
form, we need the conformal version of the hyperbolic unit disk. We define it

in R̃
h as follows:

D̃ = {(ue1 + ve2) | lh(ue1 + ve2) < −1, u ∈ R
h
+}

∪ {(ue1 + ve2) | lh(ue1 + ve2) > −1, u ∈ R
h
−},
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where the Minkowski metric lh is defined in Lemma 4.2.

Lemma 4.2. The following are lengths in the sense of Definition 4.3:
(e) In the elliptic case: the Euclidean metric le(ue1 + ve2) = u2 + v2

(h) In the hyperbolic case: the Minkowski metric lh(ue1 + ve2) = u2 − v2.

Definition 4.3. By [19] the radius r of a cycle is defined by

r2 =
l2 − σn2 − km

k2
, (4.5)

where as before σ = −1, 0, 1 for the elliptic, parabolic and hyperbolic cases.
As usual the diameter of a cycle is two times its radius.

Definition 4.4. We use the word unit cycle to denote one of the following

(e) Circles whose radius is 1 in the elliptic case, i.e. le(ue1 + ve2) = 1;
(h) Rectangular hyperbolas with a vertical axis of symmetry whose radius

is (−1) in the hyperbolic case, i.e. lh(ue1 + ve2) = −1,

(where le, lh as is defined in Lemma 4.2). The term unit disk is used to rep-
resent the inner part of circles and both inner and outer parts for rectangular
hyperbolas.

Therefore the hyperbolic unit disk D̃ consists of all vectors in the inner part
of the hyperbola in R

h
+ and the outer part of the hyperbola in R

h
−, see the

shaded portion in Figure 3(b). It can be shown that D̃ is conformally invariant
i.e., (

a −be1

ce1 d

)
: ue1 + ve2 7→ u′e1 + v′e2,

where the vector u′e1 + v′e2 lies inside the disk D̃; it cannot go outside the

hyperbolic unit disk D̃. Also the hyperbolic disk D̃ has a boundary T̃—the

two copies of the unit cycles in Rh
+ and Rh

−. We call T̃ the (conformal) unit

cycle in R
h, see [16, § A.2] for more details. Figure 3 illustrates the geometry

of the “upper” half plane as well as the conformal unit disk in R̃
h conformally

equivalent to it.

5. Conclusion

We have discussed about compactification and projective coordinates for all
the three EPH cases. It results in- a sphere in the elliptic case, a cylinder in
the parabolic and a crosscap in the hyperbolic case. With the help of earlier
results, we also establish the isomorphism between the compactified upper half
plane and the homogeneous spaces SL2(R)/K and SL2(R)/N i.e., the elliptic
and parabolic cases. We also establish that the compactification of the entire
hyperbolic plane without the “real axis” U i.e., R

h \ U is isomorphic to the
homogeneous space SL2(R)/A, i.e., the hyperbolic case.
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