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Abstract

We study the action of each subgroup A, N and K of the group SL2(R) for the Clifford

algebra C`(a) and calculate their vector fields, using the derived representation of the

Lie algebra sl2.
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1 Introduction

Geometry brings life to any subject including algebra which supplies tools for any manip-

ulation [7, 8, 9, 15]. The idea of classifying the different branches of geometry in accor-

dance with the classes of transformations considered, is addressed in the “Erlangen Pro-

gram” [7, 12, 13, 15]. Further, the classification of conic sections: elliptic, parabolic and

hyperbolic, is generally abbreviated as EPH - classification. We lay down foundations for

all three (including parabolic!) EPH-types of analytic function theories in the paper [11].

Here, we study the actions of subgroups of SL2(R) for the Clifford algebra in EPH cases.

2 Preliminaries

A Clifford algebra C`(a) as a 4-dimensional linear space is spanned by 1, e1, e2, e1e2 with

non-commutative multiplication defined by the identities, in Lounesto [13]:

e2
1 = −1, e2

2 =







−1, for C`(e)—elliptic case

0, for C`(p)—parabolic case

1, for C`(h)—hyperbolic case

, e1e2 = −e2e1. (2.1)
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It contains both the planes E and the vector plane R
a so that R

a is spanned by e1 and e2, E

is spanned by 1 and e12. The projection on axes of coordinates u,v [4] as E1(ue1 +ve2) = u

and E2(ue1 + ve2) = v. The group SL2(R) (Lang [12]) consists of 2× 2 matrices whose

determinant is one [6]. By the Iwasawa decomposition for semisimple Lie groups [12,

p. 39], SL2(R) can be decomposed as a product of certain closed subgroups (not normal) in

the form

SL2(R) = ANK, (2.2)

where A,N,K are defined in [3, 4, 6]. The Möbius transformation T is defined in [2, 4].

Details of a Lie group with mapping and Lie algebra with derivative are in [14]. In our

terminology, the derived representation or Lie derivative of a vector field X is given by

dρ(X)(ue1 +ve2) =
∂

∂t
ρ
(

etX (ue1 +ve2)
)

∣

∣

∣

t=0
, (2.3)

where etX ∈ SL2(R), X ∈ sl2 (Lie algebra of SL2(R)) and ue1 + ve2 ∈ R
a. Isomorphic

realisation of SL2(R) in EPH cases, is included in [1, 4] which contains a realisation of the

Iwasawa decomposition for semisimple Lie groups (as in Lang [12, § III.1]) as shown in

equation (2.2). Geometric and algebraic conditions for circle, parabola and hyperbola are

considered in [3, 5]. (Non)-Invariance of the upper half plane under Möbius transformations

in EPH cases, is in [1, 4].

3 Actions of subgroups

In all three EPH cases, the subgroups A and N act through Möbius transformations uni-

formly:

Lemma 3.1. For any type of the Clifford algebra C`(a):

(1) The subgroup N defines shifts ue1 + ve2 7→ (u + χ)e1 + ve2 along the “real” axis U

by χ. The vector field of the derived representation is dNa(u,v) = (1,0).

(2) The subgroup A defines dilations ue1 + ve2 7→ α−2(ue1 + ve2) by the factor α−2

which fixes origin (0,0). The vector field of the derived representation is dAa(u,v) =

(2u,2v).

Orbits and vector fields corresponding to the derived representation [10, § 6.3], [12,

Chap. VI] of the Lie algebra sl2 for subgroups A and N are shown in [2, Figure 2].

(3) By contrast the actions of the subgroup K is significantly different between the EPH

cases and correlates with names chosen for C`(e), C`(p), C`(h) [2, Figure3]: The

vector fields of the derived representation are:

dKe(u,v) = (1+u2 −v2, 2uv)

dKp(u,v) = (1+u2, 2uv)
dKh(u,v) = (1+u2 +v2, 2uv).

These vector fields can be obtained, by using the formula of the Lie derivative by equa-

tion (2.3)(see Section 2). The actions of the subgroup K in three cases are as follows:
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Lemma 3.2. (1) For C`(e) the orbits of K are circles. A circle with centre at (0, (v +
v−1)/2) passes through two points (0,v) and (0,v−1). The vector field of the derived

representation is dKe(u,v) = (u2−v2 +1,2uv).

(2) The curvature of a K-orbit at a point (0,v) in R
e is equal to κ = 2v

1−v2 .

Proof. 1. Suppose for C`(e), an orbit of the subgroup K intersects the V -axis at the point

(0,v). To find the other point of intersection. An element of the subgroup K looks like

k =

(

cos t sint

−sint cost

)

. To find the action of the subgroup K on an element of the orbit. For

the elliptic case e2
2 = −1 and the corresponding Möbius mapping [4, equation (2.5)] is

(

cost e1 sint

e1 sint cos t

)

: ve2 −→
cos t(ve2)+e1 sin t

e1 sint(ve2)+cos t
,

(

cost sint

−sin t cost

)

∈ SL2(R).

From the previous results [4, equation (3.3)],

cos t(ve2)+e1 sint

e1 sint(ve2)+cos t
=

(

L

D

)

e1 +

(

V

D

)

e2,

where L =
(1−v2)

2
sin2t and D =

(

1− (1−v2) sin2 t
)

and, the components are

x(t) =
L

D
and y(t) =

V

D
. (3.1)

From the equation (3.1), we conclude that the image of a point ve2 under the K-action

belongs to the imaginary axis if and only if sin2t = 0, that is t = k π
2 for an integer

k. We observe that at time t = 0, we have (x(t),y(t)) = (0,v) and at time t = π/2, we

get the other point of intersection as (x(t),y(t)) = (0,v−1). Next to show that the K-

orbit is a circle. For this, we define v0 = (v + v−1)/2. Then the radius vector ~r is ~r =
(x(t),y(t)−v0). Also the vector field V(x,y) at the position (x(t),y(t)) is given by V(x,y) =
(

1+{x(t)}2−{y(t)}2,2x(t)y(t)
)

. To show that~r ⊥V(x,y), we take the dot product [5, equa-

tion (8)],

~r ·V(x,y) =
L

D

(

1+
L2

D2
− v2

D2

)

+2v
L

D2

( v

D
−v0

)

.

Therefore,

~r ·V(x,y) =
2L

D3

[

(1−v2)2

8
sin2 2t− (1−v2)2 sin2 t cos2 t

2

]

= 0.

Hence~r ⊥ V(x,y). In other words the radius vector is perpendicular to the vector field at any

arbitrary point (x(t),y(t)) on the K-orbit. As a result the K-orbits on C`(e) are circles which

pass through two points (0,v) and (0,v−1), having centre as v0 = (v + v−1)/2, see Figures

3(Ke) in [2, 4] and 1.

2. Differentiating x(t) and y(t) in equation (3.1) twice with respect to t, we get at t = 0,

ẋ(0) = 1−v2, ẏ(0) = 0, ẍ(0) = 0 and ÿ(0) = 2v(1−v2).
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Therefore the curvature (κ) at time t = 0 is given by

κ|t=0 =

∣

∣ẍẏ− ÿẋ
∣

∣

(ẋ2 + ẏ2)3/2

∣

∣

∣

∣

∣

t=0

=
2v

(1−v2)
.

Hence the radius of curvature (ρ) at time t = 0, is given by

ρ =
1

κ
=

(1−v2)

2v
.

In case of a circle, we know that the radius p = ρ (radius of curvature). Therefore, p = (1−v2)
2v

is the radius of the circle passing through the points (0,v) and (0,v−1) whose diameter is

given by
(1−v2)

v
.

Lemma 3.3. (1) For C`(p) the orbits of K are parabolas with the vertical axis V . A

parabola passing through (0,v/2) has its horizontaldirectrix passing through (0, (v−
v−1)/2) and focus at (0, (v + v−1)/2). The vector field of the derived representation

is dKp(u,v) = (u2 +1,2uv).

(2) The curvature of a K-orbit at a point (0,v/2) in R
p is equal to κ = v.

Proof. 1. We suppose for C`(p), an orbit of the subgroup K intersects the V -axis at the

point (0,v/2). For the parabolic case e2
2 = 0 and as earlier, the Möbius mapping is

(

cos t e1 sint

e1 sint cost

)

:
v

2
e2 −→

cos t
(

v
2 e2

)

+e1 sint

e1 sint
(

v
2
e2

)

+cos t
,

(

cos t sint

−sin t cos t

)

∈ SL2(R).

Therefore the components of the vector field at time t (see equation (3.4), [4]) are

x(t) = tant and y(t) =
v

2
sec2 t, (3.2)

and at time t = 0, (x(t),y(t)) = (0,v/2). Next to show that the K-orbit is a parabola,

we take v0 = (v + v−1)/2. Then the radius vector ~r = (x(t),y(t)− v0) and the vector

field V(x,y) at the position (x(t),y(t)) is V(x,y) =
(

1+{x(t)}2,2x(t)y(t)
)

. Here, (u,v) =
(

tan t,
(

v
2

sec2 t −v0

)

)

and (u′,v′) =
(

sec2 t,v tant sec2 t
)

, we have

u′u−v′
(

√

u2 +v2 −v

)

= tan t sec2 t



1−v







√

(

v

2
tan2 t+

v−1

2

)2

−
(

v

2
tan2 t − v−1

2

)











= 0.

that is, condition being satisfied (Lemma 3.1, [5]), the K-orbits on C`(p) are parabolas.

Therefore v0 = (v + v−1)/2 is the focus of the parabola passing through the point (0,v/2).

The horizontal directrix then passes through the point (0, (v− v−1)/2), see Figure 3(Kp)
in [2].
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2. On differentiating x(t) and y(t) in equation (3.2) twice and computing their values

at t = 0, as in the earlier case, the curvature at time t = 0, is κ|t=0 = v and the radius of

curvature at t = 0 is ρ = 1
v
. In case of a parabola, the focal length (distance between the

focus and the vertex) being p = 1
2
ρ, therefore

p =
1

2

(

1

v

)

=
1

2v
=

1

4(v/2)
,

is the focal length of the parabola which passes through the point (0,v/2), see Figure 1.

Lemma 3.4. (1) For C`(h) the orbits of K are hyperbolas with asymptotes parallel to

lines u = ±v. The vector field of the derived representation is dKh(u,v) = (u2 +v2 +
1,2uv).

(2) Also for C`(h) the orbits of K are rectangular hyperbolas. In other words, the angle

between the asymptotes of the hyperbolas is a right angle.

(3) The curvature of a K-orbit at a point (0,v) in R
h is equal to κ = 2v

1+v2 . A hyperbola

passing through the point (0,v) has the focal distance between foci 2p, where p =
v2+1√

2v
and the upper focus is located at (0, f ) with:

f =







p−
√

p2

2
−1, for 0 < v < 1; and

p+

√

p2

2 −1, for v ≥ 1.

Proof. 1. We consider for C`(h), an orbit of the subgroup K intersects the V -axis at the point

(0,v). To find the other point in which it intersects the V -axis, we proceed as Lemma 3.2

above, with the exception that e2
2 = 1 for the hyperbolic case. From the previous results (see

equation (3.5), [4]),

cost(ve2)+e1 sint

e1 sin t(ve2)+cos t
=

(

M

D′

)

e1 +
( v

D′

)

e2.

The components of the vector field at time t are

x(t) =
M

D′ and y(t) =
v

D′ , (3.3)

where, M =
(1+v2)

2 sin2t and D′ =
(

1− (1+v2) sin2 t
)

. As before at time t = 0, (x(t),y(t))=
(0,v) and at time t = π/2, (x(t),y(t))= (0,−v−1). To show that the K-orbit is a hyperbola,

we define v0 = (v− v−1)/2. The radius vector~r and the vector field V(x,y) at the position

(x(t),y(t)) as earlier are

~r = (x(t),y(t)−v0) =

(

M

D′ ,
v

D′ −v0

)

and V(x,y) =

(

1+
(M2 +v2)

D′2 ,
2vM

D′2

)

.

To show that the condition u′u− v′v = 0 is satisfied (see Lemma 3.2, [5]) for it to be a

hyperbola. Here, (u,v) =~r and (u′,v′) = V(x,y). We have

u′u−v′v =
2M

D′3

[

(1+v2)2

8
sin2 2t − (1+v2)2 sin2 t cos2 t

2

]

= 0.
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As a result, the K-orbits on C`(h) are hyperbolas. Hence v0 = (v− v−1)/2 is the centre of

the hyperbola. The equation of the hyperbola is given by

u2 − (v−v0)
2 = −(v+v−1)2

4
.

The equations of the asymptotes are given by

u2 − (v−v0)
2 = 0 ⇒ u = ±(v−v0),

which are parallel to the lines u = ±v, see Figure 3(Kh)in [2].

2. The components of the vector field (Lemma 3.1) for C`(h) are

u1 = 1+u2 +v2 and v1 = 2uv,

where (u,v) is any point on the hyperbola. As (u,v) → +∞, the asymptote (given by the

equation u = v) approaches the tangent at that point, see Figure 2. Therefore the slope of

the tangent as given by

tanθ1 = lim
(u,v)→+∞

v1

u1

= lim
(u,v)→+∞

2uv

(1+u2 +v2)
,

is on the line u = v,

tanθ1 = lim
u→+∞

2u2

(1+2u2)

(

of
∞

∞
form

)

.

Using L’ Hôpital’s rule, we get

tanθ1 = 1 ⇒ θ1 = π/4.

Similarly as (u,v)→−∞, the asymptote (given by the equation u =−v) tends to the tangent

at that point and as before,

tanθ2 = −1 ⇒ θ2 = −π/4.

Hence the angle between the asymptotes u = ±v is given by

θ = |θ1|+ |θ2| = |π/4|+ |−π/4| = π/2,

which is a right angle. As a result the K-orbits are rectangular hyperbolas.

3. Differentiating the components (x(t),y(t)) in equation (3.3) twice with respect to t

and obtaining their values at t = 0 as before, the curvature (κ) at time t = 0 is κ|t=0 =
2v

(1+v2)
and the radius of curvature (ρ) is ρ =

(1+v2)

2v
.

In case of a hyperbola, the focal length (distance between the focus and the centre)

p =
√

2ρ where ρ is the radius of curvature. Therefore

p =
(v2 +1)√

2v
, (3.4)
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where 2p is the focal distance between foci of the hyperbola passing through the point

(0,v).

At v = 1, f = p =
√

2, as it is a rectangular hyperbola. Here the hyperbola passes

through the point (0,v), 2p is the focal distance between foci and the upper focus is located

at (0, f ), see Figure 3.

At v > 1, f = p + x, x > 0, and at v < 1, f = p− x, x > 0, see Figure 4. The focal

distance between foci 2p is from equation (3.4)

v2 −
√

2vp+1 = 0.

Therefore v =

(

p√
2

+

√

p2

2
−1

)

,

(

p√
2
−
√

p2

2
−1

)

.

For the case v > 1, we know from the property of a rectangular hyperbola (Figure 4)

that

p =
√

2(v−x) ⇒ x =
1√
2
(
√

2v− p) =

√

p2

2
−1

(rejecting the other value of v as x > 0). Therefore

f = p+x = p+

√

p2

2
−1.

Similarly, for the case v < 1, we get

p =
√

2(v+x) ⇒ x =
1√
2
(p−

√
2v) =

√

p2

2
−1

Hence,

f = p−x = p−
√

p2

2
−1.

Thus the upper focus located at (0, f ) is given by

f =















p−
√

p2

2
−1 for 0 < v < 1; and

p+

√

p2

2
−1 for v ≥ 1.

Remark 3.5. 1. The values of all three vector fields dKe, dKp and dKh coincide on the “real”

U-axis (v = 0), i.e. they are three different extensions into the domain of the same boundary

condition.

2. The hyperbola passing through the point (0,1) has the shortest focal length
√

2

among all other hyperbolic orbits; two hyperbolas passing through (0,v) and (0,−v−1)
have the same focal length as

p ≡ (−v−1)2 +1√
2(−v−1)

=
−(v2 +1)√

2v
,
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U

V

(0, v)

(0, v−1)

v0

1

(0, v/2)

(0, v/2 + p)

p{
U

V

Figure 1: The K-orbit in the elliptic and parabolic cases.
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Figure 2: Limiting condition of asymptotes.

v = 1

f(= p) =
√

2

 

O
U

V

{
Figure 3: Rectangular hyperbola for the case v = 1.
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x

f = p + x

 

O U

V
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x

f = p − x

 
O U

V

{
Figure 4: Rectangular hyperbola for the cases v > 1 and v < 1.
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which has the same expression as in equation (3.4) except for a negative sign. These hyper-

bolas are related to each other as explained in Remark [11].

3. An alternative proof of Lemma 3.4(2) can be presented by the parametric represen-

tation (equation (3.3)).

4 Conclusion

Here, we have calculated the vector fields for the three subgroups A, N and K, using the for-

mula for the derived representation. Then we study the actions of the subgroups of SL2(R).

We took an isomorphic realisation of SL2(R) for studying the actions of the subgroups A,

N and K. In drawing the figures, we have employed MetaPost software package.
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