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Introduction to netwo: MWOEM What are networks?

Network

@ There are some entities
— people, countries, computers, ...
— we will call them nodes or vertices

@ Interactions occur between pairs of entities
— friendship, emails, transactions, ...

— we will call them edges or links
Statistical Network Analysis Tibingen WS 18/19 9 / 330




5517 JeTe NTeIATeNs MR HOIsIIAN/sy N ENRSIEI W hat are networks?

Engineering networks

e Communication networks / Internet
e Road / rail / transportation networks (TtuBus, DB, ...)

e Electricity / water distribution networks

R &=

Features

e Typically connects multiple locations
e Something flows through the network

e Man-made: Usually works as planned. How to make it efficient?
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5517 JeTe NTeIATeNs MR HOIsIIAN/sy N ENRSIEI W hat are networks?

Social, economic, political, ... networks

e Social network (Facebook, Twitter, email)
e Network of friends / Society

e Trade networks among countries

Features

o Real interactions, but not a physical network

@ Behaviour of network is not predictable
— since it involves people / companies / governments
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Introduction to network analysis [EAWATEYREE LR TSIAT/o1d Ve

Biological networks

e Neural network ... the one in our brain
e Metabolic network, Gene regulatory network, ...

[Image: Wikipedia]
Features

@ Represent biological process
e Interaction denotes influence / passage of information
o Can be unpredictable because of our lack of understanding
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‘What are networks?

Any many other types of networks

World Wide Web

Citation network

Collaboration network

Hierarchy in an organisation

@ Sensor network

And then, we can view some data as networks:
e Movie ratings by users

@ Stock correlation networks
— correlation among stocks of different companies
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis: Definitions from dictionaries

e Oxford: The mathematical analysis of complex working procedures
i terms of a network of related activities.

e Dictionary.com: A mathematical method of analysing complex
problems, as in transportation or project scheduling, by
representing the problem as a network of lines and nodes.

e Cambridge: The process of deciding in what order tasks need to be
done in a particular project, so that it can be finished successfully
in the least amount of time.

e Longman: Another name for Critical Path Analysis.
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‘What is network analysis?

Why should we care?

o Networks exist everywhere (science, business, politics, ...)

e Network analysis helps in scientific understanding, new technology
o We will see examples soon

o Networks are not simple to understand or analyse

e Compare networks to the standard machine learning setting where
each data has d features

@ Remember the variability in the definitions?
e Each field looks at network analysis in its own way
e Basic principles of network analysis is same in most domains
— We need an unified view to communicate across disciplines
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis example: Zachary’s karate club

e Zachary was studying social behaviour in a karate club in 1970s

@ The club had 34 members including 2 instructors;
Conflict arose between the instructors, and the club split into two

e Zachary created a network among the members
based on who interacted outside the club

e Zachary use a graph based algorithm
to split the network into two parts

e Correctly predicted new group
memberships for 33 members

@ This problem is called
community detection

[Image: Girvan & Newman, PNAS 2002]
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‘What is network analysis?

Network analysis example: Google’s PageRank ...... 1
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis example: Google’s PageRank
e World Wide Web is a directed network of websites (URLs)
e Each edge A — B means website A has a hyperlink to website B
£ e
g AE
N, “B
Idea 2=

e A model for web search:
e User starts from an arbitrary site
e Randomly chooses one of the links, or jumps to a random site
e Keeps doing this on every page — this is a random walk

e Let p(A) be probability of user being in site A after infinite rounds

e Sort websites based on p(-) — largest p(-) means top result
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis example: Hashtags

“In the past, if you wanted to change the world,
you had to pass a law or start a war.
Now you create a hashtag.”

Hashtags do change the world
o #MeToo, #TakeAKnee, #ALSIceBucketChallenge, ...

But only if you notice them
e Personalised feeds are designed by social networking companies

@ You see only topics that you have been interested in the past
— Echo chamber effect

e How can you know the world beyond your topic of interests?
— New tools based on information flow in networks

Source: Interview of Ethan Zuckerman in MIT Technology Review
“Social networks are broken. This man wants to fix them.”
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ISR YeTs RITGIATeI MR OIS ST/ N IR ENNSIEI VW hat is network analysis?

Network analysis example: Brain networks ... ... 1
o How does the brain work?
e Can we understand the network of neurons?

o Considerable research on combining MRI with network analysis

Connectome / Wiring diagram Brain network
[Image: Wikipedia; MIT Technology Review]
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis example: Brain networks ... ... 2

Human Connectome Project

e Difficult to collect many MRI scans at one location
o International collaboration among several universitiies

e Large collection of MRI, EEG data to understand the connectome

Understanding brain from brain network

@ Brain network has small world properties

o Alzheimer’s disease, ADHD etc. change brain network
— problems related to hypothesis testing

4 // ‘
o With

Alzheimer

Without

Alzheimer

[Image: Zajac et al., Brain Sci. 2017]
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Introduction to network analysis [EAWASEYRSTIETCIAZe3d FEY sENASSITNS

Network analysis example: Epidemics and Airlines

e Remember the Ebola virus outbreak in 2013-20167
e Epidemics cause several deaths
e Difficult to predict which region will be affected next

e Epidemics often spread through airline networks
— involves study of network dynamics / flow in networks

48 days 56 days 66 days 160 days

-

Disease evolution in USA for an
epidemic starting in Hong Kong

< airport network in USA
[Image: Colizza et al., PNAS, 2006]
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis or Graph theory ...... 1

Network analysis = Graph theory

+ Domain knowledge + Mathematical modelling

to create meaningful networks

+ Machine learning + Data analysis

to analyse / learn from the network

+ Statistical learning theory

to understand how the methods work

+ Probability theory + Statistical physics

~
to understand the behaviour of networks
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis or Graph theory ...... 2

Example

@ Recall community detection in the karate club network

e Underlying problem is that of graph partitioning
— classical problem in graph theory

Focus of graph theory

o Graph partitioning: Split the vertex
set into highly connected sub-groups

o Different optimization approaches:
min-cut, balanced cut, ...

o Complexity: mostly NP-hard

o Poly-time approximations: Spectral
clustering, max-flow min-cut ...
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5517 JeTe NiTeraTel s RO sTIAVZy R ENNSICI W hat is network analysis?

Network analysis or Graph theory ...... 3

Components of network analysis

o Modelling : Which information / data should we use for
creating the network?

e Machine learning : Formulate the mathematical problem;
Design new algorithms;
Efficient? Scalable to large networks?

e Learning theory : How good are these algorithms?
— Theoretical performance guarantees

e Statistical physics : How do real networks behave? When can we
find communities, patterns, ...7
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5517 JoTe NTeIaTeRs RO sCIA7e3y IR ENNSICI T'his course: Focus & logistics

Course content . ..... 1

Focus

o Machine learning + Learning theory aspects

e Main focus on mathematical principles and theory

e Bit of programming using Python and NetworkX (assignments)
@ No focus on any specific application domain

o Additionally in tutorials: Mathematical preliminaries for network
analysis and learning theory
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5517 JoTe NTeIaTeRs RO sCIA7e3y IR ENNSICI T'his course: Focus & logistics

Course content . ..... 2

Topics to be covered

Network measures : We will discuss about how to describe
networks in quantitative terms

e Network models : We will learn few mathematical models for
networks and their properties
(random graphs, geometric graphs)

Spectral methods : We will learn the principles for spectral
graph theory, some spectral algorithms and
their theoretical analysis

Network dynamics : We will discuss the principle random walk in
network, and extend it to network dynamics
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5517 JoTe NTeIaTeRs RO sCIA7e3y IR ENNSICI T'his course: Focus & logistics

Course content ... ... 3
@ Network : We will describe how we can meaningfully
visualisation visualise networks
e More ML for : If time permits, we will discuss kernel
networks methods, classification and hypothesis

testing for networks

o Math tutorials : We will cover some topics like concentration
inequalities, Markov chains etc.

References

e Scattered. No particular book /material

@ Some reference material will be mentioned in each lecture
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5517 JoTe NTeIaTeRs RO sCIA7e3y IR ENNSICI T'his course: Focus & logistics

Course logistics . .. ... 1

o Course webpage:
http://www.tml.cs.uni-tuebingen.de/teaching/2018_
network_analysis/index.php

e This page contains all information

o Weekly meetings in Sand, Room F119:
Monday 12 ct — 14 (Lecture)
Wednesday 16 ct — 18 (Tutorial or Lecture)
e Detailed schedule, assignment deadlines etc. will be posted
regularly on course webpage

e Register on ILIAS by October 22 (next Monday)

o Path: Informatik / Theorie des maschinellen Lernens / Statistical
Network Analysis (link on course webpage)

o Information, assignments will be communicated through ILIAS

o Use ILIAS forum to ask questions (no separate office hours)
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5517 JoTe NTeIaTeRs RO sCIA7e3y IR ENNSICI T'his course: Focus & logistics

Course logistics . .. ... 2

Assignments
e Theory + Programming (in Python)
@ Once in every two weeks
e Assignment notification and submission through ILTAS

e Need 50% of total points in assignments to write final exam

Final exam

o Grades will depend on final written exam
e Points in assignments do not add to final grades
o But 20% questions will be related to assignments

e Exam dates
February 11, 2019 (Monday): 12 ct — 14 (in F119)
April 10, 2019 (Wednesday): 10 ct — 12 (in F119)

o Need to register for exam. Details will be announced
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5517 JoTe NTeIATelsRRACIsICIA/S Y IR ENNSIEIN Network preliminaries

G

||
=
=

e V is a set of nodes or vertices

e Nodes can have any name — Berlin, Informatik, John etc.
o We will mostly write: V = {1,2,3,...,n}
n = number of nodes

e F is set of edges or links (interactions between pairs of nodes)
o This is an undirected graph
o Every edge e = (u,v) represents a both ways connection
o Here, edges are unweighted (we assume weight of each edge is 1)
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5517 JoTe NTeIATelsRRACIsICIA/S Y IR ENNSIEIN Network preliminaries

Types of networks ...... 2

0.8

Graphs with edge weights or labels

o Weighted edges: Each edge has a real-valued weight or cost
o Network of cities (weight can be location / travel time)

o Edges with labels: Each edge can have multiple labels

o Ego network (common in social network analysis)
e FEjgo is a central node connected to every other node
o Edge labels are relative, friend, colleague etc.

e Signed network: Each edge has two labels +1 or —1
o Friend/foe network: 41 means friend, —1 means foe
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5517 JoTe NTeIATelsRRACIsICIA/S Y IR ENNSIEIN Network preliminaries

Types of networks ...... 3
Directed graphs

e Each edge has an direction from source node to target node

o Example: World Wide Web; Transaction network
o Edges can also have weights or labels

\ ) 3'2/
S—== e
Graphs with node labels or attributes

o Karate network: Each node has a label depending on membership

@ Often forms the basis of semi-supervised learning or classification
problems in networks (we know few labels and predict others)
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Introduction to network analysis Network preliminaries

Types of networks ... ... 4

Many other types

e Trees, Acyclic graphs
o Family tree, Bayesian network
e Can be undirected, directed, weighted

e Bipartite graphs
e Two types of nodes, and edges only go from one group to the other
o Amazon reviews network: Users and Items are two node types, and
each edge denotes an User reviewed / rated an Item

Note

e Which type of network to use?
— Depends on problem and application

e We will mostly study undirected unweighted graphs
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Introduction to network analysis Network preliminaries

Representing a network ...... 1
Adjacency matrix

01100
1 01 01
A= 1 1 0 0 1
0 0001
01110

e A is n x n matrix (n = number of nodes)

o Unweighted graph: A;; =1 if (¢,7) € E, and 0 otherwise

o Weighted graph: A;; = weight of edge (3, j)

e A is symmetric for undirected graphs, and asymmetric for directed
e A can be very sparse for real networks (very few non-zero entries)

e Facebook friendship network: n = 2.23 billion
#edges ~ 173 billion, fraction of non-zero entries ~ 7 x 108

e Practically inefficient, but useful for math!
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5517 JoTe NTeIATelsRRACIsICIA/S Y IR ENNSIEIN Network preliminaries

Representing a network ... ... 2

Edge list Adjacency list

(1,2)
(1,3)
(2,3)
(2,5)
(3,5)
(4,5)

1:

1
1
)
2

T oW N

2, 3
;3,5
» 2,5

7374

e Memory and computationally efficient for large, sparse graphs

e Edge list: Popular format for storing graphs

Debarghya Ghoshdastidar

Adjacency list: Fast retrieval of neighbours of node

Adjacency matrix/list, edge list can be defined for directed graphs
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Network measures

References

o A list of many network measures:

M. Rubinov & O. Sporns (2010). Complex network measures of
brain connectivity: uses and interpretations. Neuroimage, 52(3),

pages 1059-1069
(see Appendix A, pages 1066-1068)

@ Networks used in the lecture are from
Stanford Large Network Dataset Collection
http://snap.stanford.edu/data/index.htmll

@ Lecture slides and videos by Jure Leskovec
https://web.stanford.edu/class/cs224w/index.html
(see handouts for lectures 2, 5)

o Notes by Albert Barabasi on properties of real networks
http://barabasi.com/f/623.pdf
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INLEIRZ Y BRIl Degree distribution

Degree of a node

Undirected graph deg(2) = 3

degree(i) = number of neighbours of 4

= ZAU’
j=1

Directed graph

out-degree(i) = number of edges from ¢
n
=2 A
j=1

in-degree(i) = number of edges to i

in-deg(2) = 3, out-deg(2) =1

Note: A is adjacency matrix
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Degree distribution

Network measures

Density, Average degree (unweighted undirected graph)

Edge density (p) G = (V.E)
p = fraction of possible edges in E
1 O 1 -
=7 2 A= = ) A
PRI P

Average degree (d)

_ 1 <& . 1 & p=0.6
d =2 degl) = > Ay d=24
=1 7,7=1
) d
e Complete graph: 1 (n—1)
e Empty graph (graph with no edges): 0 0
e Path graph (single path on n nodes): % 2 (1 — %)
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DI R
Degree distribution (undirected unweighted graph)

o
o

o
IS

probability

o
N

o
o
o

6 1 2 3 4 o0 1 2 3
degree degree

e Number of nodes with degree d, where d =0,1,...,(n—1)

e Often normalised so that total count is 1

e Denotes proportion of nodes with specific degree

e It is a probability mass function
ng

p(d) = (ng = number of nodes with degree d)
n

e Provides a summary of the degree of all nodes
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INLEIRZ Y BRIl Degree distribution

Density and degrees in real networks ...... 1

e Networks are sparse (low density, small average degree)

Ql

Network n F#edges p
Email interactions (Enron) 36692 183831 2.73x 10" * 10.02

Item co-purchase (Amazon) 334863 925872 1.65x 107>  5.53
Friendship network (Youtube) 1134890 2987624 4.64 x 107°  5.26

Degree distributions (normalised)

Enron Amazon 100 Youtube
107t
107t 10-1
Emiz 1072 10-2
E 1073 10-2
Q103 -4
o 104 10
a -4 10°
10 10-5
10-°
10° 10! 102 10° 10° 10! 102 10° 10! 102 10°  10%
degree degree deqgree
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Network measures Degree distribution
Density and degrees in real networks ...... 2

Degree distribution

e Beware of the scales in plot (Youtube network)

o Linear plots for degree distribution are

e a = some positive constant

meaningless for large networks ; Linear scale
0.5
.. . . 204
@ Degree distributions typically follow =03
power law So2|,
o p(d) = fraction of nodes with degree d 201 ;
0.0
0

5000 10000 15000 20000 25000 300
degree

Logarithmic scale

—— Degre distribution

p(d) occd™@

=
o
°

. . . 5, 107 — Plotof d-2
@ Degrees provide local information about £ 10
fe} -
the network g 107
. o 107*
o How many neighbours does a node have? &y

o Degree distribution shows how local 10-°
properties vary over the network

(N1 W
10° 10! 102 10°  10%
degree
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Network measures Connected components

Connectness of network .. .... 1

o Is the network connected?

o Can we reach from any node to any other node?
o Global property of a graph

e No, if there are isolated nodes (nodes with degree zero)

o If there is no isolated node, degree does not say anything
e Both graphs below have same degrees but different connectivity

Connected graph 2 connected components

e Connected components

e Largest possible connected subgraphs of a graph
o Subgraph on {1,2} is not a connected component (not maximal)
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Network measures Connected components

Connectness of network .. .... 2

e GGiant component
e Largest connected component in a graph

e How to find connected components?
o Any search algorithm (breadth first search)

o Real networks
e Sparse, but typically have a large giant component

Enron Youtube
Nodes n 36692 1134890
Average degree d 10.02 5.26
Isolated nodes 0 0
Number of components 1065 1

Giant component size 33696 (92%) 1134890 (100%)
2"? largest component 20 (0.05%) -

Statistical Network Analysis Tubingen WS 18/19
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Network measures Connected components

Connectedness in directed graphs

e Connectivity / reachability is not
bi-directional in di-graphs

e Strongly connected graph:
If every node can be reached from every
other node

e Strongly connected component:

Maximal strongly connected subgraph {2,3,5} strongly connected

o Zero degree nodes 1 is source, 4 is sink

o Isolated: in-degree = out-degree = 0
e Source: in-degree = 0
e Sink: out-degree = 0
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INEIRNZ N RS CERIINCS Il Paths in graphs

Graph paths

e Path: Sequence of nodes {ui,us,...,us} such that (u;,u;11) € E
for every 1%
o Length of path: Number of edges in path (unweighted graph)

o Shortest path: Path of smallest length between two vertices
o Shortest path distance / Geodesic distance

length of shortest path between u and v
dgp(u,v) =
oo if no path exists

e Symmetric for undirected graph, but not for di-graph

{1,3,2,3,5} is a path of length 4
{1,2,5} is a shortest path between 1, 5
dyp(1,5) =2
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Network measures Paths in graphs

Path lengths in networks

o Diameter: Maximum shortest path distance in a graph
diam(G) = max dgp(u,v)
u,veV

e Maximum number of hops needed to reach any one

e Average path length / Characteristic path length:
Average of shortest path distances between all pairs

1
L(G) = n D) Z dsp(u,v)
u,veV
e Typically used only for connected graphs

o If graph is not connected, only consider connected components

e Diameter for real networks?
o O(n?Inn + n - #edges) time using Djikstra’s algorithm
o Takes too long for Enron (diameter = 13), Youtube etc.

a Ghoshdastidar Statistical Network Analysis Tubingen WS 18/19 54 / 330



Local structures in networks

Local structures in networks
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IRV GEEENICE Local structures in networks

Going beyond degrees

e Node degree: First level of local information
e How many neighbours does a node have?
e Does not say how well the neighbours are connected

e Diameter, shortest path: Long range information
e How well is a node connected to all other nodes?

e Can we find something in between?
o Motifs, Graphlets: Small patterns in a network
o Connected subgraphs (k-cliques, path of length m, etc.)
e Still local, but gives more information than degrees

Degree Triangles 4-cliques
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IRV GEEENICE Local structures in networks

Clustering coefficient (undirected graph) ... ... 1

o Triangle: Two neighbours of a node are also connected

e Friend of a friend is often a friend
e Most simple motif in undirected graphs

o Number of triangles possible?
e If node-u has degree d,,, it can be in %du(du — 1) possible triangles

e Local clustering coefficient (for a node)
CC(u) = #tl“ianglels containing node-u

cc(1) = 1 cC(1) = 2/3
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INEIRTZ N B EEIIICE I [Local structures in networks

Clustering coefficient (undirected graph) ... ... 2

e Average (local) clustering coefficient

1 n
CClocal = - ; CC(u)

e Global clustering coefficient
3 X F#triangles in graph
CCglobal = 1
2 3u(du — 1)
e Factor of 3 counts each triangle once for every participating node

o What fraction of triplets in the entire network form triangles?
e Different from CCigcar

Enron Youtube

Nodes n 36692 1134890
Cclocal 0.497 0.081
CCglobal 0.085 0.006
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Local structures in networks

o Frequently occurring small connected subgraphs

@ Possible 3-motifs in undirected graphs

VAIVAN

@ Possible 3-motifs in directed graphs

2 AALRLR
BSIPIRI L0

[Image: Leskovec lecture slides|
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INEIRTZ N B EEIIICE I [Local structures in networks

e We count the number of motifs in a graph
e Example: #edges = number of 2-motifs in a graph

e Different networks have different types of motifs in high numbers

e How many motifs of a certain type should we expect?
— Will discuss after we learn network models

e Size of motifs

o Typically kept small (upto 5) — possibilities grow exponentially
e Computationally expensive to find large motifs

e Further reading/viewing: Lecture-5 by Leskovec
o https://web.stanford.edu/class/cs224w/index.html
e Provides intuition for motifs and many real examples
o Describes an algorithm to count motifs / graphlets
(this additional material is not in the exam for our course)
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Community structure
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Network measures Community structure

Community structure

e Community: Group of nodes

e Many edges among themselves
e Few edges nodes outside community

@ Does a network have communities?
e Measured by modularity

o Can we find communities in network?
e Graph partitioning
e Spectral clustering, ...

e Will discuss after we learn

e Network models
e Spectral graph theory
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Centrality
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Network measures OIS FEIAS

Centrality

@ Which nodes are important in a network?

o Left graph: No network without node-1
o Middle graph: Other nodes well connected even if we remove node-1
o Right graph: Is node-1 important?

o Centrality measure
o Gives a score to each node to quantify its importance
e Many different definitions — depends on application
o Larger centrality score means node is more important / central
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Network measures OIS FEIAS

Centrality measures (undirected graph) ...... 1

o Degree centrality:  Cyegree(u) = degree(u)

e More important if node has more connections

e Not always meaningful: What happens here?

1
> dsp(u,v)
vFu
o dgp(u,v) = shortest path distance between u, v
e Node is more central if its total distance from every node is small
e What happens if graph is disconnected?

e Closeness centrality:  Cciose(u)
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Network measures Centrality

Centrality measures (undirected graph) ...... 2

e Harmonic centrality:  Charmonic(u) = Z

= dgp(u, v)
e Variant of closeness centrality

e Meaningful even for disconnected graphs

. o(s,tlu
o Betweenness centrality:  Cpetween(u) = Z M
o(s,t)
s, t#u
s#t
o o(s,tlu)= number of shortest paths between s,¢ that pass through u
o o(s,t) = total number of shortest paths between s,t
e Denotes how often node-u lies between other pairs of nodes

o Eigen-centrality, Page rank:

e Based on eigenvectors of adjacency matrix
o Will discuss after spectral graph theory
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NIy B ERSIIICEIl Properties of many real networks

Scale free networks

0° A .
1 —— Degre distribution

—— Plot of d=2
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NIy B ERSIIICEIl Properties of many real networks

Scale free networks

10°

= e e
o O O
Ll L

1074

robability

P
[
o

b

._.
S
&

—— Degre distribution
—— Plot of d~2

10° 10! 102 10° 10%
degree

o Networks with power law degree distributions
o p(d) = fraction of nodes with degree d (probability mass function)

C

p(d)

T

OR In(p(d)) =InC — alnd

e a > 1, and C normalising constant so that Zp(d) =1

d=0
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NIy B ERSIIICEIl Properties of many real networks

Why “scale free”: First interpretation ...... 1

@ Related to notion of scale invariance

o f(:) is scale-invariant if J;((am)) does not depend on x (for large ax)
x
1
o f(z)= % is scale invariant : J;((a;)) ==
o f(z)=e"" is scaling : f(az) = et

f(=)

@ Scale invariant distribution function
o F(x) =P(X < x) is scale invariant distribution function if
F(z) =1— F(x) is scale-invariant

o F(r) is called tail probability

Theorem

F(-) is a scale-invariant distribution <= F(x) oc ™" for some 7 > 0 J
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NIy B ERSIIICEIl Properties of many real networks

Why “scale free”: First interpretation ...... 2

e Degree distribution function is scale-invariant / scale-free
o Let F(d) = proportion of nodes with degree at most d

= P(degree < d) ... distribution function
p(d) = d% assumeg [t e0) F(d)=1- 7(0[ — Sda—l (exercise)
— 1
= F(d) x o

o High degree nodes are not exponentially rare

> e~ for very large d

do—1
e Note: Degree is simply counts of neighbours

e Compare this fact with typical laws for sums

@ Power law is a special case of heavy tailed distribution
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NIy B ERSIIICEIl Properties of many real networks

Why “scale free”: Second interpretation

e What if degrees followed typical laws of sums?
e Gaussian distribution, Poisson distribution, etc.

o Let d = average degree

e From tutorial: P (degree > 23) is exponentially small

@ Networks with scale
e Network has a scale if above happens

o d is scale of the network

@ Scale free networks
e Network without a scale

e d is not representative of the degrees in the network
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NIy B ERSIIICEIl Properties of many real networks

Small world networks ... ... 1

@ Six degrees of separation
o Idea started in early 1900s
e Anyone can be connected to another person through at most five

people

e Milgram’s small world experiment (1960s)
e Participants in Nebraska and Kansas given some letters

o Each letter had to be delivered to a target in Massachusetts

o Can be transfer through friends / acquaintances

@ Result of Milgram’s experiment
e Only 64 out of 296 letters reached

o Average path length for these 64 letters was between 5.5 to 6
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Properties of many real networks

Small world networks ...... 2
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[Image: Wikipedia]
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Properties of many real networks

position (Omaha) to the target area
(Boston) with each remove. Diagram

shows the number of miles from the - § 2
target area, with the distance of each A
remove averaged over completed
and uncompleted chains.

'

s;b.s/#gN
U ‘- 10
-~----------_’-‘ ‘1

The chains progress from the starting d * /

4305 »11. &

[Image: Milgram)]

o Erdds number: Shortest paths in co-authorship network

e How many hops from any researcher to Paul Erdés?
e Stephen Hawking has Erdés number 4
o Hawking — J. B. Hurtle — S. Chandrasekhar — M. Kac — Erdd&s
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NIy B ERSIIICEIl Properties of many real networks

Small world networks ... ... 4

@ Shortest path distances in real networks

e Computed for 50000 random pairs
e Average path lengths about 5 to 6
o Do not infer diameter from these plots (why?)

Youtube Enron (Giant component)
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NIy B ERSIIICEIl Properties of many real networks

Mathematical forms of small world property

@ No precise mathematical definition
e Some notions arise from study of network models

e Let GG be a network with n nodes
o Small world: diameter(G) = O(Inn)
o Ultra-small world: diameter(G) = O(lnlnn)

(behaves like a constant)
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NIy B ERSIIICEIl Properties of many real networks

Other features
Hubs

e Scale free networks have few nodes with very high degree (hubs)

e Hubs induce ultra-small world property

e Hubs have high degree centrality as well as betweenness centrality
(think of a star graph)

Friendship paradox

e Scott Feld in 1991 found that:
most people have fewer friends than their friends have on average

e Why?
— Can be explained mathematically
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NIy B ERSIIICEIl Properties of many real networks

Proof of friendship paradox

Let |V| = n, and d,, = friends of node-u

1
e Average number of friends = — E dy
n ueV

Total number of friends for everyone = Z dy
ueV
Total number of friends of friends

= Z Z dy, = Z a2 (u ~ v for d,, number of v’s)

veV u~v ueV

e Average number of friends of friends

= total friends of friendstotal friends =

2
° <Z du> <nd d? (prove using Cauchy-Schwarz inequality)
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Network models
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Network models

References

e Erdos-Rényi graph: Chapter 8 of Foundations of data science
https://www.cs.cornell.edu/jeh/book.pdf

e Configuration model: Aaron Clauset’s notes (Lectures 11, 12)
http://tuvalu.santafe.edu/~aaronc/courses/5352/£al12013/

o Watts-Strogatz model: Paper by Barrat and Weigt
https://arxiv.org/pdf/cond-mat/9903411.pdf

o Preferential Attachment

e Barabasi-Albert model: http://barabasi.com/f/622.pdf
e More formal material: Chapter 3 of Complex graphs and networks
http://www.math.ucsd.edu/~fan/complex/

e ER and PA (mathematical): Random Graphs and Complex
Networks (vol 1) http://www.win.tue.nl/~rhofstad/
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Erdos-Rényi model
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INEATII B EIEM Erdds-Rényi model

The G(n,p) and G(n, m) models

e Two similar models for generating random undirected graphs
o G(n,p) by Edgar Gilbert (1959)

o G(n,m) by Paul Erdés and Alfred Rényi (1959)

o G(n,p) is more popular, but referred to as Erdés-Rényi model

@ n,m,p are parameters
e n = number of nodes

o p = probability of an edge in graph G(n,p)

o m = number of edges in graph G(n,m)

e G(n,p): For every pair of nodes i,j (i # j)
add the edge (i, 7) with probability p

e G(n,m): There are (}) pair of nodes
Choose any m pairs randomly, and add them to edge set
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INEATII B EIEM Erdds-Rényi model

Possible graphs that are generated
G(n,m)
o Let C, = {G=(V,E) : |[V|=n,|E|=m}
o What is the size of C;?

e G(n,m) = Uniform distribution on C;
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INEATII B EIEM Erdds-Rényi model

Possible graphs that are generated
G(n,m)
o Let C, = {G=(V,E) : |[V|=n,|E|=m}
o What is the size of C;?

e G(n,m) = Uniform distribution on C;

G(n,p)
o Let Co = {G=(V,E) : [V|]=n}

o What is the size of Cy?

e G(n,p) can generate any graph in Co — is it uniform over Cq?
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INEATII B EIEM Erdds-Rényi model

What is the nature of G(n,p)?

e Let G~ G(n,p)

P(G = empty graph) = (1 — p)"("~ /2

P(G = complete graph) = prn=1/2

o Let S = number of edges in G

S ~ Binomial (71(712—1)7]3)

pn(n —1)

Es] = 227D sy = - 0D

2
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INEATII B EIEM Erdds-Rényi model

Density and degrees of G(n,p) ...... 1

o Edge density
E[density(G)] = p

e Degree (d;) for any node-i

d; ~ Binomial(n — 1, p)
E[di] = p(n —1)

o Average degree

ZE p(n—1) = pn
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INEATII B EIEM Erdds-Rényi model

Density and degrees of G(n,p) ...... 2

e How should we set p?
e Real networks are sparse
n Fedges density, p d

Enron 36692 183831 2.73x 10" * 10.02
Amazon 334863 925872  1.65 x 107°  5.53
Youtube 1134890 2987624 4.64 x 1075  5.26

e p decreases rapidly with n

o d ~ np behaves like a constant (or perhaps grows very slowly)

Clnn
n

C
o Possibly set p= — or p =
n
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Network models Erd&s-Rényi model
Density and degrees of G(n, p)
@ Degree distribution ~ Binomial(n, p) (n—1=n)

e What happens when n is large?
o Degree distribution = N(np, np(l — p))
o If p= ¢, degree distribution ~ Poisson(C)

n’

e But in real networks, degrees follow power law distribution
o Real network: P(degree > t) < ¢t™¢
o ER model: P(degree > t) < et

10pegree distribution (log scale) Distributions (log scale)
. 10-1
10 102
.é‘lo‘Z ;10'3
=3 = 10—A
Q 103 Qo
3 g7
° 104 S 107
S 10-5 S 1077
106 107
e e pte 0 10t w S
—— Enron —— Binomial(n, p) —— Binomial(n, p) ¢ Poisson(np)

— Nnp,np(1-p))
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INEATII B EIEM Erdds-Rényi model

Triangles and clustering coefficient

o Let G ~G(3,p): P(G is a triangle) = p?
e For G ~ G(n,p):
o E[#triangles] = p? <g)

o Global clustering (in expectation)
3 X fftriangles | 3p° (%) _
S rdy(d, —1)]

o Average local clustering E[CCigcal] < p

IE[chlobal] =K |:

Enron Youtube

Density p 273 x 10°%  4.64 x 10 °
CClocal 0497 0081
CClglobal 0.085 0.006
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INEATII B EIEM Erdds-Rényi model

Connectivity: Isolated nodes

Theorem: Number of isolated nodes

Let G ~ G(n,p), and X = #isolated nodes in G.

E[X] = n(1 - p)"~!

1 1
lim E[X]=0 ifp > M, and lim E[X] =00 ifp< %
n

n—oo n—oo

Proof: E[X] =) .P(d;=0)=>,(1— p)n1

__clnn
Let p = <.
n
. . clan
lim E[X] = lim n <1 - )
n—00 n—00 n
. _ . . _ . an\"
= lim ne¢n since lim e % = lim (1——”)
n—00 n—00 n—o00 n
= lim n'~¢
n—oo

Debarghya Ghoshdastidar
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INEATII B EIEM Erdds-Rényi model

Connectivity: Isolated nodes ...... 2

Corollary: Presence of isolated nodes
Let G ~ G(n,p)

Inn
o(1) itp > —
P(G contains isolated nodes) = 10,
1-0o(1) ifp<—
Here, z = 0(1) means lim x = 0.
n—oo
v
Proof: In tutorial.
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INEATII B EIEM Erdds-Rényi model

Diameter ...... 1

Theorem: ER graph with ultra-small world property

/21
Let G ~ G(n,p) with p > ey
n

P(diameter(G) < 2) =1 — o(1)

Proof: In tutorial. Similar to proof for isolated nodes.

Implication

o Real networks: Diameter small due to presence of few hubs

e G(n,p) do not have very high degree nodes

21
o Yetifp >4/ ﬂ, then diameter(G) < 2 (Why?)
n
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INEATII B EIEM Erdds-Rényi model

Diameter ...... 2

An informal argument (Note: This is not accurate)

CC(i) = p — 0if p = o(1). Neighbours are typically not connected

Neighbourhood of ever node is somewhat like a tree

If it is a tree
— we can reach (np)? nodes
in 2 hops

2Ilnn
If p>4/——, th
@ Vi en

(np)? > 2nInn
— more than n nodes

np nodes

In G(n,p), there are still
few triangles

np nodes
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INEATII B EIEM Erdds-Rényi model

Diameter ...... 3

°op> is a relatively dense setting

e What happens for smaller p?

/21
Diameter > 2 for with probability (1 —o(1)) if p < nr
n

Theorem: ER graph with small world property
1
Let G ~ G(n,p) with p > Clﬂ.
n
diameter(G) < CyInn with probability 1 — o(1)

Here C1, Cy are some large positive constants.

Proof: We will skip. If interested, see Theorem 8.13 in FoDS book.
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INEATII B EIEM Erdds-Rényi model

Connectivity: Giant component ... ... 1

Theorem: Connectedness and presence of giant component

Each statement holds with probability 1 — o(1)

Inn
o If p > —, then G is connected
n

1
o Ifp> ﬂ, then G has:
2n

. . n
— a giant component of size > 3

— all nodes not in the giant component are isolated

Proof: We will skip. If interested, see Theorem 8.11 in FoDS book.
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INEATII B EIEM Erdds-Rényi model

Connectivity: Giant component ... ... 2

Theorem: Emergence of a giant component

Each statement holds with probability 1 — o(1)

1
o If p< —,

n
— then all connected components in G are of size < C'lnn.

1
o Ifp>—,
n
— then G has a giant component with > en number of nodes

Proof: We will skip. Proof based on branching processes.
Theorems 4.4 and 4.8 in Hofstadt’s book OR some arguments in
http://www.cs.yale.edu/homes/spielman/462/2010/1lect5-10.pdf

Note: np > 1 means average node degree > 1
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Variants of ER model and related problems
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Network models Variants of ER model and related problems

Significance of ER model

e Not a good model for real networks

o Originally used for the probabilistic method
e Use probability to answer deterministic questions

e Used to analyse performance of graph algorithms
e Simple model — easier to do analysis
o We can provide guarantees for algorithms assuming G ~ G(n,p) or

similar model

@ Phase transitions in ER

o Phase transition: Drastic changes observed if a parameter is
changed a little

e Saw this in emergence of isolated nodes and giant component

e Has connection to problems in physics
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Network models Variants of ER model and related problems

Planted clique problem ...... 1

Theorem: Largest clique in G(n, §)

Let Go ~ G(n, %) and S be the largest clique in G.

P(|S| < 2logyn) =1 — o(1)

Planted k-clique
o Let Go ~ G(n,3)

@ Choose a random subset of nodes S of size k
e Add all edges between nodes in S, and call the new graph G

e (G is a random graph with a planted clique S
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Network models Variants of ER model and related problems

Planted clique problem ...... 2
e Planted clique problem: Let k > 2log, n.
Can we find S?
Theorem: Finding large planted clique (Kucera, 1995)

Let G has a planted k-clique with & > vnlInn.
Let S = set of k nodes with highest degrees
S is the planted clique with probability 1 — o(1)

e Better algorithms till date can find planted cliques if k& > e\/n

e What happens when 2log, n < k < /n?

e Planted clique conjecture:
No polynomial time algorithm can find planted clique of size

k< \/n
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Network models Variants of ER model and related problems

Stochastic block model / Planted partition

e Let Gy,...,G ~ G(s,p)
— If p is large, each graph is connected

e (' is a graph on n = sk nodes such that G’ = Gy U... UGy
— G’ has k connected components
— @' has k communities with no interaction across communities

e For every pair of nodes from two different communities:
— Add edge with probability ¢ < p
— Call this new graph G

e ( is called stochastic block model
— (@ is a random graph, but has a hidden partition of nodes

e Can analyse performance of graph partitioning algorithms on G
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Configuration model
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IEIATII B IEM Configuration model

Revisiting ER model

Modelling reality with G(n,p) or G(n,m)
C

o Real networks are sparse: p = —
n

@ Degree distribution: Binomial (asymp Poisson) ... not scale free
. . C .
o Clustering coefficient ~ p = — ... very low clustering
n
Clnn

e Diameter is O(Inn) if p >

1
o Giant component if p > —
n

What about G(n,m)? — Nearly similar to G(n,p) for p = n

(3)
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Network models Configuration model

Configuration model ... ... 1

e Generalisation of G(n, m)
o Allows specification of node degrees

o Generation process

o Given degree sequence (dy,ds, ..., d,) such that ), d; is even
o Create d; copies of node-¢
o Randomly pair any two node copies (each copy paired only once)

o Merge all copies of same node
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Configuration model ... ... 2
Example: Given degrees (3,2,2,2,1). Make copies of nodes

3 2 2 1
o (5]
5]

© 0|0

Randomly pair nodes Merge copies of same node

ol--o|ro| lol-{0
' o
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IEIATII B IEM Configuration model

Configuration model ... ... 3

o Generates different graphs with same degree sequence

e e

e Can also lead to self-loop or multi-edge

(p—o0—0—0—0

a p—o—0o

e Solution: Collapse such edges ... what happens if we do this?
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IEIATII B IEM Configuration model

Properties of configuration model

Edge probability
Let G = (V, E) be generated from CM with degrees (dy,...,d,),

- did;  dd 1
P((l’j)EE)_Qm—lN% Wherem—in:dz

Proof: Node-i has d; copies.
d .
Each copy can form an edge with node-j with probability J

2m — 1
Local properties
@ Degree distribution: Any specification ... can choose power-law
C
o Global clustering coefficient < — for sparse graphs ... too small
n
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Small world models
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Small world network
A small world network has:
e Short distances among all nodes — O(Inn) average path length
e Neighbours likely to be connected — High clustering coefficient
Contradictory features?
e ER and Configuration: Short distances, but low clustering

o Lattice graphs: High clustering, but large distances
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Watts-Strogatz model

o Parameters: n, k, 3

e Start with n nodes arranged in circle

e Connect each node to 2k nearest nodes
o Rewiring:

o For every edge (i,7) in original graph (with ¢ on left of j)
with probability 5, detach from j and connect to a random node
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Properties of Watts-Strogatz graph ... ... 1
Let Gy ~ WSM(n, k, 8)

e Average degree = 2k (irrespective of f3)

e Consider =10

e GGy only has connection with nearby nodes

n
o Diameter ~ —
2k

o Average path length ~ %

Number of triangles containing node-i = 3k(k — 1)
3(k—-1)

22k —-1)
(Exercise: Verify these properties)

Clustering coefficient (global / local) =
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Properties of Watts-Strogatz graph ... ... 2
Clustering coefficient of Gz
3(k—1
CClocal(GB) ~ chlobal(Gﬁ) ~ 2((2]€—1))(1 - /8)3

Proof idea: For every triangle,
e each of the 3 sides are not changed with probability (1 — f3)
e all three sides not modified with probability (1 — )3

Average path length, L(Gp)

O(n) ifg="<

n

L(Gs) =
’ O(@zn_l)) if 51
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Other small world models

o Newman-Watts-Strogatz model
o Instead of rewiring, add more edges with some probability

o Kleinberg model

o Start with a grid in R?
o Add edges between non-adjacent u, v with probability
1

Do = =]

e Small world models produce networks with
e average path length < C'lnn
o clustering coefficient > €
o But, degree distributions are not power law (Why?)
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Preferential attachment
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Preferential attachment

e Many real networks grow over time

Previous models directly generate large graphs

Preferential attachment process
o Models how a network grows over time

e Principle: The rich get richer

Rich get richer — in networks
e New nodes in a network connect more with high degree nodes

Why should we consider preferential attachment?
e Preferential attachment typically leads to power law distributions
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NEIAYI B IEM Preferential attachment

Barabasi-Albert model . ..... 1

@ One of many models for preferential attachment

o Parameters
o Initial graph Gog = (Vp, Ep)
o Integer m < |V

e Ateacht=1,2,..., graph Gy is as follows
o Add a new node v

o Add edges between v and m random nodes in V;_1

e Probability of choosing node u € V;_1
Pu = 72 d;
i€Vi_1

(most popular)

e NOTE: If d, is large, u is more likely to have new connections
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Barabasi-Albert model . ..... 2

G
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NEIAYI B IEM Preferential attachment

Properties of BA model

e Let Gy be a small graph and ¢ be large.
We study properties of Gy = (V;, Ey)

o Vil =(Vol+t)~t, and |E|=(|Eo|+mt)~mt
- 2|E
o Average degree, d = |Eil ~2m
14

Degree distribution, p(d) < d=3 (power law)

Inn
h 1 h, L =

e Average path length, L(Gy) nlnn
Inn)?

o Clustering coefficient =<
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Geometric graphs

Neighbourhood graphs ...... 1

o Let vy,v,...,v, € RY (can be some other metric space)

e Neighbourhood graph G = (V, E):
o V={v1,v2,...,0}
o (v;,vj) € E if the two points are close

@ Directed k-nearest neighbour graph:
o Directed edge (v;,v;) € E if
llvi —v;|| > |Jvi — ul| for at most k — 1 other u € V\{v;}

o Undirected k-NN graphs:
o standard k-NN: (v;,v;) € E if
v; € kNN (v;) or v; € ENN(v;)
o mutual k-NN: (v;,v;) € E if
v; € kNN (v;) and v; € ENN(v;)
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Geometric graphs

Neighbourhood graphs ...... 2

e e-neighbourhood graph:
o Undirected edge (v;,v;) € E if
[oi =il <€

e Example: n = 30 points in [0, 1]?

Directed k-NN, k =3 e-neighbourhood, € = 0.3
08 08
06 06
04 04
02 02
0.0 00
02 04 06 08 10 02 04 06 08 10
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Geometric graphs

Motivation for geometric graphs ...... 1

Not a typical model for social networks

Can model wireless or sensor networks
e Two wireless devices communicate if they are close

Useful for standard data analysis (not related to network data)
e Big complex data often lie on manifolds

o Does not span whole of R?

e Example: Think of all possible 800 x 600 RGB images of cats
— Can they be any arbitrary image in [0, 255)800%600x37

It is often difficult to find / formally define these manifolds

e Can we directly apply machine learning on the manifold?
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Geometric graphs

Motivation for geometric graphs

Truncated SVD reduction (2d) of transformed data (74d)

Original Data (2d)
° .. ...0 ° .‘ o o
o © 4 ° %o
' &O L] Y L] Oc
L4 o’ P L . ° °
° (& C% o e
& CZ °® . ° 0 %08
Ld o L] ]
° oééo % oo o 4 o ©
°2 e 8’%"’ N A4 o o
o o ® ° ° °
.O. . ee ° .0 "‘ e ©
%, % T o

Isomap (0.42 sec)

SpectralEmbedding (0.14 sec)

|\

Statistical Network Analysis

e Data lies in a specific

region in R? (manifold)
o Circles in R?

e S-curve in R?

o Machine learning
o Choose features

o Kernel trick
(choose kernel)

o Graph based
o Learn manifold from
neighbourhood graph

e Spectral embedding,

Isomap
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Random geometric graphs
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Random geometric graphs (RGG)

e Various models for random graphs
e Main component: Nodes are points in some space

e First type of RGGs
o f(+) is a probability density on some space
— example: Uniform distribuiton on unit cube / ball in R¢
° Ula"'avn Niid f()

o (G is k-NN or e-graph on vy, ..., v,

e Second type of RGGs

o V ={v1,...,v,} lie in some space (may not be random)
o G = (V, E) undirected with edges being independent
2
i — U 1
o P((vi,v)) € E) o exp (—'U;)]”) or

o [[vi — |
(similar to Kleinberg’s model)
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Analysis of RGG ...... 1

e Motivation for studying RGG

o Partly mathematical interest
— when are RGGs connected, have giant component etc.

e Provides guidance for choice of parameters

Connectedness of undirected k-NN
Let v1,...,v, ~ f, and G be undirected k-NN on them.
Under some conditions on f, with high probability

e (G is connected if £ > Inn

@ (G is not connected if k£ < Inn

Proof: Skipped.
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Geometric graphs Random geometric graphs

Analysis of RGG ...... 2

Implication of above result

o Fast NN search
o n is large, and V = {vq,..

., Uy} entries in a database
e Given query point v, find its nearest neighbour in V'

o Can we do in less than O(n) time?

@ k-NN graph based approximate NN search
e 1. Start with a random v € V'

o 2. If luv — u|| < |jv — | for all z € NN(u)

— return wu,

— else repeat step-2 with u* = arg min|jv — ||
zENN (u)

@ Above algorithm cannot be accurate if graph is disconnected
o Need to set k> lnn
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Analysis of RGG ...... 3

Density estimation using e-neighbourhood graph

Let v1,...,Un ~iq f on R% Under some conditions on f and e,
E[degree(v;)] = f(v;) - nCqe?

for large n, where Cy volume of unit ball in R,

Proof idea: E[degree(v;)] = > P((v;,v;) € E) = Z P(v; € Be(vy))

iFi
where B(z ) ={y:llz-yll<e
P(v € Be(vy)) = / f(v)dv = f(v;)Vol(Be(v;)) if € is very small
Bc(v;)
= f(vi) - Cae*
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Spectral graph theory
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Spectral graph theory

References

e F. Chung. Spectral graph theory. Chapters 1, 2.
http://www.math.ucsd.edu/~fan/research/revised.html

e U. von Luxburg. A tutorial on spectral clustering.
https://arxiv.org/pdf/0711.0189.pdf
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Spectra of graph Laplacians
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Graph as a matrix

e Graphs can be represented by matrices
o Adjacency matrix, Incidence matrix etc.

e Matrix spectral theory

e Many properties of matrices depend on eigenvalues and eigenvectors

e Fan Chung writes:

o Roughly speaking, half of the main problems of spectral theory lie in
deriving bounds on the distributions of eigenvalues. The other half
concern the impact and consequences of the eigenvalue bounds as
well as their applications.

e Graph Laplacians

e Other matrices defined from adjacency matrix
e Spectra of Laplacians more useful than that of adjacency matrix
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Spectral graph theory Spectra of graph Laplacians

Unnormalised graph Laplacian

e For undirected graph G = (V, E), let
o Ae{0,1}™*" (symmetric) is adjacency matrix
o D € R™*" (diagonal) is degree matrix, D;; = degree(i)

o Unnormalised graph Laplacian, L € R™"*"
L=D-A

e Exercise: For any vector f € R"

(L= S Aulfi— f7) and JTLF= 23 Aylfi— £i)?

J#i ij=1

e Think of f as a function f:V — R that is, f; = f(v;)

o (fi — f;) = how much f changes across edge (¢,j) ... derivative!!l
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Why call it Laplacian?

o Laplace operator: Let f:R? = R

e Computing Af at a point v = (x,y)

2 82
AJW) = 5oz @) + 55 )
~ = + 2

(finite difference)

e Set h =1, and think of v = (z,y) as node in a grid graph
o (x£1,y) and (x,y £ 1) are neighbours of v

o L, be Laplacian of grid graph
o Af(v)~ —Lgf(v)
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Properties of unnormalised Laplacian ... ... 1

Properties of L
Let L be unnormalised Laplacian of undirected graph G

e L is symmetric
e L is positive semi-definite

e Smallest eigenvalue of L is 0, with corresponding eigenvector
1,=(1,1,....,1)T

Proof:

1. A is symmetric, and D is diagonal. So L = D — A is symmetric.

2. fTLf = %ZAU(]Q- — f))? >0 for all f

]

3. (Lf)i= > Ai(fi — f;) for every i, and so L1, =0=0-1,
J#i

Debarghya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 134 / 330




Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian ... ... 2

Node relabelling does not change eigenvalues

Let G’ be obtained from G by permuting node labels.
Let L be Laplacian of G, and L' or G’.

e Eigenvalues of L and L’ are same.

Let P € {0,1}"*" be the permutation matrix for node relabelling, that
is, Pjz; = 1 if node-i in G is relabelled to node-m; in G’

o ' =PTLP

o If (\,v) is eigenpair for L == (\, PTv) is eigenpair for L’

Proof: Exercise.
Start with proof of L' = PTLP. Everything follow from there.
Note: For permutation matrix P, PTP = PPT =1
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Properties of unnormalised Laplacian ... ... 3

Eigenvalues of L and connectivity

Let L be unnormalised Laplacian of undirected graph G.
Let 0 = A1 < A9 <... < A\, be the n eigenvalues of L.

Ao >0 if and only if G is connected

Proof: Part 1 — Assume G is connected.

We show Ay > 0.
OR We show there is exactly one eigenvalue = 0
OR We show if (0, f) is an eigenpair, then f = cl,

(0, f) is eigenpair = Lf =0

0=FTLF = 3 3 Aulhi— £
1,

Each term in sum is non-negative. So sum is zero if each term is zero.
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Properties of unnormalised Laplacian
For every pair i, j, any one of these should hold:
o Ai]’ = 0, that iS, (l,]) Qf E
° fi=f;
If there is a path 1,19, ...,1y
o fiu=fin=---=Ti
Since G is connected
o there is a path between any two nodes

o fi=fjforalli,j = f=cl,
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Properties of unnormalised Laplacian
Part 2 — Assume G is disconnected

We can split V' into two disjoints sets Vi, Vo so that there is no edge
between V7 and V5

Let 1y, € {0,1}" with i*" coordinate 1 if i € V}
and define 1y, similar for V5

Observe:

° 1‘@11\/2 =0 (we also write as 1y, L 1y,)
o L1V1 =0 and le2 =0

There are two orthogonal eigenvectors for the eigenvalue 0
Hence, eigenvalue 0 has multiplicity at least two = Ay = 0.
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian ... ... 6

Eigenvalues of L and connected components
Let graph G has k connected components V1,..., V.
e L has exactly k zero eigenvalues

e The eigenspace of the eigenvalue 0 is spanned by 1y,,..., 1y,

Let G1 = (V1, E1),...,Gr = (Vi, Ex) be the k connected subgraphs.
L; be the Laplacian for G;.

@ Spectrum of L is union of the spectrum of Lq,..., L

Note: For symmetric matrix M
e Spectrum of M = set of all eigenvalues of M
e Eigenspace of A\ = {z : Mz = \z}
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Spectral graph theory Spectra of graph Laplacians
Properties of unnormalised Laplacian ... ... 7

Proof: Start with last part. After reordering the nodes, we can write

Ly 0 - 0
0 Ly --- 0
L= . )
0 0 - L

Verify the following

e Let (A, v) be an eigenpair for Ly

@ Define v as v; = v; if i € V, and 0 otherwise

@ Then (\,v) is eigenpair for L
Doing this for every eigenvalue of every L, proves last part.
First two statements follow from above since

e Each L, has exactly one eigenvalue 0

e Corresponding eigenvector is constant on Vj
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Properties of unnormalised Laplacian ... ... 8

Algebraic connectivity, Ag

G is a connected graph, and A9 is smallest non-zero eigenvalue of L.

> Ai(fi = 15)°

Ao = min 1< 5
fii, > f;
1
Proof: Note fILf = B ZAij(fi - fj)2 = ZAij(fi - fj)2
i,j 1<j
fTLf

So we have to show Ay = }Ilnlri 7T

To prove this, we need Rayleigh’s principle (next slide).

The result follows by combining Rayleigh’s principle with the fact
A1 = 0 with corresponding eigenvector 1,.
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Properties of unnormalised Laplacian ... ... 9

Rayleigh’s principle: (follows from spectral decomposition)

@ Characterises eigenpairs as solution for optimisation problems

e For symmetric matrix M € R™*":

o Let eigenvalues be A\ < Ao < ... < A,
e v; be an eigenvector corresponding to A;

Mz T Mz
© My =min—7— and A\, =max——
z#0 T X z#0 T X
. 2 Mz 2 Mz
o )\, = min = —n— = max — ——
#£0 Tt T #0 rtx
rlvi,..,vp_1 T LlVgi1,.5Un
2T Mz 2T Mz
® vy = argmin —— = arg max —
x#0 -z x#0 -z
rlvy,..,vE_1 Tlogt,...,0n
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Normalised Laplacians

Two versions:
@ Symmetric normalised graph Laplacian
Lgym = D7Y2LD™Y2 = — D71/2AD~1/2

o Spectrum of Ly, related to important graph properties
e Key property:

2 2
T _ ! i ) (i T
et =350 (f - ) S0 (Fr - i)

)

o Random walk graph Laplacian
L.,=D'L=I-D"1'A

o L, connected to random walks on graphs (will discuss later)
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L sym VS Lrw

Eigenvalues of Ly, and L.,
Q@ Ly is symmetric and positive semi-definite
@ L,, may not be symmetric, but all eigenvalues are non-negative
@ () z) eigenpair for Ly, <= (\, D'/2z) eigenpair for Lgyn,
© (0,1,) is an eigenpair for L,,,
o (0, D1/21n) is eigenpair for Lgym,

Proof: Exercise.

1 — similar to L

3, 4, 5 — use definitions of L,,, and Ly, and compute
2 — follows from 1 and 3
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Ly and connected components

Lgym and connected components
Let graph G has k connected components Vi, ..., V.
® Lgym has exactly k zero eigenvalues

e Eigenspace of the eigenvalue 0 is spanned by D/ My, , DY 21Vk

Proof: Exercise. Similar to the unnormalised case.

Remark:

Many results, like above, for L, Ly, Ly, also hold for weighted
undirected graphs.

But all edge weights must be non-negative (Why?)
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Eigenvalues of Ly, .. ... . 1

Largest eigenvalue of Ly,
Let Xn be the largest eigenvalue of Ly,

”LsymH2 — Xn < 2

. - T 2T Loym
Proof: Rayleigh’s principle: \,, = I;l;(}){ Ty I|IL

2
T _1 N T; T
x Lsymx—2 E Aij <\/E \/CTJ>

symll2  (since T Lgyma > 0)

2%}
o | 2 2 2
SZAij.(di-dei]-) note: (a+b)” <2(a” +b7)
i,j v J
ajl
DR MR
i g
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Eigenvalues of Ly, .. ... . 2

Smallest non-zero eigenvalue of Ly,

Let G be a connected graph.
Let Az be the smallest non-zero eigenvalue of Ly,
Aii(fi — £4)?
Ao = min l% o ’ = min I'Lf
> yip1, > fRd; - fipi, fTDf

7

Proof: Recall Xl = 0 with eigenvector D'Y/?1,

Rayleigh’s principle: 2
S Ay (wz % >
o o' L i Va4
2= min —— = min
x#0 xlz x#0 Zx?
z1D'/?1, z1D'/?1, i

Replace x by f where f; = j:T Check > fid; =0 (f L D1,)
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Eigenvalues of Ly, .. ... . 3

A key quantity in spectral graph theory:

° XQ related to many interesting properties of graph

Bound on graph diameter

Let diam = diameter of unweighted graph G = (V, E).

diam > ————
2|E| - Ao

If G is weighted, replace 2|E| by > . d;.
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Eigenvalues of Ly, .. ... . 4

Proof: Bound holds for disconnected graph.
Assume G is connected.
> Aij(fi — 1)?
Recall \p = min —~
coall b = i =g
i
Let f achieves the minimum in above

] leln:ZifidiZO

o Let v = arg max |f;]
eV

@ There is u € V such that f,f, <0 (fu, fo have opposite signs)

e Let P = (ig,12,...,i¢) be shortest path between ig = u and iy = v
— note: length of path ¢ < diam

a Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 149 / 330



Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Ly, .. ... . 5
£—1 £—1
Note: fv - fu = I;OfikJrl - flk S (fU - fu)Q < gkz::()(f'ikJrl - flk)Q

(using Cauchy-Schwarz)

~ ; A (fi = 17)?
Now )\2 = ]ZW
> Au(fi— £i)?
%W note: Zdi =2|E|

> (fi— )
(i,j)€P
72 2/E]
$(fo = fu)? 1
Z e 2o

v

v

summing only over P, not all edges

note: (f, — fu)2 > f2

2|E| - Aa
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Cheeger constant ... ... 1

G = (V, E) is an undirected graph

e unweighted or edges have non-negative weights A;;

Let S C V be a subset of nodes, and S = V\S
e Volume of a set: vol(S) = > d;
i€S
o Cut value: cut(S9,5)= > A
i€S,je8
o If G is unweighted, cut(S,S) = #edges between S andS

@ Cheeger constant

) cut(S, S)
= h = —
ha érpclgh(S), where h(S) min{vol(S), vol(S)}
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Spectral graph theory Spectra of graph Laplacians

Cheeger constant ... ... 2

hg shows how well-connected a graph is

Examples (unweighted graphs):
@ (G is not connected = hg =0

1
e G is complete graph = hg ~ 5

4
o G is barbell graph — h¢ ~ —
n

Cheeger cut (cut that achieves h¢) has:
@ both sets S, S are large

— high vol(S) and vol(S)

o few connection between S, S
— small cut(S9, S)
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Cheeger constant ... ... 3

Cheeger inequality for graphs

A =
?2<hg< 2

Proof: We prove only %Xg < hg
Let S, S be a Cheeger cut, and define f € R” as

1 _
forie S, and f;=-— ()foriES

S
~ SILf  (cut(S,S) | cut(S,S)
fJ_Dln,andso)\gngDf—(vol() + 1()>§2hG

1
fi= vol(S)

(exercise)

Will skip other part. If interested, see Chung’s book (Theorem 2.2) or
ML lecture slides.
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Communities in networks

References

e U. von Luxburg. A tutorial on spectral clustering.
https://arxiv.org/pdf/0711.0189.pdf

e M. E. J. Newman. Spectral methods for network community
detection and graph partitioning.
https://arxiv.org/pdf/1307.7729.pdf
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Spectral clustering
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Communities etworks Spectral clustering

How do we define communities?
e Many edges within each community
o Few edges between two communities

e Which are the communities here?
— How do we find them (algorithmically)?

Statistical Network Analysis Tiibingen WS 18/19 157 / 330



[O7c35585: NI IR I IIA I 'l Spectral clustering

The minimum cut approach ...... 1

L cut(S, S) = Z Aij
i€S,j€S
e Find S = arg min cut(S, S)
Scv
e Meaning:
Remove the minimum number of edges so that graph is disconnected

—

—~ _ Mmincut
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The minimum cut approach ...... 2

@ Mincut can be solved in polynomial time

e May not produce balanced partition

mincut
/
/

—@
»

e Balanced partition helps when we want to split the network

e for storage
o for easier / faster network analysis
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Balanced graph partitioning ...... 1

e Approach 1: Add constraints to make sets nearly equal

Balanced mincut:

min cut(S, S)

ScV
st 1S < (1 +e)|‘2/|
S| < (1+ e)|‘2/‘ (note: |S| = #nodes in S)

e Balanced mincut is a NP-hard problem
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Balanced graph partitioning ...... 2
e Approach 2: Modify objective to induce balancing

cut (S, S)

h = - S
Cheeger cut: h(S) min{vol(S), vol(S)}

Normalised cut: N-Cut(S, S) = cut (S, 5’) ( 011(5) + 11(S)>
AV VO

11
Ratio cut: R-Cut(S, §) = cut(S, S) <\s\ \S!)

e The terms |S| or vol(S) make partition more balanced ... Why?

e Minimising these objectives are also NP-hard
o But, we can relax the optimisation problem (for N-Cut, R-Cut)
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Spectral relaxation of Ratio Cut ...... 1

e Min R-Cut problem:

min R-Cut(S, S)
Scv

o Re-writing the objective: Let fs € R™ such that

ifie S

(fs)i:
Lh ifieS
V-S|

Exercise: Show that R-Cut(S,S) = fI'Lf,

e Min R-Cut problem (rephrased):

: T
min L
la% Is LFs
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Spectral relaxation of Ratio Cut ...... 2

e Exercise: Verify that ||fs]l2 =1 and fs L 1,, for any S

Relaxation:

e f need not have the exact structure of fs for some S

o We still impose the constraints || f|ls =1 and f L 1,

Relaxed R-Cut problem:
. T
L
i, J7LS
s.t. f L1,

Ifll2 =1

Spectral connection: What is the optimal f for above problem?
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Spectral relaxation of Ratio Cut ...... 3

Unnormalised Spectral Clustering: ... for bi-partitioning

@ Compute f = eigenvector for second smallest eigenvalue of L

© Let S={i: f; >0},and S =V\S
... split based on intuition from f;

Remark:

o If graph has 2 connected components, the algorithm returns them

e What happens if graph has more than 2 connected components?
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[O7c35585: NI IR I IIA I 'l Spectral clustering

k-way partitioning ...... 1

e R-Cut for bi-partitioning;:
Let5’1:Sand52:§:S'1
t S t(51, S
R-Cut(Sy, 85) = & (S1,52) 4 o (51, S2)

151 |52

e R-Cut for k-way partitioning;:
Let V=51USU...USj, where SjﬁSgZ@
k

cut(Sy, S
R-Cut(Si, ..., S) = ZW
/=1

e How do we write R-Cut(S1, ..., Sk) in terms of L?
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[O7c35585: NI IR I IIA I 'l Spectral clustering

k-way partitioning ...... 2

@ Define fi,..., fr € R™ such that

fr= Ls, that is (fo)i =
| S

| S|

0 otherwise

o Exercise: Let F = [f1,..., fi] € R™*. Show that
o [[fello=1and f, L f; for £ # j, that is, FTF =1

cut(Sy, Se)

o flLfi= 5]

k
o R-Cut(Sy,...,8) = > fI'Lfe = Trace(FTLF)
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[O7c35585: NI IR I IIA I 'l Spectral clustering

k-way partitioning ... ... 3

e Min R-cut problem:
min  R-Cut(Sy, ..., Sk)

51555k

OR

min  Trace(FTLF)
FeRnXxk

s.t. F'=[f1,..., fr] has above structure

o Relaxed R-cut problem:

min Trace(FT LF)
FeRnxk

st. FTF =1

e Solution: F' = matrix of k leading orthonormal eigenvectors of L
... corresponding to k£ smallest eigenvalues
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[O7c35585: NI IR I IIA I 'l Spectral clustering

k-way partitioning ...... 4

Notation: Let Fjq be it" row of matrix F

Unnormalised Spectral Clustering: ... for k-way partitioning
@ Compute F' = matrix of k leading orthonormal eigenvectors of L

@ Normalise each row of F, that is, let F € Rnxk
~ F;
Fo =
T Pl

@ Think of ﬁl., . 7va as n points in R*
— Use k-means clustering to group them into k clusters

Q Let Sy = {z : E. grouped into ¢* cluster}
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[O7c35585: NI IR I IIA I 'l Spectral clustering

k-way partitioning ... ... 5

Intuition for row normalisation and clustering:
1s,

V15

o After normalisation: Fj = 1{i € Sy}

o Let F = |[f1,..., fx], where f; =

F=[1g,...,1g] € {0,1}x* ... cluster assignment matrix

o If we cluster rows of above ﬁ, the clusters correspond to S1,..., Sk
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Performance of unnormalised spectral clustering ... ... 1

Example:

e Points sampled from mixture of 3 Gaussians
e 3-way partitioning of k-NN graph
o Note: Smallest three eigenvalues of L are close to 0

3-D plot of ﬁl., .. ,ﬁn. shows the 3 groups

Al,...,AlO
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Performance of unnormalised spectral clustering ... ... 2

o In general, no guarantee that

solution of spectral relaxation = optimal R-Cut

e Example: Cockroach graph on n = 4k nodes
e optimal R-Cut value = z

e R-Cut value for spectral solution = 1

v v Vi 1 Vi1 Vi) Vi
L)
1

—
. relaxed
min R—cut\ — -
- R-cut
Vak-1 V3ke1 V3k V3k-1 Vok+1
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Performance of unnormalised spectral clustering ... ... 3

e Guarantees hold for graphs that have some community structure
[Peng, Sun & Zanetti, COLT-2015; Rohe, Chatterjee & Yu, Ann. Stat.-2011]

@ Below is a result for stochastic block model

G ~ SBM(s, k, p, q) if:
o V=5,USyU...USk with |S¢| = s

o All edges are independent with

. | p ifi,5 €5, for some £
P((%J) € E) B { q if 4,7 belong to different groups

Consistency of spectral clustering
Let p,q € (0,1) with p > ¢. Let G ~ SBM(%,2,p,q).

Unnormalised spectral clustering outputs the underlying split with
probability 1 — o(1) as n — oo.
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(SIS0 BT AR NI  Spectral clustering

Normalised cut ...... 1

e N-Cut for bi-partitioning:

N-Cut(S, §) = C‘if)(lf : f) 4 s, )S)

e N-Cut for k-way partitioning:
Let V=51USyU...USy, where S; NS, =0

k —
cut(Sy, Sy
N—Cut(51, ey Sk;) == Z V(gl(S))
=1 ¢
i 1
=> " ifLs where f, = ——=2L_
=1 vol(Sy)

e Note: fETngzl and ffogzOforj#E
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Normalised cut ...... 2

o Let F =[f1,..., fr], and U = D'/2F

@ Relaxed N-cut problem:

min  Trace(FTLF)
FeRnxk

st. FTDF =1
OR:

: T
,in Trace(U" LoymU)

st. UTU =1

@ Spectral solution:
U = matrix of k leading orthonormal eigenvectors of Lgym,
... corresponding to k£ smallest eigenvalues
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[O7c35585: NI IR I IIA I 'l Spectral clustering

Normalised cut ...... 3

Normalised Spectral Clustering: ... for k-way partitioning
@ U = matrix of k leading orthonormal eigenvectors of Ly,

@ Normalise each row of U, that is, let U € Rnxk

- U
Ue = e
[Uiel|2
@ Use k-means clustering to group 171., ceey Une € RF into k clusters

Q Let Sy = {z :Use grouped into (" cluster}

Remark:

e Spectral clustering is one way to relax R-Cut / N-Cut problem

@ Another popular relaxation: Semi-definite programming
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Modularity
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Modularity

Spectral graph theory: 0 = Xl < Xg <...< Xn eigenvalues of Ly,

@ \; =0 =— G has at least k disjoint communities
o Cheeger’s inequality: hg < 2}:2
Small Xg =—> G has > 2 sparsely connected communities

e Higher-order Cheeger inequality: [Lee, Gharan & Trevisan, 2011]

Small Xk —> G has > k sparsely connected communities
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Communities in networks [EVIYsRNIESSTn

Modularity ...... 1

Statistical approach for quantifying community-ness of network

e Community: Sub-group of nodes
— More connection among themselves than outside community

Which of the following have communities?
o G~ G(n,p)

o G~ SBM(s, k,p,q) for p>q
o G~ CRM(dy,...,dy,)

e Recall: For G ~ CRM(dy,...,dy)

P((i,j) € E) = did;

2m
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Communities in networks [EVIYsRNIESSTn

Modularity ...... 2
e Let S C V,and Gg = (S, Es) be the sub-graph on S

@ Under Configuration model

. d;d;

BE] = 3 P(6.) € B) ~ 3 9%
ijes ijes
1<j 1<J

Call S a community if |Es| > E[|Es]]

o Let S1,...,S; be partition of V'
— 1V — {51,..., Sk} is cluster assignment function

Modularity(S1, .., Se) — Z(Aij ) 100(0) = w(3)

2m
7.]

Lk
EZ’ESA_ [|Es|]
/=1
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Communities in networks [EVIYsRNIESSTn

Modularity maximisation ...... 1

What is the maximum modularity for a k-way partitioning?

@ Modularity matrix, B € R™*™
d;d; dd” T
Bij:AiinZTn? or B:A*% d:(dl,,dn)
1 k
o Modularity(Sy, ..., S) = 5~ > 1§,Blg, (Verify)
/=1
@ Modularity maximisation:

1
max ——Trace(F? BF)
FeRnxk 2m

st. F=[1g,...1g,] ...again NP-hard
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Communities in networks

Modularity

Modularity maximisation

o We relax the problem ... will look at k = 2 case only
e For SCV, let se {—1,+1}"
) +1 ifie S
T -1 ifie§
Modularity (S, S) = 1 ZBM
, 5iS;j +1

note: —5 = 1{y(i) =

e Maximum modularity split:

S*

arg max s! Bs
se{—1,41}n
Observe: [|s|l2 = v/n
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Communities in networks [EVIYsRNIESSTn

Modularity maximisation ...... 3

o Relaxing the hard constraint:

§ = arg max s! Bs

sllz=v/n

@ Spectral solution:
s = eigenvector of B corresponding to largest eigenvalue

Spectral modularity maximisation: ... for bi-partitioning

@ Compute s = eigenvector of B corresponding to largest eigenvalue

Q@ Let S={i:5 >0} and S=V\S
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Graph embedding and visualisation
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Graph embedding and visualisation

References

@ Surveys for graph embedding algorithms:
https://arxiv.org/pdf/1705.02801.pdf
https://arxiv.org/pdf/1709.07604.pdf

e Fruchterman-Reingold method for visualisation:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.
8444&rep=repl&type=pdf

e MDS, Isomap and more:
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/
readings/tutorial_stat890.pdf
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Graph embedding (spectral methods)
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Graph embedding (spectral methods)

Graph embedding and vis

Graph embedding

e Which representation says something about the network structure?

-04.
0200 "
06 55 O

e Graph embedding:
e Find points z1,...,x, € RP, where x; = location of node-i

e Representation should reflect graph structure

e Example: ﬁl., ..., F,e in spectral clustering

e Graph drawing / visualisation:

o Embed graph in R? or R3... and a bit more
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Graph embedding and visualisati Graph embedding (spectral methods)

Laplacian embedding

o Idea: z; and x; should be close if (i,j) € E

e An optimisation problem

> Aigllz: — )

»Tn ERd ’L<]
o]
ZAWHJ}% -T]H *Trace (XTLX) where X =

e Without constraint, we get trivial solution X =0
— Add constraint, XX =T or X'DX =1

e Solution:
Leading p eigenvectors of L or Ly, (depending on constraint)
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Graph embedding and visualisati Graph embedding (spectral methods)

Local linear embedding

o Idea: Draw every node at the centre of its neighbours

Z"’fa

JNl

@ May not be achieved, and so, optimise

2
n
. _ 2
min Z mi—ZAij:rj = HX—D 1AXHF
x1,...,on ERY pa i
e Can be re-written as
min Trace (XTLT Ler)
XcRnxd
st. XTX =1 (avoids trivial solution)

@ Solution: Leadmg p eigenvectors of L wlrw
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[€3:953 SIS osl XIS LG PP GER IV ENENIEENatls Ml CGraph embedding (spectral methods)

Applications of graph embedding

e Visualising a network
o Apply standard machine learning tools on networks
o Community detection = clustering Laplacian embedding of nodes

o Anomalous nodes = outlier detection in embedded nodes

e Semi-supervised learning:
Given labels of few nodes, infer those of other nodes
e Big picture: Graph embedding = feature learning for nodes
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Force-based algorithms
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Graph embedding and visualisation [EESICIEISETICYe RENEIeIoTnsbesE]

Graph visualisation

e Similar to embedding into R? or R?
e For p > 3, we cannot obviously visualise

@ The different layout methods in NetworkX

@ We may use LLE or Laplacian embedding
e May not be good for visualisation

e Let G = union of 2 disjoint cliques

— What is its embedding in R2??

e Requirements of a good visualisation
e Nodes should not overlap, and well spread

e Adjacent nodes close, non-adjacent nodes far

e Densely connected communities clearly visible
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Graph embedding and visualisation [EESICIEISETICYe RENEIeIoTnsbesE]

Fruchterman-Reingold algorithm ... ... 1

o Force based drawing
e Place adjacent nodes close, but not too close

e Based on a physical laws of attraction and repulsion
o Let x1,...,2, € R? be the locations of the nodes

e Every pair of nodes repel each other

2
fr(u,v) = K

B ”xu — Ty ||
o fr(u,v) =00if z, =z,

e Nodes cannot overlap, and well spread
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Graph embedding and visualisati Force-based algorithms

Fruchterman-Reingold algorithm ... ... 2

e Adjacent nodes also pull each other closer
2
Ty — T
fulu,) = 122
o fo(u,v) large if (u,v) € E, but ||z, — z,|| large

e Adjacent nodes tend to be close

Force
ey

Distance

[Image: Fruchterman & Reingold]
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Graph embedding and visualisation [EESICIEISETICYe RENEIeIoTnsbesE]

Fruchterman-Reingold algorithm ... ... 3

e Forces that act on node-u
o For every v such that (u,v) ¢ E
F,(v) = fr(u,v)T,xy
(zpxy, = unit vector along x, to z,)

o For every v such that (u,v) € E
Fu(v) = fr(u7 ’U)xvxu + fa(u7 U)xuxv
o All forces on v must cancel each other (at equilibrium)
o o

fo(u,V,) €—mmf (U,V,)

> Fu(v)=0 fluv) €
v#U
e Solving this for every u provides the location z1,...,z,

o Algorithm skipped (see reference if interested)
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Graph embedding and visualisation Isomap

Metric multi-dimensional scaling (metric MDS)

@ General technique for embedding data
e Let vy,...,v, be points in a metric space (V,d)
e We do not observe the points

o But we know the pairwise distances d(v;,v;) for all ¢, j

e Metric MDS problem:
e Find points z1,...,z, € R? that optimize
. 2
min 35 (d(v, v) — [lzi — )

T1yeeeyTm i<j

o Can replace || - || by another metric to embed in a different space

e Can we embed graphs using MDS?
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Graph embedding and visualisation Isomap

Metric multi-dimensional scaling (metric MDS)

@ General technique for embedding data

e Let vy,...,v, be points in a metric space (V,d)
e We do not observe the points

o But we know the pairwise distances d(v;,v;) for all ¢, j

e Metric MDS problem:
e Find points z1,...,z, € R? that optimize
. 2
min 35 (d(v, v) — [lzi — )

T1yeeeyTm i<j

o Can replace || - || by another metric to embed in a different space

e Can we embed graphs using MDS?
o Let V be the vertex set, and d = shortest path distance

o Kamada-Kawai layout: variant of this approach
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Graph embedding and visualisation Isomap

o Isomap estimates “intrinsic geometry of a data manifold”

Isomap (0.42 sec)

o Example:
o There is a S-curve in R?

2
e Points inside the S-curve are ‘

[Ny (e 5,
S

uniformly distributed 0 A .
o How can we verify uniformity *. o ye

given the points in 3-dim? 2 “

OR Apply ML on this data? I R

@ Here, points lie on a low-dimensional manifold
o Isomap shows how the points are distributed on this manifold
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Method

@ Generate k-NN graph from the points

@ Compute dgp(u,v) for every u,v

@ Embed the data in a lower dimensional space using metric MDS

Remarks: We use graph ...
@ as intermediate step to embed data into low-dimensional space

e more generally, as a tool for manifold learning
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Random walks on graphs
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Random walks on graphs

References

o L. Lovasz. Random walks on graphs: A survey
http://web.cs.elte.hu/~lovasz/erdos.pdf

e F. Chung and W. Zhao. PageRank and random walks on graphs
http://www.math.ucsd.edu/~fan/wp/lov.pdf
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Basics of random walk

Basics of random walk
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I3RSV I SN NNl Basics of random walk

Random walk on graph

e G = (V,E) is an undirected unweighted graph

We start from node vg at time ¢t =0

e At time t = 1, randomly pick a neighbour of Xy and move there.
Call it X

At time ¢, randomly pick a neighbour of X;_; and move there.
Call it X;

o (Xo, X1, Xo,...)is arandom walk on G
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I3RSV I SN NNl Basics of random walk

Markov chain and random walk ...... 1

o Let {X;} be a collection of random variables, indexed by
parameter ¢
— Think of ¢t as time: t e Rort=20,1,2,...

o X, takes values in S (called states of chain)

@ Independent trial process:
For every ty, ..., distinct, Xy, ..., Xy, are mutually independent

e Markov chain (first-order):
The value of X; depends only on previous time instant

Example (walk on G):
Xi1=1 = X;is a neighbour of ¢ (no influence of X;_9)

hya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 203 / 330



I3RSV I SN NNl Basics of random walk

Markov chain and random walk ...... 2

@ Markov chain is
o finite if S is finite

o discrete / continuous state if S is discrete / continuous

o discrete / continuous time if ¢ takes discrete / continuous values

o Examples:
e Random walk on graph: § =V finite, discrete time

e Brownian motion of molecule: S = R3 continuous state and time

o Transition probability in discrete time Markov chain:
Fori,j € S,

Mi(i,5) = P(Xy = j| Xe—1 = 1) can depend on ¢
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I3RSV I SN NNl Basics of random walk

Markov chain and random walk ...... 3
e Time-homogeneous Markov chain:
e Transition probabilities do not depend on ¢
o Characterised by single transition kernel M (-, -)

e For finite Markov chain, M represented by a matrix
M;; =P(X; = j|Xi—1 =1)

o Exercise: M is a row stochastic matrix, i.e., Y M;; =1
J

@ k-step transition probabilities:
Let M®*) be a matrix with M(k) P( Xy = j|Xe = 1)

Exermse Show that M*) = Mk
Hint: M = ZZ Mo My;
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I3RSV I SN NNl Basics of random walk

Random walk on R

@ A gambler goes to a casino, and bets 1 euro in each round

o The gambler gets 2 euros on winning, else loses the 1 euro.
Win probability p

X; = net gain of gambler after ¢ rounds
P P P

1-p 1-p 1-p

Many interesting probability problems based on this

o Example: Gambler starts with N euros, and keeps playing.
With probability 1, the gambler will get broke eventually (skipped)
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I3RSV I SN NNl Basics of random walk

Random walk on graph — formally ...... 1

o S =1V (set of vertices)

e Transition probability: For any ¢,

1
o HGeEE

P(oy = jlog—1 = i) =
0 if(i,j)¢E

e Transition probability matrix M = D™'A =1 — L,
Mij = P(’Ut = j|Ut,1 = Z)

o M = D7'A also for weighted / directed graphs
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I3RSV I SN NNl Basics of random walk

Random walk on graph — formally ...... 2
e Let vy be sampled from probability mass function p(©)

o Let p) = p.m.f for v;. View p(®) as a n-dim row vector
t .
) =P(o, =)
o Exercise:
) p(l) = p(O)M’ p(t) = p(tfl)M
o pUth) = p MK for any k=0,1,2,...

o Let M®) € R™™ with M\ = P(veyy, = jlv, = i)
Recall M*) = Ak

@ What happens to the walk as t — 00?
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I3RSV I SN NNl Basics of random walk

Stationary distribution ...... 1

e 7 is stationary distribution of the random walk if:

p =7 — p® = 1 for every ¢

@ Spectral connection:
— 7 satisfies m = 7w M

— 7 is a left eigenvector of M corresponding to eigenvalue 1

@ Does there exists such a 77
d;
m
— Verify that m = 7M and 7 is a p.m.f.

— Set m; =

e How many stationary distributions can a graph have?
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I3RSV I SN NNl Basics of random walk

Stationary distribution ...... 2

e What are the eigenvalues of M?
M=I1I—-Lyn = AMM)=1-XLw)=1—ALsym)

o Exercise:
— All eigenvalues of M are real if G is undirected

— All eigenvalues of M lie between [—1, 1]
e G is connected = M has exactly one eigenvalue equal to 1

@ The eigenvalue 1 has:

d d
— T = —1, ..., —= | as left eigenvector, m = 7 M
2m 2m

— 1, as right eigenvector, M1, =1,
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I3RSV I SN NNl Basics of random walk

Long term behaviour ...... 1

If p©) = 7 (stationary distribution), then p() = 7 for all ¢
What happens if p(©) is arbitrary?

Assume G is connected:
— G is not bipartite = lim p(®) = 7
t—o0

— (@ is bipartite
— p® may oscillate between two p.m.f. for odd and even ¢

If G is not connected:
— tlim p) depends on which connected component we start
—00
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I3RSV I SN NNl Basics of random walk

Long term behaviour ...... 2

Bipartite case — Example

e Consider a complete bipartite graph

Assume that walk starts on node-1, p(0) = (1,0,...,0)

o p!) = uniform on 4, 5, 6
o p@ = uniform on 1, 2, 3

e This oscillation goes on between every odd and even ¢
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Random walks on graphs

Basics of random walk

Long term behaviour
Random walk on connected non-bipartite graph
Let G be a connected non-bipartite graph.

Consider a random walk on G with initial distribution p© = p

t—o00

d.
lim p(t) = tlggo pM! =T, where 7; -

Proof:
e Need to analyse M*

— Cannot use eigen decomposition as M = D~ A is asymmetric
o Write M = D~Y2ND'2 where N = D"V2AD Y2 =T — Ly

o Let 1> X1 > X >...> A\, > —1 be eigenvalues of N
(Why the upper and lower bounds?)
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I3RSV I SN NNl Basics of random walk

Long term behaviour ...... 4

e Facts about N (exercise)

1
e A\ = 1 with eigenvector v; = 7D1/21n
V2m

e M\ < 1if G is connected
e A\, > —1 if G is non-bipartite (skip this proof)
o M*=D7'2N'D'2 and Nt =3 Xwv!

e We now analyse pM*
n

pM' = Z /\ﬁpD_1/2111'1);‘FD1/2
i=1

1 n
= TplnlgD + Z A prl/zviviTDl/Q
g 5 :’5’

=T
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I3RSV I SN NNl Basics of random walk

Hitting and commute times ...... 1

@ Shortest path distance
— Distance between two nodes if we take shortest route

o How far are two nodes if we follow a random walk?
Hitting time / Access time
o Assume vy =1
o Let Tjj =min{t >0:v, =j} (smallest #steps to reach j from 1)

e Hitting time, H;; = E[T;;|vg = 1] (expected time to reach j from i
g J J
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I3RSV I SN NNl Basics of random walk

Hitting and commute times ...... 2

Commute time / Commute distance
o In general, Hi]’ 75 Hji

e Commute time, C;; = H;; + Hj;

(expected time to go from ¢ to j and back)

Computing hitting and commute times

Let Llym € R™™™ be the pseudo-inverse of Ly,

() ()
JJ Jt

d; d;d;
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I3RSV I SN NNl Basics of random walk

Hitting and commute times . ..... 3
Proof: Will skip the full proof, but discuss some key points.
Complete proof in Luxburg, Radl & Hein, JMLR, 2014.

Steps discussed here:

— What is pseudo-inverse?

— Basic idea for computing H;;
Pseudo-inverse:

n
o Let B € R™" symmetric with spectral decomposition Y prugu}

k=1
n 1 T
o B~ =" —uu, exists if all eigenvalues are non-zero
k=1 Mk
e Bl = > —uguy is pseudo-inverse
ke #£0 Mk
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Hitting and commute times ...... 4

Computing H;;:
] H” - 0

e For i # j,

1 -1
Hijj=1+ dﬁZH“ =1+ (D 'AH),
brsi
— Tj; = 1+ T}, for any £ neighbour of i

1
— After one step, we reach any neighbour of ¢ with probability A

(2

o Can be re-written as (Ly,H);; =1 for i # j

e Solving the set of equations for ¢ = j and ¢ # j gives the result
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Lazy random walk

o If graph has no self loop,
— walk always moves away from current location

e Lazy walk: Move to a neighbour with probability « € (0, 1), else
stay at current position

@ Assume there is no self loop
B N 1l-a ifyj=i
Mij = P(vpyr = jlo = 1) = { a/d; ifj#1i, but (i,) € E

e More generally, M = (1 — a)l + aW

— W = D1 A = transition matrix for the standard random walk
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Random walk with restart

Let s be seed node from which walk starts

Restart: With probability 1 — «, we start afresh from s

. . l—a ifj=s
° Mij:P(”t“:]'”t:Z):{ a/d; if?z’ j)E€E

M= (1-a)esel +aW

— e, = st standard basis vector

e Alternatively, one can write in terms of the distribution

ptD = (1 — a)el + ap®W
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Random surfer (walk behind PageRank)

e With probability 1 — a, move to a random node

— Helps to reach different components in disconnected graphs

11—« Aij

() Mij = ]P)(UH_1 = j|’Ut = Z) =

11—«

— M= 1,15 + oW

o In terms of the distribution

ptl) = - 1T 4 apOw
n
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Personalised PageRank (walk)

Restart: Fixes a specific seed node for restarting

— pt) = (1 — a)el + ap®W

Random surfer: Restarts from a uniformly random node

1-a
- pl) = Tlg + ap®Ww

Personalised PageRank: A generalisation of both

o Let g be a given distribution over the nodes
— Restart by randomly choosing a node according to ¢

= pt) = (1 — a)g + ap®OW
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IR ISRV WG NN Il Modified random walks

Random walk on weighted graph

e A = weighted adjacency of graph, and d; = ) j Ajj

A
o M;j =P(vip1 = jlug =1) = dZ‘J — M=D14

)

o Exercise:
Can we write each of the above walks in terms of walks on some
weighted graph?
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PageRank and Eigen-centrality
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I3RSV 'EHG NN Il PageRank and Eigen-centrality

PageRank for undirected graph

e Under random surfer model with « € (0, 1)
1—
P+ — nﬁ 17 1 ap®w

— pl(.t) = probability that walk is at node-i at step-t

e What happens as t — oo?
— Convergence to a stationary distribution

l-«a
Tpr = le + amp, W

e PageRank vector is the unique stationary distribution in this case
l-« —
Topr = 171 —aw) ™
n

o Why don’t we need to assume connected and non-bipartite?
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I3RSV 'EHG NN Il PageRank and Eigen-centrality

More centrality measures

e High (7,,); = node-i more likely to be frequently visited

— Measures importance of node

e Instead of random surfer, consider standard random walk

om’ 7 2m

— Does 7 correspond to a centrality measure?

d d
— = (1 .. n), steady-state distribution of walk

Eigen centrality:
o 7 = left eigenvector of DA corresponding to largest eigenvalue

e Instead, simply consider eigenvectors of A

— Av = \v where A is largest eigenvalue of A

e v; = eigen centrality of node-i
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Information propagation in graph
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Semi-supervised learning Information propagation in graph

Random walk to information propagation

o Standard random walk: pt+1) = pA)
1

0) _ . (1)_7 S
p® = ¢, — P; _difor] {

— probability mass at ¢ gets distributed to its neighbours

e Personalised PageRank (PPR): ptt1) = (1 — a)q + ap®W
0 =g=e¢ = pz(-l):l—a, p§1):%forj~i

— node-i retains « mass, and rest is distributed among neighbours

pl

e Same occurs if p(®) is replaced by an arbitrary vector f*) e R™

— In each step, node-i shares its information fi(t) with neighbours
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SSL: Problem and algorithm
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Semi-supervised learning SSL: Problem and algorithm

Semi-supervised learning problem

Reference:
@ Zhou et al. Learning with Local and Global Consistency, NIPS-2004.
https://papers.nips.cc/paper/
2506-1learning-with-local-and-global-consistency.pdf

Given:

e Data points, x1,...,2¢, Tpt1,...,Tn € R
e Labels, y1,...,y0 € {—1,1}

e Similarity matrix A € R™*"™
— A;; = similarity score between z; and z;

Problem: Infer labels of xy11,...,2,
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Semi-supervised learning SSL: Problem and algorithm

Label propagation ...... 1

Consider graph with (weighted) adjacency matrix A

Define a row vector g € R"
y; fori </

q; =
0 fori>/¢

Perform PPR starting with f(9) = ¢ and some o € (0,1)
Y = (1—a)g+afPD7'A

Do we need to run this for ¢t — oco?
— No, we can compute steady-state vector

Tppr = (1 —a)g (I — aI/V)_1
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Semi-supervised learning SSL: Problem and algorithm

Label propagation ...... 2

o Predict labels ys11,...,yn as follows
+1 if (prr)i >0

Yi =
-1 if (prr‘)i <0

Choose arbitrarily if (mpp,); =0

e Remarks:
o Often ¢ and mpp, defined as column vectors. Then

Tppr = (1 — ) (I — aAD_l)_l q

e Label propagation is not formally a random walk
— We can replace W = D' A by other matrices, for instance,

—1
r=(1-a) (1 - aD_l/QAD_1/2> q

o We can drop (1 — «)-factor as it does not affect final result
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Semi-supervised learning SSL: Problem and algorithm

Label propagation ...... 3

Label propagation algorithm
@ Define g € {—1,0,+1}" as
y; if label of node-i is known

q; =
0 otherwise

@ Compute either of following:
(1—a)(I-aAD™) g for PPR

(1—a) (- aD_l/QAD_l/Q)A q symmetric case

@ Predict labels as

+1 ifm >0

Yi =
-1 ifm <O

Debarghya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 235 / 330



Semi-supervised learning SSL: Problem and algorithm

Label propagation ...... 4

Label propagation for k-class
© Define Q € {0, 1}"*F as
Qi = 1 if y; is known and y; = j

© Compute II € R?*k
-1
M= (1—a) (1 - aD—1/2AD—1/2) Q

@ Predict unknown labels as

y; = arg max 1I;;
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Semi-supervised learning SSL: Problem and algorithm

A regularisation framework

e Consider the binary setting, and define ¢ € {—1,0,+1}" as before

@ Minimise the cost

2
n n fz fj
I => (fi—a) + AZ%’( - =
i=1 i,j=1 Vi Vdj
fitting constraint smoothing constraint
e For optimal f = f* (exercise)
0J =0foralli — ((1 + NI — AD‘I/QAD_1/2> f=gq
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Network dynamics

References

@ Lectures 10-13 of Leskovec’s course

o Epidemics:
e Martcheva, Introduction to Epidemic Modeling, 2015

o Ganesh, Massoulie and Towsley, The effect of network topology on
the spread of epidemics, INFOCOM 2005

@ Network cascade and influence maximisation

o Kempe, Kleinberg and Tardos, Mazimizing the Spread of Influence
through a Social Network, Theory of Computing, 2015

e Castillo, Chen and Lakshmanan Information and influence spread
in social networks, KDD 2012 Tutorial
https://www.microsoft.com/en-us/research/wp-content/uploads/

2016/07/kdd12-tutorial-inf-part-iii_notes.pdf

ra Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 239 / 330




Network dyna Epidemics in networks

Epidemics in networks

Statistical Network Analysis Tiibingen WS 18/19 240 / 330



Network dynamics Epidemics in networks

SIR model ...... 1

e Models how a disease spreads and it is cured (proposed in 1927)

e Population of n people

e Three types of states for each person (varies over time)
Susceptible — Infected — Recovered
e Susceptible individuals get disease from infected people

e Infected people are gradually cured

e Recovered individuals cannot be further infected
(model for smallpox etc.)
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SIR model ...... 2

e Originally not associated as a network
Alternative view: Everyone interacts (complete graph)

e Mathematical model:
S(t), I(t), R(t) — number of people in each state at time ¢

S(t) + I(t) + R(t) = n

ds wf S R

g1 oY

— = 1

dI S

= —B8ST —al =

7 B a .

dR

=« I ° ’

dt __44: R | [Image: Wikipedia|

o Note: ST = total #interactions between infected and susceptibles
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SIS model ...... 1

@ SIR cannot model diseases like flu

e SIS: Each individual switches between 2 states
e Susceptible individuals get disease from infected people

o Infected people are gradually cured, but are susceptible

e Mathematical model:
S(t), I(t) — number of people in each state at time ¢

N I(t)

dI 400 ': ‘/_.“......_
= SI —al 350 8

dt IB a 300

dS 250

— = BST+al Y

di S N

n=>S(t)+1(t) o
e w e ww |lmage: Wikipedia]
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Network dynamics Epidemics in networks

SIS model ...... 2
e Simplifying the equations
%zﬁ[(n—[)—a[
:rl(l—fl> (r=p0n—a)

bn

o Key quantity: Basic reproduction number, Ry = —
o

— how fast the virus reproduces

0 Case 1: Ry<1=1r<0

dI
— < < rt i =
7 S rl = I(t) < I(0)e = 1th_}m I(t)=0

Disease is eventually cured completely
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SIS model ...... 3

0 Case2: Ry>1=1r>0

= limI(t)zzzn—
1 + < T _ 1) e—?‘t t—o0
B1(0)

Disease becomes endemic (always exists)

~
=
|
™| 3

=
=R

o Case 3: What happens for Ry = 17

ra Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 245 / 330



INEIRNZ3 ) GRS BRIl Epidemics in networks

SIS on arbitrary graph ...... 1

e Let G = (V, E) be an undirected graph on population

o Infection can spread only through edges

o Model is slightly different from above

o X;(t) = indicator that node-i is infected at time ¢ (random)

o {X;(t):i€V,t >0} is a continuous time Markov chain
— infection spread randomly with some transition rate

— more complicated to describe than discrete time case
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Network dynamics Epidemics in networks

SIS on arbitrary graph ...... 2
o Informal intuition (assuming discrete time)
P(Xi(t+1) = 1 X(t) = 0, X () o< B> Ay X;(¢)
J

P(Xi(t+1) =0|Xi(t) =1, X(t)) x «

Threshold for disease becoming endemic (Ganesh et al., 2005)

Let A1 be largest eigenvalue of the graph adjacency matrix, and

1(t) = ¥, Xi(t).

1
é<— = P(I(t)=0) - 1ast— o0
(6] )\1 )
Proof skipped.
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Recall: Information flow in label propagation

Few nodes had label information {£1}

Labels shared with neighbours

e Neighbours propagate the partial label information they receive
— A node shares his information even if it has a small value

@ Does this model behaviour of:
o forwarding tweets?

e spread of news in media?

— What happens in this case?
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Network cascade / Information cascade

e How does information spread in internet / media?
e How does popularity (of product) spread in social network?

e How does epidemic spread?

a , ' o Information originates from few
/ \ / source nodes / seeds
& - o Seeds activate some of their
B//'/ neighbours (using some rule)
T &

o In every iteration, activated nodes try
to activate their neighbours

[Image: Castillo et al. 2012]
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Linear threshold (LT) model

e Given weighted directed graph G = (V, E)

For every node v, ), Ayy <1

Every node has a threshold, 6, ~ Uniform|0, 1]

Let X,(t) € {0,1} denote v is active at time ¢ (discrete)
— once activated, a node stays active

v is seed = X,(0) =1
e v becomes at time t active if ) Ay Xyu(t—1) > 6,

@ Process stops when number of active nodes achieve steady state

— If GG is strongly connected, do all nodes get activated?
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Independent cascade (IC) model

e Given unweighted directed graph G = (V, E)

@ Seeds activated at time t = 0

@ Let u is activated at time ¢t — 1

For every v such that (u,v) € E

at time ¢, u activates v with probability p,,
o All random activations are independent

@ Process stops at T if no further nodes are activated at T’

Debarghya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19

Each edge (u,v) has a probability py, of spreading information

252 / 330



IALEIRZ3 0 GRS LRSSl Network cascades

LT vs. IC models

@ Duration of influence

e LT: Active nodes can always influence neighbours

e IC: Nodes activated at t — 1 can only influence at time ¢

@ Source of randomness

o LT: Every node has a personal random threshold for activation

o IC: Activation controlled by the probabilities on edges

e Graph type
o LT: Weighted graph

e IC: Unweighted graph with transmission probability for each edge
Alternative view of IC:
— Glive = random directed graph with edge probability py.,
— (u,v) € Ejve and u activated at t — 1 = v activated at ¢

ra Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 253 / 330



Network dyna Influence maximisation

Influence maximisation

Statistical Network Analysis Tiibingen WS 18/19 254 / 330



INLEIRZe3d WG RS R i ISl [nfluence maximisation

Influence maximisation

e Basic problem of viral marketting
e Manufacturer gives free samples to few individuals

e Product recommendation spreads through word of mouth

e Everyone who hears about it, buys the product

Who should be given free samples?
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Network dynamics Influence maximisation

Influence maximisation

e Basic problem of viral marketting
e Manufacturer gives free samples to few individuals

e Product recommendation spreads through word of mouth

e Everyone who hears about it, buys the product

Who should be given free samples?
e LT and IC model how influence spreads in network

e Influence spread o(S): Starting from seed set S,
o(S) = expected #active nodes when diffusion process ends

@ Problem: For a given budget &

maximise o(95) (NP-hard problem)
SCV:|S|<k
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A greedy algorithm

Greedy algorithm
@ Set S =10

Q@ Fori=1,...,k

i Let v; = arg max o <§U {U})
’L)EV\Sq‘,_l

i §=5U{uv}
Approximation guarantee for greedy algorithm

o(3) > (1 _ 1) max ()

e/ |S|I<k

Proof: Step 1 - Show that ¢ is a monotone submodular function

Step 2 - Analyse greedy for maximising any monotone submodular f
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Network dynamics Influence maximisation

Monotone submodular functions ...... 1

Monotone function
o Let V beaset,and f:2"V = R

e f is monotone if

SscT = f(S) < f(T)

Submodular function
o f:2V — R is submodular if for any S C T and v € V\T

FSU{v}) = £(8) = f(TU{v}) = F(T)

e Equivalent definition: f is submodular if for any A, B C V
f(A)+ f(B) =z f(AUB) + f(AN B)

(Exercise: Prove equivalence)
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Monotone submodular functions ...... 2
Example:

o Assume IC model

o Influence spread o : 2" — R is a monotone submodular function

Proof:

o Let Gjjpe = random sample of live graph in IC model
o Let rg,,,.(S) = #nodes activated by S in Gjjye
(equivalent definition of r¢,,,_(S5)?)

e 0(S) = expected #nodes activated by S

= Z P(Glive)TG10 ()
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Network dynamics Influence maximisation

Monotone submodular functions ...... 3

e Exercise:

If f1,..., fm are monotone submodular and ay, ..., a,, € [0,00),

then f =) a;f; is monotone submodular
J

e We will show rg,,, . is monotone submodular

— ¢ is also monotone submodular

® rg,,.(S) = #nodes in Gy, reachable from S

Obviously monotone

TGv. 1S submodular:

—Let SCT CVandv e V\T

— To show: rq,,,, (S U {U}) ~TGlive (S) 2 TGlipe (T U {U}) ~ TGlive (T>
— Let w is reachable from v but not from T (u contributes to rhs)
— Then u is also not reachable from S = u contributes to lhs
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Analysis of greedy method ...... 1

o Let f:2" — R be monotone, submodular and f((}) >0

e Suppose greedy algorithm is used to mz%‘iniize f(9)
<

o We show f(S) > (1-1) (5% where §* = arg maxf(95)
|S|<k

Greedy algorithm (rephrased)
(1) Set So = @

Q@ Fori=1,...,k
i v; = arg max f(S;—1 U{v}) = arg max (f(Si—1 U{v}) — f(Si-1))
veEV\S;_1 veV\S;_1
ii Sl = Si—l U {Uz}

@ Return S = S
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Analysis of greedy method ...... 2

o S;={v1,...,v;}, where v; = arg max (f(Si—1 U {v}) — f(Si-1))
’UGV\Sifl

o Let optimal set S* = {v],...,v}}

e By monotonicity, f(S*) < f(S; U S¥)

f(S;US*) = f(Si) +

-

(f(Si U {vf,...,v;‘ ) — f(S; U {fuf,...,v;,l}))
—_————

1
P for j=1

J

k

< F(8) + ) (F(Siu{wr}) = £(S)) (by submodularity)
j=

< f(Si) + k(f(SiU{vit1}) = f(Si)) (vit1 gives max increment)

Sit1

—_

Debarghya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 261 / 330



INLEIRZe3d WG RS R i ISl [nfluence maximisation

Analysis of greedy method ...... 3

o From above, we have

f(Six1) = f(Si) =
o Define 6, = £(S*) — £(S)

= [(Sit1) — f(Si) = 0i = 6i1 =

e Observe dy = f(S*) — f(0) < f(S*) and d;41 < (1 - ;) i

k
== 0 < <1—1> 50§%f(5*)

k
(use 1 —x <e™®)

o So £(8) = F(5%) — 6 > (1 - i) £(57)
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Further topics (not part of exam) Graph kernels

ML Recap: Kernel functions ... ... 1

Linearly separable data (easy for machine learning)

'--\é A e o Classification:
: ~‘~\-§E\w‘;" — Linear hyperplane separates the two
T ' classes (SVM, LDA)

33 "‘%ﬁ“ ite e Clustering:

— Group into disjoint balls (k-means)

Non-linearly separable data: [Image: G. Bonaccorso)
LTS ﬁﬁ? ST
IS . B . =7 T
PO TR Y I
o h ,\Q o "
g T ooy yy 1.: e
i ? Efes
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Further topics (not part of exam) Graph kernels

ML Recap: Kernel functions ... ... 2

o Difficult to find a suitable function ®

e Often ML algorithms do not require ®(x), ®(y)
~ but only [&(z) — &(y)| or D) B(y)

— Example: kernel SVM, kernel k-means

o Kernel function: For an input space X,
kE: X xX—>R

is a positive semidefinite kernel if for any x1,...,x, € X,
o k((E“ (Ej) = k($j71'i)

o K € R™™ with K;; = k(z;,x;) is positive semidefinite

o Result: For every positive semidefinite kernel k, there is
®), : X — Z such that k(z,y) = ®p(2)T @r(y)
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Further topics (not part of exam) Graph kernels

Kernels on graphs ...... 1

Machine learning on vertices

e Given graph G = (V, E)
— Think of V' = {vy,...,v,} as data points

o Graph embedding:
— Conceptually similar to PCA for the vertices

e Communities / Graph partitioning:
— Clustering of vertices

e Label propagation:
— Predict labels of unlabeled vertices (classification)
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Further topics (not part of exam) Graph kernels

Kernels on graphs ...... 2

o If we have kernel function k: V x V — R
— Can do above using using kernel k-means, kernel SVM etc.

o Example:
Diffusion kernel (Kondor & Lafferty, ICML 2002)

o (=8)
Kernel matrix K =Pl = E N
— 1!
1=
— L = unnormalised Laplacian, and § > 0 is a parameter

— Connections to random walk on graph

e ML on graph without kernel
— Is there a generic alternative to kernel based techniques?
(distances between nodes)
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs ...... 1

e When can we say that graph G and G’ are similar?

e Similar graph properties
— density, degree distribution, motif counts, ...

— Laplacians are similar, have similar eigenvalues, ...

e How can we quantify the similarity between graphs G and G'?
o Graph distances (distance between two graphs)

o Graph kernels (kernel function on space of graphs)
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs ...... 2

Case 1: Graphs with common vertex set
e G=(V,E)and G' = (V, E')
— Ag, Lg = adjacency and Laplacian matrices of G

— Agqr, Ly = adjacency and Laplacian matrices of G’

e A graph distance
d(G,G) = [[Ac — Acr | F
— Complicated version in (Mukherjee, Sarkar & Lin, NIPS 2017)

e Laplacian graph kernel (Kondor & Pan, NIPS 2016)

lL lL )1 1/2
k(G,G") = (8229 t/i ¢) 1/’4 (|- | is deteminant)
L6 e
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs ...... 3

Case 2: Graphs of different sizes
e G=(V,E) and G' = (V', F)

e Application: Compare molecular / protein structures
e Difficult to compare, and so mostly open problem

e Some kernel functions available

— Random walk kernel (Vishwathan, Borgwardt, Kondor &
Schraudolph, JMLR 2010)

— Weisfeller-Lehmann kernel (Shervashidze, Schweitzer, van
Leeuwen, Mehlhorn & Borgwardt, JMLR 2011)

— Multiscale Laplacian graph kernel (Kondor & Pan, NIPS 2016)
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Further top of exam) Deep learning on graphs

Deep learning on graphs
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Further topics (not part of exam) Deep learning on graphs

Convolutional neural networks ... ... 1

input hidden  output
layer layer layer

Convolutional Neural Network

Feature maps

Neural network
o Let hM) = output of " layer

o Input layer: h(®) =z (input vector)

o Hidden unit: hl(-tﬂ) =0 < -w@ hg-t)) o = non-linear activation
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Further topics (not part of exam) Deep learning on graphs

Convolutional neural networks ...... 2

Convolutional neural network (CNN)

@ Originally used for image data
e Input layer: h(®) = z (input image/matrix/tensor)

— x; is i*" pixel of image

o Hidden unit: hl(-tﬂ) =0 < > ' wg)h;t))
JENDh(7)
— sum only over neighbourhood of i (convolution / filtering)

e Output of each conv layer: hz(-tﬂ) =0 (W(t)h(t))
— W® has a lot of zeros

e In each stage, different activation functions are used
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Further topics (not part of exam) Deep learning on graphs

Graph convolutional network (GCN) ...... 1

e Will discuss architechture of Kipf & Welling (ICLR 2017)

Neighbourhood is defined by graph G = (V, E)

@ Nodes can additional k-dim features
— Input matrix HO = X € R?*k

o Can use convolution layer of the form, H!*Y) = o (AH (t))

Typically a normalised matrix is used M = D~Y/24D~1/2
— normalised adjacency of graph with self loops added

@ Above has no parameter to tune in each layer
— Multiply another parameter matrix,

HE+) — & (MH(t)W(t))
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Further topics (not part of exam)

Deep learning on graphs

Graph convolutional network (GCN)

o Output layer: Typically a matrix Y € R™*¥

— k' = feature dimension for each node

Statistical Network Analysis

Hidden layer Hidden layer
S S E—
. .
e e
e e
o ® o ®
° ©
Input ¢ e ° e Output
Y L=}
° / \
» | RelLU &
° N ° \ °
¢« ° o \° _’@_' o |\
¢ ®
® o
J
° o
o °
® e ® e
o o L] o
° \ ° \
e ® o
-
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Further top of exam) Machine learning on graph data

Machine learning on graph data
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Further topics (not part of exam) Machine learning on graph data

ML with graph data

e Each data instance is a graph
— Data {G1,Ga,...,Gn}

e Graphs on a common vertex set
— Example: Each graph is the brain network of an individual

e Graphs on different vertices
— Example: Each graph is a molecule / protein structure

o Learning problems:
— Clustering, classification, hypothesis testing

e Generic methods:
— Graph kernels / distances

— Embedding (represent each graph as a point in Euclidean space)
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Appendix

Appendix

Statistical Network Analysis Tiibingen WS 18/19 279 / 330



Python and NetworkX
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R 2
References for Python

@ You can find many tutorials / references for Python online

e If you have not used Python or Jupyter notebook before, watch
this video on installing and working with Jupyter
https://www.youtube.com/watch?v=HW29067qVWk
The channel also has videos on Python for beginners

e For a crash course on Python, you can look at the tutorial by
Diego Fioravanti provided during Machine Learning course
It is in form of a Jupyter notebook (see Assignment-1)

e To find functions that you need, see documentation of important
packages like numpy or matplotlib
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References for NetworkX

e Python package for network analysis.
Tutorials and list of functions in the NetworkX package can be
found in their documentation.
https://networkx.github.io/documentation/stable/

e For a very basic introduction to NetworkX, you can watch
https://www.youtube.com/watch?v=sGAT2npnNLc&t=24s

@ There are other packages like SNAP or iGraph that can be used
with R, Python or C/C++.
We will only use NetworkX for convenience.
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Nyl te it [nequalities for sum of random variables

Inequalities for sum of random variables
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Nyl te it [nequalities for sum of random variables

References

@ Reviews of Linear Algebra and Probability Theory
http://cs229.stanford.edu/section/cs229-1inalg.pdf
http://cs229.stanford.edu/section/cs229-prob. pdf

e For probability basics, Chapters 1-2 of Bruce Hajek’s book
http://hajek.ece.illinois.edu/Papers/randomprocJuly14.pdf

e List of some important concentration inequalities (with proofs)
http://www.math.ucsd.edu/~fan/wp/concen.pdf

e Roman Vershynin’s book (for concentration and also more
probability)
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
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Inequalities for sum of random variables
LLN and CLT ...... 1

e X1, Xs,..., X, independent and identically distributed (iid)
random variables

o E[X;] = p and Var(X;) =E [(X; — p)?] = o2

° Sn = ZX’L
=1

Law of Large Numbers

S —p  asn— 0o ... in probability (weak LLN)
n

... almost surely (strong LLN)

Central Limit Theorem
Sn —np
Vno

— N(0,1) asn — oo ... in distribution
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Inequalities for sum of random variables
LLN and CLT ...... 2

e LLN and CLT are important, but often not enough for analysis

e Asymptotic statements
o What happens for finite n?

o How large is for n = 10007

Sn
— MK
n

e What is distribution of & for n = 10007
n

7

@ Independence assumption

o What happens if the random variables are dependent?
o What if there is a weak dependence? — Only few are dependent

e Variants of LLN and CLT that provide bounds for finite n

o Concentration inequalities (deviation form of weak LLN)
o Berry-Esseen theorem (deviation form of CLT)
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Nyl te it [nequalities for sum of random variables

Concentration of random variables ...... 1

Markov’s inequality
Let Y be a random variable and h(-) be a non-negative function.
E[h(Y)]

a

P(h(Y)>a) < for all a > 0

Proof : Note that al{h(Y) > a} < h(Y)
Take expectation on both sides

e Standard Markov’s inequality: If Y is non-negative r.v., then
ElY
P(Y >a) < ]

a

@ Chebyshev’s inequality: For any r.v. Y

P(Y ~EIY]| > o) < 1]
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Nyl te it [nequalities for sum of random variables

Concentration of random variables ...... 2

Chernoff bound (general)

Let Y be a random variable. For any a € R,

ty
P(Yza)gminE[i ]
t>0 eld

Proof : f(x) = €!® is a monotonic increasing function for any ¢ > 0
So IP’(Y > a) = IP’(etY > et“).
Use Markov’s inequality, and note that it holds for all ¢t > 0

Chernoff bound (for sum of independent r.v.)

Let X7, Xo,...,X,, be independent (may not be iid). For any a € R,

n n
P <; X; > a> < Itn>%l emil_[lE [etXi]
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Inequalities for sum of random variables
Concentration of random variables

Hoeffding’s inequality (application of Chernoff’s bound)

Let X1,...,X, be independent with X; € [a;, b;] almost surely.
n

Let S =) X;. For any a > 0,

=1

P(|S ~ E[S]| > a) < 2exp <‘2(172—)>

Proof : See detailed proof in Wikipedia
P(|S —E[S]| > a) <P(S —E[S] > a) + P(E[S] — S > a)
... union bound (gives factor of 2)

Note that S —E[S] = )", X; — E[X;], and apply Chernoff.
Bound E [et(Xi*E[Xi])] using Hoeffding’s lemma

E [e!Xi—EXD] < exp (362(b; — as)?)
Finally optimize over ¢.
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Inequalities for sum of random variables
Concentration of random variables ... ... 4

o Bennett’s inequality, Bernstein’s inequality:
Improved bounds in terms of Var(X;)

Special bounds hold when X; ~ Bernoulli(p;)
o We can compute E[e!Xi] =1 — p; + p;e’

What if X; is not bounded (say Gaussian)?

e Variants of Hoeffding or Bernstein based on sub-Gaussian norms
e See Vershynin’s book. We may not need them in this course

McDiarmid’s inequality: Concentration of an arbitrary
function f(Xi,...,X,)

e Assumption: f does not change much if only one X; is changed

e Azuma’s inequalities: Variants of above

o When X;,..., X, is a martingale (particular type of dependence)
o Useful in learning theory
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Nyl te it [nequalities for sum of random variables

Union bound and concentration

Basic union bound
Let Fr, ..., E,, be m events

m

P(|JE: giP(Ei)
=1

i=1

o Useful when we do not have independence

o Powerful in combination with Chernoff’s bounds

e Example:
o Let Xl, . ,Xn, Xn+17 N ,Xgn,X2n+1, .. an be r.v.s

o We only know X(;_1)p41,...,Xjn are independent for j =1,...,k
e Decompose into k parts and use Chernoff’s bound for each term
kn k n a k n a
P(ZXi>a> gP(U{ > Xi>k})§ZIP< > Xi>k)
i=1 i=1 Li=(j—1)n+1 j=1 i=(j—1)n+1
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PNoJ I te it Metric spaces, distances and norms

Metric spaces, distances and norms
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PNoJ I te it Metric spaces, distances and norms

Distances and metrics

e V is a set of elements  (finite / countably infinite / uncountable)

Distance: A function that measures how far two objects are
e No formal mathematical definition

Metric: d:V xV — [0,00) is a metric if
o d(u,v) =d(v,u) for all u,v € V
o d(u,v) =0if and only if u=v
o d(u,v) < d(u,w) + d(v,w) for all u,v,w € V (triangle inequality)

Metric space: (V,d)
o Set V along with a metric d defined on it
o We can define different metric spaces on the same set V'
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PNoJ I te it Metric spaces, distances and norms

Examples of metrics

e V=R"or{0,1}"
o Euclidean distance, d(u,v) =,/ > (u; — v;)? where u = (uy,...,uy,)
i=1

Hamming distance, d(u,v) = > 1{u; # v;} where 1{-} is indicator
i=1

n

o d(u,v) = |u; — vl (same as Hamming distance for {0,1}")
i=1

o d(u,v) = max lu; — vl

e V = arbitrary set
o Discrete metric, d(u,v) = 1{u # v}

o V = set of strings
o Edit distance, degit(u,v) is minimum number of substitution /
insertion / deletion needed to change one string into another
dedit(Apple, Apfel) = 3 (Apple — Apfle — Apflg — Apfel)
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PNoJ I te it Metric spaces, distances and norms

Graph metrics

@ Shortest path distance
V' = vertex set of a graph
dgp(u,v) = length of shortest path/paths between u and v

e Metric on an undirected connected graph

o What happens if graph is not connected?
— Set dgp(u, v) = oo if u,v are in different connected components

— Need to change metric definition as d: V x V — [0, 0]
(does not cause any serious problem)

e Resistance distance
o Another metric for graphs (see Wikipedia)
e Views graph as electric circuit

e Exercise: Why is d,, a metric? Is it a metric for di-graphs?
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Nyl eteibl Random matrices

Random matrices
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Appendix Random matrices

References

e For matrix concentration, see Chapter 2 of Terence Tao’s book
https://terrytao.files.wordpress.com/2011/02/matrix-book.pdf
Can be difficult without math background

e Roman Vershynin’s book for concentration (scalar or matrix) and
also more probability
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
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Appendix Random matrices

Norm and normed vector space

Intuition:  metric = distance, norm = length

Let V be a vector space (over R)

o Ifu,v eV, thenu+veV
e IfAeR,veV, then weV

Norm: || :V — [0,00) is a norm if
o |lu|| =0if and only if u=0 (0 € V is zero vector)
o ||u+v| < |lull +|v| for all u,v € V
o M| =|Al|lv|| forallv eV, A eR

Normed space: (V,||-||)

o Vector space V along with a norm || - || defined on it
o Note: V must be a vector space to define a norm (Why?)
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Nyl eteibl Random matrices

Examples of norms: Vector norms

o V=R"

o Euclidean (2-) norm, |[v||2 =

n
2 —
v; where v = (v1,...,0,)
i=1

n l/p
o p-norm, ||v||, = (Z |vi|p> for 1 <p< oo
i=1

o oo-norm, [|vfjee = max ||

o Every norm induces a metric
o ||| is norm = d(u,v) = |ju — v|| is a metric

o Every metric is not generated by a norm
o Shortest path distance on graphs (here, V' is not vector space)

e On R”, recall Hamming distance d(u,v) = >, 1{u; —v; # 0}
It is induces by the zero-“norm”, [jv|lo = >, 1{v; # 0}

But zero-“norm” is not a norm (Why?)
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Nyl eteibl Random matrices

Examples of norms: Matrix norms
o V=R™"

> M

i=1 j=1

o Frobenius norm, | M| =

min{m,n}
o Nuclear norm, ||M|.= Y. o;(M)
i=1
where o1 (M), 02(M), ... are singular values of M
[ Mz,

o Induced p-norm, ||M]|, = max for 1 <p< oo
x

n
Tl

@ Intuition for induced p-norm
o Think of M as a linear transformation M : R® — R™

o ||M]|, denotes the maximum rescaling of length (norm) caused by
the transformation M
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Appendix Random matrices

Examples of norms: Spectral norm

e Same as induced 2-norm / operator norm

o Assume M is symmetric n X n matrix

M
I3 = ma 170512
zeR™  ||z||2
#0
=o1(M) o1(M) is largest singular value of M
= max ‘xTMx‘ Sl ={z eR": ||z =1}
zesSn—1

o Exercise: Show that all definitions are equivalent
e Hint: Spectral / eigenvalue decomposition of symmetric matrix

M = Z ANiTiT (\i, x;) is eigenvalue, eigenvector pair

oi(M ) ])\ | and {x1,...,2z,} are orthonormal vectors
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Nyl eteibl Random matrices

Concentration of random matrices

Spectral norm of random matrix
M € R™" is a symmetric random matrix with following properties:
e M;; =0 for all i (zero diagonal)
o {M;; :i < j} are mutually independent
o E[M;;] =0 and |M;;| <1 almost surely for all 4, j
For any ¢ € (0,1),
B (| M > Csy/m) <6
for some constant Cs > 0 that depends only on 4.

Note: If M is not random but arbitrary, then | M| <n —1
assuming zero diagonal and |M;;| <1 (Why?)

Debarghya Ghoshdastidar Statistical Network Analysis Tiibingen WS 18/19 302 / 330



Random matrices
Concentration of random matrices ... ... 2
Proof:

e Recall that ||M||2 = max, |z" Mz|. Fix an z € S"~*
reS"~

2
P(|lz"Mz|>a) =P ;Miﬂz‘l‘j Zg < 2Zexp (—i)
i<j

Exercise: Prove above using Hoeffding and the fact ||z|| =1

e How do we go from here to max over all € S"~1?
— Union bound
— Does not really work as S”~! is uncountable

@ e-net approach: Approximate S*~! by a finite set
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Nyl eteibl Random matrices

Concentration of random matrices ... ... 3

e-net and maximal e-net

e Y is an e-net for S*1 if
o X C St
o for every z,y € X, we have ||z —y|| > ¢

@ Y is a maximal e-net if
e we cannot add any more point to ¥ and retain the property of e-net

@ Size of maximal e-net for S*!

° ‘E| < (1—1—2) < exp (Qn) Note: 1 +z < e”
€ €
1 T
4] HMHQ < mrggg‘m' Mx‘

Exercise: Let € = i. Use above + union bound to complete proof
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Proofs: Network models
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Revisiting some concentration inequalities

First moment method / simple Markov’s inequality

X is a non-negative random variable and ¢ > 0.
E[X]

P(X>t)< ==

Special cases

o If E[X] =0, then P(X >t¢) =0 for any ¢t > 0

o Let X1, Xo,... be a sequence of non-negative random variables.
E[Xn]

lim P(X,, >t) < lim Tn for any t > 0

n—oQ n—oo
If E[X,,] — 0 as n — oo, then

lim P(X,, >t¢) =0, which we write as P(X,, >t) =o0(1)
n—oo
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Revisiting some concentration inequalities ... ... 2

Second moment method / Chebyshev’s inequality
Let X be a random variable and ¢ > 0.

P (X ~EX) 2 1) < "0

Special case
e Let X1, Xs,... be a sequence of non-negative random variables.
Let lim E[X,] > 0 and E[X2] < (1+ o(1))(E[X,])”
n—oo

P(X, =0) <P (| X, — E[X,]| > E[X,))

Var[X,]

(E[X,])?

=o0(1) (due to assumption)

<
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Proofs: Network models
Isolated nodes in ER ...... 1

Theorem: Number of isolated nodes
Let G ~ G(n,p), and X,, = #isolated nodes in G.

E[Xn] = n(1—p)"~!

1 1
lim E[X,]=0 ifp > ﬂ, and lim E[X,] =00 ifp< dy
n—oo n n—oo n )
Proof: E[X,] =3 .P(d;=0)=>,(1—p)"!
Let p = <2n,
1 n
lim E[X,] = lim n <1 - n”)
n—oo n—oo n
= lim ne ¢inn" since lim e " = lim (1 — a—")n
n—oo n—oo n—oo n
= lim n'~¢
n—oo
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Proofs: Network models
Isolated nodes in ER ...... 2

Corollary: Presence of isolated nodes
Let G ~ G(n,p)

1
o)  ifp> -1
P(G contains isolated nodes) =

1—0(1) ifp< —
o(l) ifp< -

Here, z = 0o(1) means lim x = 0. Equivalently,
n—oo

P(X, > 1) =o(1) ifp > 1%"

Inn

P(X,=0)=0(1) ifp< -

Proof (first part): P(X, > 1) <E[X,] = o(1) if p > 122
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Proofs: Network models
Isolated nodes in ER ...... 3

Proof (second part): Use second moment method. Compute E[X?2].

n

Xn =) 1{d; =0}
=1
X2 => 1{di=0}+> 1{d; =0,d; =0}
i i#]

E[X?2] = nP(d; = 0) + n(n — 1)P(dy = 0,dz = 0)
=n(l—p)" ' +n(n—1)(1 - p)*nH-1

E[X2 1 N 11
(E[X,))> n»d-pm' 1-p n(l-p

=1+o0(1)

clnn
n
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Proofs: Network models
Diameter of ER ... ... 1

Theorem: Phase transition in diameter
Let G ~ G(n,p).

1-0o(1) ifp> 212"
P(diameter(G) < 2) =
21
o(1) if p < sl
n
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Proofs: Network models
Diameter of ER ... ... 2

Let X,, = number of pairs 7, j such that dgp(i,j) > 2

P(diameter(G) < 2) = P(X, = 0)

Theorem: Phase transition in diameter (restated)
Let G ~ G(n,p).

21
P(X, >1)=o(l) ifp> ] —0
n
21
P(X, = 0) =o(1) ifp < ;m
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Proofs: Network models
Diameter of ER ... ... 3

Proof: Let us call {i,j} bad pair
o if dgp(i,5) > 2,

@ or equivalently,
if 4, 7 not adjacent and do not share a common neighbour,

@ or equivalently,
if (i,j) ¢ E and for every v # i, j, either (i,v) ¢ E or (j,v) ¢ E

P(i, j bad pair) = (1 — p) (1 _ pz)n—z

. : 1 . .
X, = Z 1{i,j bad pair} = 5 Z 1{i,j bad pair}
1<J i#£j
n(n—1 n—2
Elx,) = ") (1)
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Ny elSeteibll Proofs: Network models
] Y RNV VJ
Put

"PZ = [7RZ

g

g %jf(l-iﬁﬂ

n
2o "
= Lt wm 2 = C1ZM n
e
N D 2
2.
- 2-c
= B
n—>o¢ =
2
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g‘mf
= 2! < JZ or 73< 2w
y —

We

have ﬁ;[xm] 200 bl use second I’Viomﬂ/]
vne Fhod

547/ D A G bed pir wnd kil bad peiv |
o/

E[an]:‘ éiﬁ P( ij bed pair anok K, ¢ bad ?“7

L}/dt
%9 i £ ¢
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Case f: (- )

Y
Total  nuwmbe p o/ such  canes @ %(W-O

P bad  and & p} jmaé/)
= (IF(L/J‘ Lcl(){) } ("‘7’) (1'7)1')77--2

@@ g <1_}>L)M"Z
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Armorg i, k 45

("“Hﬁ 3 7’ them g
q |

distip et

Total  oppmbe . '/ o] i{
Such  caseg - §§>
Sn (n- /‘) (n-~2)
o > - \ /
. 4 i s tmia othe 5/\
bad  and 0 Lod )

oy / ’
(s 1/7 L Jor (V“J v,7§
eithe, Gv) §/L

L)
T Cv)eE did (',.‘”r/;,’j'[

“v)de )
2 ,v/«,/

”-3 n-3

C 2§ 3)
< (I=2p{ tp) & (/’//L)? 7/ o>z
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, . [ g . |
Case 30 4j, kL ase al distincd

Totad  vsmbes of such cases = w(n 1) (n-2)(»

T

,/*’( of bad and Kk H/

< P(CHEE, LOdE . fo cery v Fij bt
Cwyzoqu4h
and (x,v/‘(// o ((/VM/},/
L ] .
v does wet ke betweon Y
R4

o
and v does nof Lo Lefoeen k

4

beth  (k¥) and (4v) oo net occwr
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T L e
' gji % (IF) ‘fw%(rz)o)
p 2(n-4
+ 'WIO' f’L) )
2-c* 3- 2 Z,-Q(,L
= 177 + 3m + 7
L/
A pzclln
P
Alse EX, = in[
€2
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LNyl iball Spectral theory (for symmetric matrices)

Spectral theory (for symmetric matrices)
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LNyl iball Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors ... ... 1
e Let M € R™ " be a symmetric matrix

e Definition: (\,v) is eigenvalue-eigenvector pair for M
Mv=Xvandv#0

e Geometric meaning:
e M :R"™ — R" is a linear function

o Let y= Mz
— In general, ¥y may not have the same direction as x

o Let Mv = )v
— wv is special in the sense that M does not rotate v
— M only rescales v by A
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors ... ... 2

e How many eigenvectors are possible?
o Infinite: (A, v) is eigenpair = (A, cv) is also eigenpair

e How many different directions of eigenvectors are possible?
o OR: How many eigenvectors v are possible such that ||v||z = 17

e Can still be infinite:
— Suppose Mz = Ax and My = Ay with y # cx
— Let 2= (1 — @)z + ay with a € (0,1)
Mz =Xz and Mz = )\ for 2/ = |ZZ|

l2

e How many orthonormal eigenvectors v, vs,... are possible?
o Orthonormal: ||v;||2 =1 for all i, and v}v; =0 for i # j

o Why look for orthonormal?
— There can be at most n vectors
— Let Mv; = A\jv; and Mwg = Agvg. If A # A, then v{ vy =0
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LNyl iball Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . ..... 3

e Fact: M has n eigenvalues, A\1,..., A\,
o These are solutions of the equation, det(M — AI) =0

(also holds for non-symmetric matrices)

e For M real and symmetric
— All eigenvalues are real
— Corresponding eigenvectors are real

o Note: All eigenvalues of M may not be distinct

@ Suppose Aq,..., A, are all distinct

e Kigenvectors vy, ..., v, are orthonormal
—Let V =[vy,...,v,] € R then VIV =VVT =1

o Let A € R™*™ diagonal with entries Aq,..., A,
MV =VA or M=VAVT =3 Nol
i=1
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors ... ... 4
o Fact: Let A occurs k times in Ay, ..., Ay
e For M symmetric,
one can find k orthonormal vectors vy, ..., v, such that Mv; = A\v;

e Note: This set set of k vectors may not be unique
— Think of eigenvectors for I

e Spectral decomposition (of real symmetric matrix)
o Let M € R™ ™ symmetric

o There are Aq,..., A\, € R and orthonormal v1,...,v, € R™ such that

M = VAVT = ; )\Z"Ui’l)iT

e Implication: {v,...,v,} is an orthonormal basis

n n
o Every x € R" can be written as x = > ¢;v;, and Mz = > \jciv;,
i1 i=1
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LNyl iball Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . ..... 5

Eigenvalues govern various matrix functions (exercise)

) Trace(M) = Z Mii = Z )\i
i=1 i=1

o det(M) =[]\
i=1
e Let f(-) be a polynomial (example: f(M) = M3+ 3M?+1)
M) =V AVT
M
e Spectral norm: ||M||s = max [ M2 = max |\
z#0 Hl‘”g i

(hint: use previous slide, and fact ||z||3 = 2T )
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Appendix Spectral theory (for symmetric matrices)

Positive definite matrices

Let M € R™ ™ be symmetric

Definition: M is positive semi-definite if
I Mz > 0 for all z € R"
M is positive definite if 27 Mz > 0 for all x € R,z # 0

Results:

e M is positive semi-definite <= A; > 0 for all ¢
e M is positive definite <= \; > 0 for all ¢

why? — use spectral decomposition
y

o Note: Alternative terminology

o M is positive definite if z7 Mx > 0 for all =
o M is strictly positive definite if 27 M > 0 for all 2 # 0
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LNyl iball Spectral theory (for symmetric matrices)

Singular value decomposition ...... 1

e What happens if M € R"*" is not symmetric?

Some of previous conclusions do not hold
o (A1,x1) and (Mg, z2) are eigen pairs with A; # Ao
— Cannot claim z7 2y =0

e M is positive definite may not imply A; > 0 for all ¢

What happens if M € R™*"™ where m # n?

o Note: MTM € R™"™ and MMT € R™*™
e Both always symmetric and positive semi-definite (why?)

o Let MTM = VAVT = Z Xi iViV;

and MMT = UAUT = Z Nt
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LNyl iball Spectral theory (for symmetric matrices)

Singular value decomposition ...... 2

e Assume m > n (for convenience)

e Let A\ >ho>...>N, >0and A > da > ... > Ay >0
— Can show

)\iz/):iforign and Xi:()forn<i§m

e Let ¥ € R™*™ diagonal (only principle diagonal non-zero)

with entries o; = \/A; for i < min{m,n}

e Singular value decomposition: We can write M € R™*" ag

min{m,n}
M = UZVT = Z UiuiUZ-T
=1
e 01,09,... — singular values
@ Uy, Us,... — left singular vectors
e v1,vs,... — right singular vectors
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PNoyeleteibl Consistency of spectral clustering

Consistency of spectral clustering
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T N T
Spectral clustering under SBM

Consistency of spectral clustering as n — oo
Let p,q € (0,1) be fixed scalars with p > q.
Let G ~ SBM(7%, 2, p, q) with underlying split V' = S1 U Ss.

Let unnormalised spectral clustering outputs the split §1, §2.

P ((51,52) £ (51,52)) —1-0(1)

Proof: First part in scanned notes (next few slides).

For second part, we need few tools.
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PNoyeleteibl Consistency of spectral clustering

G~ o8 (2,2 9,q)

Mzanmd : If G = (\/, E)
V=, Us, . 151 <s,] = »
z
‘P((ud) € E) _{ ®0 § g

P4 i€ o €S,

9 f €5, , j€5, or spposite

let A = aa(d'u:.m.d mateiy

D - u(agru. matr

Le D~
D-~A . w1 normg i god Laplacian
et 4 - E[4] | Dog[] . €[] -p-4

A v Peg) k)

2 - Eldge@] < p(e) 492 3p.01

Statistical Network Analysis

Tiibingen WS 18/19

324 / 330



PNoyeleteibl Consistency of spectral clustering

How does A look Lke ?

= Llel us  label  modes as S f;, 2., .‘ﬂj i Stzf;_u,w,n]

°r, ,
J R P \\b; (1/ j %, Tews
. ._,_;._O: P .
[ RS rows
Vit f
[Pl
cembme | LT
Y ’ P
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PNoyeleteibl Consistency of spectral clustering

. Neat wngider

We meed £, f comp ule eljtwvecfar; 7(" L.
B, firgt |y us ook af digenvectors fr £
<=2 -4

TE@T - o)ty r4L) -94d

Verify (o, 1,) i cigenpaiv.  for of

feRrR”
4 - Z(” ¥ ies,

1 '7/ ‘€5,

Check ;1:/[ 0 <15,1: + j“i;:){ . 11}[
Lf - (d_wv - (P—i)g)yf = (4n) f

S
> (.,,,,/) s edgnpair for o
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PNoyeleteibl Consistency of spectral clustering

© Next | ot whtty——a x €R”

such dhat a1, and “lf
Vgr-:/a; 1_115' and 21,
> -

e (dr}:)z - f(?*?)‘l-

2 (30w, 2) dgenpair  for o

M 3) > g

Sinee

P>q
Spectrum of
¢ A =0 g x4,
A -

I we ran winormalised sFu{nJ a/usferm; on o
m”‘F“tJJ
=, eigenvedor will  be V__"lf (rormalised 4 lave )(vl/fi;

- °““T““} P“'w C5.5
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Qertticey o eesial At
Spectral perturbation theory ... ... 1

o Let M € R™™™ and F € R™"™ symmetric

e Llet M=M+FE
— Think of M’ as a noisy observation of M

e How far are eigenvalues and eigenvectors of M and M'?

Weyl’s inequality (simplified)

Let A1 < ... < )\, be eigenvalues of M, and
A < ... <\, be eigenvalues of M'.

[Ai = Xl < [1E]l2
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Qertticey o eesial At
Spectral perturbation theory ... ... 2

e What happens to eigenvectors?

e Difficult to answer since eigenvectors can be rotated
o (A, v) is eigenpair = (\, —v) is also eigenpair
o But ||[v — (—v)||2 can be very large
e More complicated if A has multiplicity more than 1

@ Clear answer by Davis-Kahan perturbation theory

e Complicated since it takes care of also possible rotation and
rescaling of eigenvectors
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Qertticey o eesial At
Applying spectral perturbation theory

Figenvector perturbation in our setting

Let ]?be eigenvector of L corresponding to second smallest eigenvalue.
Let f be eigenvector of £ corresponding to second smallest eigenvalue.
Let [|fll2 = [ f]l2 = 1.

AL = L]
min{)\g — )\1, )\3 — )\2}

min {[|f = fll2, | F + fll2} <

where A\ < ... < A\, be eigenvalues of £

Observe: Denominator in bound is § min{q,p — ¢}
(grows linearly with n)

How large is ||[L — L||27
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Consistency of spectral clustering
Bounding ||L —L||2 ...... 1

1L = Llla < [[D =Dl + [[A = All2

Bounding the first term:

o Similar to Assignment-2, we can show for every i

- 1
|d; —d| <2y/nln <5> with probability 1 — §

e Applying union bound, we get

max |d; — d| < 24/nln (%) with probability 1 — §

@ So ||[D —Dll2 < Csvnlun
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Consistency of spectral clustering
Bounding ||L —L||2 ...... 2

Bounding the second term:

o A — A is symmetric random matrix with
o independent entries in [—1, 1]

e entries have mean zero

Concentration of random matrix
M € R™ ™ is a symmetric random matrix with following properties:

e M;; =0 for all 7 (zero diagonal)

o {M;;:i< j} are mutually independent

o E[M;;] =0 and |M;;| <1 almost surely for all 7, j
For any ¢ € (0,1),

P (M2 > Cj/n) <6

for some constant C§ > 0 that depends only on 4.
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T N T
Finishing the proof

. R R 4L — L2
min {IF = flooIF + fll} < 5o

< opyfRn
n

e Bound holds with probability 1 — 26

o If welet § — 0 as n — oo,

C§ grows slowly
@ So as n — oQ, fz +f with probability 1 — o(1)

e Hence, partitioning is also correct with probability 1 — o(1)
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