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Winter Semester 2018/19

Updated on January 28, 2019
Slides may contain errors/inaccuracies

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 1 / 330



Table of contents . . . . . . 1

Introduction to network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

What are networks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

What is network analysis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

This course: Focus & logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Network preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Network measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Degree distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Connected components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Paths in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Local structures in networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Community structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 2 / 330
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Introduction to network analysis What are networks?

Network

1 2

3
5

4
There are some entities
— people, countries, computers, . . .
— we will call them nodes or vertices

Interactions occur between pairs of entities
— friendship, emails, transactions, . . .
— we will call them edges or links

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 9 / 330



Introduction to network analysis What are networks?

Engineering networks

Communication networks / Internet

Road / rail / transportation networks (TüBus, DB, . . .)

Electricity / water distribution networks

Features

Typically connects multiple locations

Something flows through the network

Man-made: Usually works as planned. How to make it efficient?
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Introduction to network analysis What are networks?

Social, economic, political, . . . networks

Social network (Facebook, Twitter, email)

Network of friends / Society

Trade networks among countries

Features

Real interactions, but not a physical network

Behaviour of network is not predictable
— since it involves people / companies / governments
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Introduction to network analysis What are networks?

Biological networks

Neural network . . . the one in our brain

Metabolic network, Gene regulatory network, . . .

[Image: Wikipedia]

Features

Represent biological process

Interaction denotes influence / passage of information

Can be unpredictable because of our lack of understanding
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Introduction to network analysis What are networks?

Any many other types of networks

World Wide Web

Citation network

Collaboration network

Hierarchy in an organisation

Sensor network

. . .

And then, we can view some data as networks:

Movie ratings by users

Stock correlation networks
— correlation among stocks of different companies

. . .
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Introduction to network analysis What is network analysis?

Network analysis: Definitions from dictionaries

Oxford: The mathematical analysis of complex working procedures
in terms of a network of related activities.

Dictionary.com: A mathematical method of analysing complex
problems, as in transportation or project scheduling, by
representing the problem as a network of lines and nodes.

Cambridge: The process of deciding in what order tasks need to be
done in a particular project, so that it can be finished successfully
in the least amount of time.

Longman: Another name for Critical Path Analysis.
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Introduction to network analysis What is network analysis?

Why should we care?

Networks exist everywhere (science, business, politics, . . .)

Network analysis helps in scientific understanding, new technology

We will see examples soon

Networks are not simple to understand or analyse

Compare networks to the standard machine learning setting where
each data has d features

Remember the variability in the definitions?

Each field looks at network analysis in its own way
Basic principles of network analysis is same in most domains
— We need an unified view to communicate across disciplines
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Introduction to network analysis What is network analysis?

Network analysis example: Zachary’s karate club

Zachary was studying social behaviour in a karate club in 1970s

The club had 34 members including 2 instructors;
Conflict arose between the instructors, and the club split into two

Zachary created a network among the members
based on who interacted outside the club

Zachary use a graph based algorithm
to split the network into two parts

Correctly predicted new group
memberships for 33 members

This problem is called
community detection

[Image: Girvan & Newman, PNAS 2002]
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Introduction to network analysis What is network analysis?

Network analysis example: Google’s PageRank . . . . . . 1

Top results by Google Arbitrary results
(out of ∼ 1 million)
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Introduction to network analysis What is network analysis?

Network analysis example: Google’s PageRank . . . . . . 2

World Wide Web is a directed network of websites (URLs)

Each edge A→ B means website A has a hyperlink to website B

Idea

A model for web search:
User starts from an arbitrary site
Randomly chooses one of the links, or jumps to a random site
Keeps doing this on every page — this is a random walk

Let p(A) be probability of user being in site A after infinite rounds

Sort websites based on p(·) — largest p(·) means top result
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Introduction to network analysis What is network analysis?

Network analysis example: Hashtags

“In the past, if you wanted to change the world,
you had to pass a law or start a war.

Now you create a hashtag.”

Hashtags do change the world

#MeToo, #TakeAKnee, #ALSIceBucketChallenge, . . .

But only if you notice them

Personalised feeds are designed by social networking companies

You see only topics that you have been interested in the past
— Echo chamber effect

How can you know the world beyond your topic of interests?
— New tools based on information flow in networks

Source: Interview of Ethan Zuckerman in MIT Technology Review
“Social networks are broken. This man wants to fix them.”
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Introduction to network analysis What is network analysis?

Network analysis example: Brain networks . . . . . . 1

How does the brain work?

Can we understand the network of neurons?

Considerable research on combining MRI with network analysis

Connectome / Wiring diagram Brain network

[Image: Wikipedia; MIT Technology Review]
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Introduction to network analysis What is network analysis?

Network analysis example: Brain networks . . . . . . 2

Human Connectome Project

Difficult to collect many MRI scans at one location

International collaboration among several universitiies

Large collection of MRI, EEG data to understand the connectome

Understanding brain from brain network

Brain network has small world properties

Alzheimer’s disease, ADHD etc. change brain network
— problems related to hypothesis testing

Without With

Alzheimer Alzheimer

[Image: Zajac et al., Brain Sci. 2017]

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 22 / 330



Introduction to network analysis What is network analysis?

Network analysis example: Epidemics and Airlines

Remember the Ebola virus outbreak in 2013–2016?

Epidemics cause several deaths

Difficult to predict which region will be affected next

Epidemics often spread through airline networks
— involves study of network dynamics / flow in networks

24 days            48 days               56 days             66 days           160 days  

Disease evolution in USA for an
epidemic starting in Hong Kong

← airport network in USA

[Image: Colizza et al., PNAS, 2006]
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Introduction to network analysis What is network analysis?

Network analysis or Graph theory . . . . . . 1

Network analysis = Graph theory

+ Domain knowledge + Mathematical modelling︸ ︷︷ ︸
to create meaningful networks

+ Machine learning + Data analysis︸ ︷︷ ︸
to analyse / learn from the network

+ Statistical learning theory︸ ︷︷ ︸
to understand how the methods work

+ Probability theory + Statistical physics︸ ︷︷ ︸
to understand the behaviour of networks
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Introduction to network analysis What is network analysis?

Network analysis or Graph theory . . . . . . 2

Example

Recall community detection in the karate club network

Underlying problem is that of graph partitioning
— classical problem in graph theory

Focus of graph theory

Graph partitioning: Split the vertex
set into highly connected sub-groups

Different optimization approaches:
min-cut, balanced cut, . . .

Complexity: mostly NP-hard

Poly-time approximations: Spectral
clustering, max-flow min-cut . . .
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Introduction to network analysis What is network analysis?

Network analysis or Graph theory . . . . . . 3

Components of network analysis

Modelling

Machine learning

Learning theory

Statistical physics

: Which information / data should we use for
creating the network?

: Formulate the mathematical problem;
Design new algorithms;
Efficient? Scalable to large networks?

: How good are these algorithms?
— Theoretical performance guarantees

: How do real networks behave? When can we
find communities, patterns, . . .?
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Introduction to network analysis This course: Focus & logistics

Course content . . . . . . 1

Focus

Machine learning + Learning theory aspects

Main focus on mathematical principles and theory

Bit of programming using Python and NetworkX (assignments)

No focus on any specific application domain

Additionally in tutorials: Mathematical preliminaries for network
analysis and learning theory
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Introduction to network analysis This course: Focus & logistics

Course content . . . . . . 2

Topics to be covered

Network measures

Network models

Spectral methods

Network dynamics

: We will discuss about how to describe
networks in quantitative terms

: We will learn few mathematical models for
networks and their properties
(random graphs, geometric graphs)

: We will learn the principles for spectral
graph theory, some spectral algorithms and
their theoretical analysis

: We will discuss the principle random walk in
network, and extend it to network dynamics
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Introduction to network analysis This course: Focus & logistics

Course content . . . . . . 3

Network
visualisation

More ML for
networks

Math tutorials

: We will describe how we can meaningfully
visualise networks

: If time permits, we will discuss kernel
methods, classification and hypothesis
testing for networks

: We will cover some topics like concentration
inequalities, Markov chains etc.

References

Scattered. No particular book /material

Some reference material will be mentioned in each lecture
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Introduction to network analysis This course: Focus & logistics

Course logistics . . . . . . 1

Course webpage:
http://www.tml.cs.uni-tuebingen.de/teaching/2018_
network_analysis/index.php

This page contains all information

Weekly meetings in Sand, Room F119:
Monday 12 ct – 14 (Lecture)
Wednesday 16 ct – 18 (Tutorial or Lecture)

Detailed schedule, assignment deadlines etc. will be posted
regularly on course webpage

Register on ILIAS by October 22 (next Monday)

Path: Informatik / Theorie des maschinellen Lernens / Statistical
Network Analysis (link on course webpage)
Information, assignments will be communicated through ILIAS
Use ILIAS forum to ask questions (no separate office hours)
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Introduction to network analysis This course: Focus & logistics

Course logistics . . . . . . 2

Assignments
Theory + Programming (in Python)

Once in every two weeks

Assignment notification and submission through ILIAS

Need 50% of total points in assignments to write final exam

Final exam
Grades will depend on final written exam

Points in assignments do not add to final grades
But 20% questions will be related to assignments

Exam dates
February 11, 2019 (Monday): 12 ct – 14 (in F119)
April 10, 2019 (Wednesday): 10 ct – 12 (in F119)

Need to register for exam. Details will be announced
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Introduction to network analysis Network preliminaries

Types of networks . . . . . . 1

G = (V,E)

1 2

3
5

4

V is a set of nodes or vertices

Nodes can have any name — Berlin, Informatik, John etc.
We will mostly write: V = {1, 2, 3,. . . , n}

n = number of nodes

E is set of edges or links (interactions between pairs of nodes)

This is an undirected graph
Every edge e = (u, v) represents a both ways connection
Here, edges are unweighted (we assume weight of each edge is 1)
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Introduction to network analysis Network preliminaries

Types of networks . . . . . . 2

1 2

3 5

4

2 3

1 4

56

Ego

Family

Friend

Family

Family

Family

Family

Friend

5

10

5

0.8

1 3

Graphs with edge weights or labels
Weighted edges: Each edge has a real-valued weight or cost

Network of cities (weight can be location / travel time)

Edges with labels: Each edge can have multiple labels
Ego network (common in social network analysis)
Ego is a central node connected to every other node
Edge labels are relative, friend, colleague etc.

Signed network: Each edge has two labels +1 or −1
Friend/foe network: +1 means friend, −1 means foe
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Introduction to network analysis Network preliminaries

Types of networks . . . . . . 3

Directed graphs
Each edge has an direction from source node to target node

Example: World Wide Web; Transaction network
Edges can also have weights or labels

Graphs with node labels or attributes
Karate network: Each node has a label depending on membership

Often forms the basis of semi-supervised learning or classification
problems in networks (we know few labels and predict others)
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Introduction to network analysis Network preliminaries

Types of networks . . . . . . 4

Many other types
Trees, Acyclic graphs

Family tree, Bayesian network
Can be undirected, directed, weighted

Bipartite graphs

Two types of nodes, and edges only go from one group to the other
Amazon reviews network: Users and Items are two node types, and
each edge denotes an User reviewed / rated an Item

Note
Which type of network to use?
— Depends on problem and application

We will mostly study undirected unweighted graphs
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Introduction to network analysis Network preliminaries

Representing a network . . . . . . 1

Adjacency matrix

A =


0 1 1 0 0
1 0 1 0 1
1 1 0 0 1
0 0 0 0 1
0 1 1 1 0


1 2

3
5

4

A is n× n matrix (n = number of nodes)

Unweighted graph: Aij = 1 if (i, j) ∈ E, and 0 otherwise
Weighted graph: Aij = weight of edge (i, j)
A is symmetric for undirected graphs, and asymmetric for directed

A can be very sparse for real networks (very few non-zero entries)

Facebook friendship network: n = 2.23 billion
#edges ≈ 173 billion, fraction of non-zero entries ≈ 7× 10−8

Practically inefficient, but useful for math!
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Introduction to network analysis Network preliminaries

Representing a network . . . . . . 2

Edge list Adjacency list

(1, 2) 1 : 2, 3

(1, 3) 2 : 1, 3, 5

(2, 3) 3 : 1, 2, 5

(2, 5) 4 : 5

(3, 5) 5 : 2, 3, 4

(4, 5)

1 2

3
5

4

Memory and computationally efficient for large, sparse graphs

Edge list: Popular format for storing graphs

Adjacency list: Fast retrieval of neighbours of node

Adjacency matrix/list, edge list can be defined for directed graphs
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Network measures

References

A list of many network measures:
M. Rubinov & O. Sporns (2010). Complex network measures of
brain connectivity: uses and interpretations. Neuroimage, 52(3),
pages 1059-1069
(see Appendix A, pages 1066-1068)

Networks used in the lecture are from
Stanford Large Network Dataset Collection
http://snap.stanford.edu/data/index.htmll

Lecture slides and videos by Jure Leskovec
https://web.stanford.edu/class/cs224w/index.html

(see handouts for lectures 2, 5)

Notes by Albert Barabasi on properties of real networks
http://barabasi.com/f/623.pdf
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Network measures Degree distribution

Degree distribution
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Network measures Degree distribution

Degree of a node

Undirected graph

degree(i) = number of neighbours of i

=
n∑
j=1

Aij

Directed graph

out-degree(i) = number of edges from i

=

n∑
j=1

Aij

in-degree(i) = number of edges to i

=

n∑
j=1

Aji

deg(2) = 3

1 2

3 5

4

1 2

3 5

4
in-deg(2) = 3, out-deg(2) = 1

Note: A is adjacency matrix
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Network measures Degree distribution

Density, Average degree (unweighted undirected graph)

Edge density (ρ)

ρ = fraction of possible edges in E

=
1(
n
2

) n∑
i<j

Aij =
1

n(n− 1)

n∑
i,j=1

Aij

Average degree (d)

d =
1

n

n∑
i=1

deg(i) =
1

n

n∑
i,j=1

Aij

G = (V,E)
1 2

3
5

4

ρ = 0.6

d = 2.4

ρ d

Complete graph: 1 (n− 1)

Empty graph (graph with no edges): 0 0

Path graph (single path on n nodes): 2
n 2

(
1− 1

n

)
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Network measures Degree distribution

Degree distribution (undirected unweighted graph)

1 2

3 5

4

Number of nodes with degree d, where d = 0, 1, . . . , (n− 1)

Often normalised so that total count is 1
Denotes proportion of nodes with specific degree
It is a probability mass function

p(d) =
nd
n

(nd = number of nodes with degree d)

Provides a summary of the degree of all nodes
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Network measures Degree distribution

Density and degrees in real networks . . . . . . 1

Networks are sparse (low density, small average degree)

Network n #edges ρ d

Email interactions (Enron) 36692 183831 2.73× 10−4 10.02
Item co-purchase (Amazon) 334863 925872 1.65× 10−5 5.53

Friendship network (Youtube) 1134890 2987624 4.64× 10−6 5.26

Degree distributions (normalised)

1 2

3 5

4
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Network measures Degree distribution

Density and degrees in real networks . . . . . . 2

Beware of the scales in plot

Linear plots for degree distribution are
meaningless for large networks

Degree distributions typically follow
power law

p(d) = fraction of nodes with degree d
α = some positive constant

p(d) ∝ d−α

Degrees provide local information about
the network

How many neighbours does a node have?
Degree distribution shows how local
properties vary over the network

Degree distribution
(Youtube network)

1 2

3 5

4

1 2

3 5

4
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Connected components
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Network measures Connected components

Connectness of network . . . . . . 1

Is the network connected?

Can we reach from any node to any other node?
Global property of a graph

No, if there are isolated nodes (nodes with degree zero)

If there is no isolated node, degree does not say anything
Both graphs below have same degrees but different connectivity

1 3 5

4 62

1 3 5

4 62

6

1

5

3

42

6

1

5

3

42

6

1

5

3

42

Connected graph 2 connected components

Connected components

Largest possible connected subgraphs of a graph
Subgraph on {1, 2} is not a connected component (not maximal)
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Network measures Connected components

Connectness of network . . . . . . 2

Giant component

Largest connected component in a graph

How to find connected components?

Any search algorithm (breadth first search)

Real networks

Sparse, but typically have a large giant component

Enron Youtube

Nodes n 36692 1134890

Average degree d 10.02 5.26
Isolated nodes 0 0

Number of components 1065 1
Giant component size 33696 (92%) 1134890 (100%)

2nd largest component 20 (0.05%) –
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Network measures Connected components

Connectedness in directed graphs

Connectivity / reachability is not
bi-directional in di-graphs

Strongly connected graph:
If every node can be reached from every
other node

Strongly connected component:
Maximal strongly connected subgraph

Zero degree nodes

Isolated: in-degree = out-degree = 0
Source: in-degree = 0
Sink: out-degree = 0

1 2

3 5

4

1 2

3 5

4

{2, 3, 5} strongly connected

1 is source, 4 is sink
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Network measures Paths in graphs

Paths in graphs
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Network measures Paths in graphs

Graph paths

Path: Sequence of nodes {u1, u2, . . . , u`} such that (ui, ui+1) ∈ E
for every i

Length of path: Number of edges in path (unweighted graph)

Shortest path: Path of smallest length between two vertices
Shortest path distance / Geodesic distance

dsp(u, v) =

 length of shortest path between u and v

∞ if no path exists

Symmetric for undirected graph, but not for di-graph

1 2

3
5

4

{1, 3, 2, 3, 5} is a path of length 4

{1, 2, 5} is a shortest path between 1, 5

dsp(1, 5) = 2
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Network measures Paths in graphs

Path lengths in networks

Diameter: Maximum shortest path distance in a graph

diam(G) = max
u,v∈V

dsp(u, v)

Maximum number of hops needed to reach any one

Average path length / Characteristic path length:
Average of shortest path distances between all pairs

L(G) =
1

n(n− 1)

∑
u,v∈V

dsp(u, v)

Typically used only for connected graphs
If graph is not connected, only consider connected components

Diameter for real networks?
O(n2 lnn+ n ·#edges) time using Djikstra’s algorithm
Takes too long for Enron (diameter = 13), Youtube etc.

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 54 / 330



Network measures Local structures in networks

Local structures in networks
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Network measures Local structures in networks

Going beyond degrees

Node degree: First level of local information
How many neighbours does a node have?
Does not say how well the neighbours are connected

Diameter, shortest path: Long range information
How well is a node connected to all other nodes?

Can we find something in between?
Motifs, Graphlets: Small patterns in a network
Connected subgraphs (k-cliques, path of length m, etc.)
Still local, but gives more information than degrees

1 3 5

4 62

1 3 5

4 62

6

1

5

3

42

6

1

5

3

42

6

1

5

3

42

Degree Triangles 4-cliques
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Network measures Local structures in networks

Clustering coefficient (undirected graph) . . . . . . 1

Triangle: Two neighbours of a node are also connected

Friend of a friend is often a friend
Most simple motif in undirected graphs

Number of triangles possible?

If node-u has degree du, it can be in 1
2du(du − 1) possible triangles

Local clustering coefficient (for a node)

CC(u) =
#triangles containing node-u

1
2du(du − 1)

5

1

3

42

5

1

3

42

5

1

3

42

1 3 5

4 62

7

CC(1) = 0 CC(1) = 1 CC(1) = 2/3
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Network measures Local structures in networks

Clustering coefficient (undirected graph) . . . . . . 2

Average (local) clustering coefficient

CClocal =
1

n

n∑
u=1

CC(u)

Global clustering coefficient

CCglobal =
3×#triangles in graph∑

u
1
2du(du − 1)

Factor of 3 counts each triangle once for every participating node
What fraction of triplets in the entire network form triangles?
Different from CClocal

Enron Youtube

Nodes n 36692 1134890
CClocal 0.497 0.081
CCglobal 0.085 0.006
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Network measures Local structures in networks

Motifs . . . . . . 1

Frequently occurring small connected subgraphs

Possible 3-motifs in undirected graphs

Let’s consider all possible (non-isomorphoic) 
directed subgraphs of size 3

10/9/18 Pedro Ribeiro

Example Application

Consider all possible directed
subgraphs of size 3

Jure Leskovec, Stanford CS224W: Analysis of Networks 5

Possible 3-motifs in directed graphs

Let’s consider all possible (non-isomorphoic) 
directed subgraphs of size 3

10/9/18 Pedro Ribeiro

Example Application

Consider all possible directed
subgraphs of size 3

Jure Leskovec, Stanford CS224W: Analysis of Networks 5

[Image: Leskovec lecture slides]
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Network measures Local structures in networks

Motifs . . . . . . 2

We count the number of motifs in a graph

Example: #edges = number of 2-motifs in a graph

Different networks have different types of motifs in high numbers

How many motifs of a certain type should we expect?
— Will discuss after we learn network models

Size of motifs

Typically kept small (upto 5) — possibilities grow exponentially
Computationally expensive to find large motifs

Further reading/viewing: Lecture-5 by Leskovec

https://web.stanford.edu/class/cs224w/index.html

Provides intuition for motifs and many real examples
Describes an algorithm to count motifs / graphlets
(this additional material is not in the exam for our course)
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Network measures Community structure

Community structure
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Network measures Community structure

Community structure

Community: Group of nodes

Many edges among themselves
Few edges nodes outside community

Does a network have communities?

Measured by modularity

Can we find communities in network?

Graph partitioning
Spectral clustering, . . .

Will discuss after we learn

Network models
Spectral graph theory
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Centrality
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Network measures Centrality

Centrality

Which nodes are important in a network?

5

1

3

42

5

1

3

42

5

1

3

42

1 3 5

4 62

7

Left graph: No network without node-1
Middle graph: Other nodes well connected even if we remove node-1
Right graph: Is node-1 important?

Centrality measure

Gives a score to each node to quantify its importance
Many different definitions — depends on application
Larger centrality score means node is more important / central

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 64 / 330



Network measures Centrality

Centrality measures (undirected graph) . . . . . . 1

Degree centrality: Cdegree(u) = degree(u)

More important if node has more connections

5

1

3

42

5

1

3

42

5

1

3

42

1 3 5

4 62

7

Not always meaningful: What happens here?

Closeness centrality: Cclose(u) =
1∑

v 6=u
dsp(u, v)

dsp(u, v) = shortest path distance between u, v
Node is more central if its total distance from every node is small
What happens if graph is disconnected?
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Network measures Centrality

Centrality measures (undirected graph) . . . . . . 2

Harmonic centrality: Charmonic(u) =
∑
v 6=u

1

dsp(u, v)

Variant of closeness centrality
Meaningful even for disconnected graphs

Betweenness centrality: Cbetween(u) =
∑
s,t 6=u
s 6=t

σ(s, t|u)

σ(s, t)

σ(s, t|u)= number of shortest paths between s, t that pass through u
σ(s, t) = total number of shortest paths between s, t
Denotes how often node-u lies between other pairs of nodes

Eigen-centrality, Page rank:

Based on eigenvectors of adjacency matrix
Will discuss after spectral graph theory
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Network measures Properties of many real networks

Properties of many real networks
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Network measures Properties of many real networks

Scale free networks

1 2

3 5

4

1 2

3 5

4

Networks with power law degree distributions
p(d) = fraction of nodes with degree d (probability mass function)

p(d) =
C

dα
OR ln(p(d)) = lnC − α ln d

α > 1, and C normalising constant so that
∞∑
d=0

p(d) = 1
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Network measures Properties of many real networks

Scale free networks

1 2

3 5

4

1 2

3 5

4

Networks with power law degree distributions
p(d) = fraction of nodes with degree d (probability mass function)

p(d) =
C

dα
OR ln(p(d)) = lnC − α ln d

α > 1, and C normalising constant so that
∞∑
d=0

p(d) = 1
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Network measures Properties of many real networks

Why “scale free”: First interpretation . . . . . . 1

Related to notion of scale invariance

f(·) is scale-invariant if
f(ax)

f(x)
does not depend on x (for large ax)

f(x) =
1

xr
is scale invariant :

f(ax)

f(x)
=

1

ar

f(x) = e−x is scaling :
f(ax)

f(x)
= ex−ax

Scale invariant distribution function

F (x) = P(X ≤ x) is scale invariant distribution function if

F (x) = 1− F (x) is scale-invariant

F (x) is called tail probability

Theorem

F (·) is a scale-invariant distribution ⇐⇒ F (x) ∝ x−r for some r > 0
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Network measures Properties of many real networks

Why “scale free”: First interpretation . . . . . . 2

Degree distribution function is scale-invariant / scale-free

Let F (d) = proportion of nodes with degree at most d
= P(degree ≤ d) . . . distribution function

p(d) =
C

dα
assume d ∈ [1,∞)

=⇒ F (d) = 1− C

(α− 1)dα−1
(exercise)

=⇒ F (d) ∝ 1

dα−1

High degree nodes are not exponentially rare
1

dα−1
� e−d for very large d

Note: Degree is simply counts of neighbours

Compare this fact with typical laws for sums

Power law is a special case of heavy tailed distribution
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Network measures Properties of many real networks

Why “scale free”: Second interpretation

What if degrees followed typical laws of sums?

Gaussian distribution, Poisson distribution, etc.

Let d = average degree

From tutorial: P
(
degree > 2d

)
is exponentially small

Networks with scale

Network has a scale if above happens

d is scale of the network

Scale free networks

Network without a scale

d is not representative of the degrees in the network

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 71 / 330



Network measures Properties of many real networks

Small world networks . . . . . . 1

Six degrees of separation

Idea started in early 1900s

Anyone can be connected to another person through at most five
people

Milgram’s small world experiment (1960s)

Participants in Nebraska and Kansas given some letters

Each letter had to be delivered to a target in Massachusetts

Can be transfer through friends / acquaintances

Result of Milgram’s experiment

Only 64 out of 296 letters reached

Average path length for these 64 letters was between 5.5 to 6
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Network measures Properties of many real networks

Small world networks . . . . . . 2

[Image: Wikipedia]
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Network measures Properties of many real networks

Small world networks . . . . . . 3

[Image: Milgram]

Erdős number: Shortest paths in co-authorship network

How many hops from any researcher to Paul Erdős?
Stephen Hawking has Erdős number 4
Hawking — J. B. Hurtle — S. Chandrasekhar — M. Kac — Erdős
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Network measures Properties of many real networks

Small world networks . . . . . . 4

Shortest path distances in real networks

Computed for 50000 random pairs
Average path lengths about 5 to 6
Do not infer diameter from these plots (why?)
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Network measures Properties of many real networks

Mathematical forms of small world property

No precise mathematical definition
Some notions arise from study of network models

Let G be a network with n nodes
Small world: diameter(G) = O(lnn)

Ultra-small world: diameter(G) = O(ln lnn)
(behaves like a constant)
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Network measures Properties of many real networks

Other features

Hubs

Scale free networks have few nodes with very high degree (hubs)

Hubs induce ultra-small world property

Hubs have high degree centrality as well as betweenness centrality
(think of a star graph)

Friendship paradox

Scott Feld in 1991 found that:
most people have fewer friends than their friends have on average

Why?
— Can be explained mathematically
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Network measures Properties of many real networks

Proof of friendship paradox

Let |V | = n, and du = friends of node-u

Average number of friends =
1

n

∑
u∈V

du

Total number of friends for everyone =
∑
u∈V

du

Total number of friends of friends
=
∑
v∈V

∑
u∼v

du =
∑
u∈V

d2
u (u ∼ v for du number of v’s)

Average number of friends of friends

= total friends of friendstotal friends =

∑
u d

2
u∑

u du(∑
u
du

)2

≤ n
∑
u
d2
u (prove using Cauchy-Schwarz inequality)
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Network models

Network models
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Network models

References

Erdős-Rényi graph: Chapter 8 of Foundations of data science
https://www.cs.cornell.edu/jeh/book.pdf

Configuration model: Aaron Clauset’s notes (Lectures 11, 12)
http://tuvalu.santafe.edu/~aaronc/courses/5352/fall2013/

Watts-Strogatz model: Paper by Barrat and Weigt
https://arxiv.org/pdf/cond-mat/9903411.pdf

Preferential Attachment

Barabasi-Albert model: http://barabasi.com/f/622.pdf
More formal material: Chapter 3 of Complex graphs and networks
http://www.math.ucsd.edu/~fan/complex/

ER and PA (mathematical): Random Graphs and Complex
Networks (vol 1) http://www.win.tue.nl/~rhofstad/
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Network models Erdős-Rényi model

Erdős-Rényi model
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Network models Erdős-Rényi model

The G(n, p) and G(n,m) models

Two similar models for generating random undirected graphs
G(n, p) by Edgar Gilbert (1959)

G(n,m) by Paul Erdős and Alfred Rényi (1959)

G(n, p) is more popular, but referred to as Erdős-Rényi model

n,m, p are parameters
n = number of nodes

p = probability of an edge in graph G(n, p)

m = number of edges in graph G(n,m)

G(n, p): For every pair of nodes i, j (i 6= j)
add the edge (i, j) with probability p

G(n,m): There are
(
n
2

)
pair of nodes

Choose any m pairs randomly, and add them to edge set
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Network models Erdős-Rényi model

Possible graphs that are generated

G(n,m)

Let C1 =
{
G = (V,E) : |V | = n, |E| = m

}
What is the size of C1?

G(n,m) = Uniform distribution on C1

G(n, p)

Let C2 =
{
G = (V,E) : |V | = n

}
What is the size of C2?

G(n, p) can generate any graph in C2 — is it uniform over C2?
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Network models Erdős-Rényi model

Possible graphs that are generated

G(n,m)

Let C1 =
{
G = (V,E) : |V | = n, |E| = m

}
What is the size of C1?

G(n,m) = Uniform distribution on C1

G(n, p)

Let C2 =
{
G = (V,E) : |V | = n

}
What is the size of C2?

G(n, p) can generate any graph in C2 — is it uniform over C2?
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Network models Erdős-Rényi model

What is the nature of G(n, p)?

Let G ∼ G(n, p)

P(G = empty graph) = (1− p)n(n−1)/2

P(G = complete graph) = pn(n−1)/2

Let S = number of edges in G

S ∼ Binomial

(
n(n− 1)

2
, p

)
E[S] =

pn(n− 1)

2
, Var(S) = p(1− p)n(n− 1)

2
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Network models Erdős-Rényi model

Density and degrees of G(n, p) . . . . . . 1

Edge density

E[density(G)] = p

Degree (di) for any node-i

di ∼ Binomial(n− 1, p)

E[di] = p(n− 1)

Average degree

d =
1

n

∑
i

E[di] = p(n− 1) ≈ pn
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Network models Erdős-Rényi model

Density and degrees of G(n, p) . . . . . . 2

How should we set p?

Real networks are sparse

n #edges density, p d

Enron 36692 183831 2.73× 10−4 10.02
Amazon 334863 925872 1.65× 10−5 5.53
Youtube 1134890 2987624 4.64× 10−6 5.26

p decreases rapidly with n

d ≈ np behaves like a constant (or perhaps grows very slowly)

Possibly set p =
C

n
or p =

C lnn

n
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Network models Erdős-Rényi model

Density and degrees of G(n, p) . . . . . . 3

Degree distribution ≈ Binomial(n, p) (n− 1 ≈ n)

What happens when n is large?

Degree distribution ≈ N
(
np, np(1− p)

)
If p = C

n , degree distribution ≈ Poisson(C)

But in real networks, degrees follow power law distribution

Real network: P(degree > t) � t−α
ER model: P(degree > t) � e−t
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Network models Erdős-Rényi model

Triangles and clustering coefficient

Let G ∼ G(3, p): P(G is a triangle) = p3

For G ∼ G(n, p):

E[#triangles] = p3
(
n

3

)
Global clustering (in expectation)

E[CCglobal] = E
[

3×#triangles∑
u

1
2du(du − 1)

]
≈

3p3
(
n
3

)
n
2 (np)2

� p

Average local clustering E[CClocal] � p

Enron Youtube

Density p 2.73× 10−4 4.64× 10−6

CClocal 0.497 0.081
CCglobal 0.085 0.006
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Network models Erdős-Rényi model

Connectivity: Isolated nodes . . . . . . 1

Theorem: Number of isolated nodes

Let G ∼ G(n, p), and X = #isolated nodes in G.

E[X] = n(1− p)n−1

lim
n→∞

E[X] = 0 if p >
lnn

n
, and lim

n→∞
E[X] =∞ if p <

lnn

n
.

Proof: E[X] =
∑

i P(di = 0) =
∑

i(1− p)n−1

Let p = c lnn
n .

lim
n→∞

E[X] = lim
n→∞

n

(
1− c lnn

n

)n
= lim

n→∞
ne−c lnn since lim

n→∞
e−an = lim

n→∞

(
1− an

n

)n
= lim

n→∞
n1−c
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Network models Erdős-Rényi model

Connectivity: Isolated nodes . . . . . . 2

Corollary: Presence of isolated nodes

Let G ∼ G(n, p)

P(G contains isolated nodes) =


o(1) if p >

lnn

n

1− o(1) if p <
lnn

n

Here, x = o(1) means lim
n→∞

x = 0.

Proof: In tutorial.
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Network models Erdős-Rényi model

Diameter . . . . . . 1

Theorem: ER graph with ultra-small world property

Let G ∼ G(n, p) with p >

√
2 lnn

n
.

P
(
diameter(G) ≤ 2

)
= 1− o(1)

Proof: In tutorial. Similar to proof for isolated nodes.

Implication

Real networks: Diameter small due to presence of few hubs

G(n, p) do not have very high degree nodes

Yet if p >

√
2 lnn

n
, then diameter(G) ≤ 2 (Why?)
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Network models Erdős-Rényi model

Diameter . . . . . . 2

An informal argument (Note: This is not accurate)

CC(i) ≈ p→ 0 if p = o(1). Neighbours are typically not connected

Neighbourhood of ever node is somewhat like a tree

np nodes

np nodes If it is a tree
— we can reach (np)2 nodes
in 2 hops

If p >

√
2 lnn

n
, then

(np)2 > 2n lnn
— more than n nodes

In G(n, p), there are still
few triangles
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Network models Erdős-Rényi model

Diameter . . . . . . 3

p >

√
2 lnn

n
is a relatively dense setting

What happens for smaller p?

Diameter > 2 for with probability (1− o(1)) if p <

√
2 lnn

n

Theorem: ER graph with small world property

Let G ∼ G(n, p) with p > C1
lnn

n
.

diameter(G) < C2 lnn with probability 1− o(1)

Here C1, C2 are some large positive constants.

Proof: We will skip. If interested, see Theorem 8.13 in FoDS book.
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Network models Erdős-Rényi model

Connectivity: Giant component . . . . . . 1

Theorem: Connectedness and presence of giant component

Each statement holds with probability 1− o(1)

If p >
lnn

n
, then G is connected

If p >
lnn

2n
, then G has:

— a giant component of size >
n

2
— all nodes not in the giant component are isolated

Proof: We will skip. If interested, see Theorem 8.11 in FoDS book.
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Network models Erdős-Rényi model

Connectivity: Giant component . . . . . . 2

Theorem: Emergence of a giant component

Each statement holds with probability 1− o(1)

If p <
1

n
,

— then all connected components in G are of size < C lnn.

If p >
1

n
,

— then G has a giant component with > εn number of nodes

Proof: We will skip. Proof based on branching processes.
Theorems 4.4 and 4.8 in Hofstadt’s book OR some arguments in
http://www.cs.yale.edu/homes/spielman/462/2010/lect5-10.pdf

Note: np > 1 means average node degree > 1
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Network models Variants of ER model and related problems

Variants of ER model and related problems
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Network models Variants of ER model and related problems

Significance of ER model

Not a good model for real networks

Originally used for the probabilistic method

Use probability to answer deterministic questions

Used to analyse performance of graph algorithms

Simple model — easier to do analysis

We can provide guarantees for algorithms assuming G ∼ G(n, p) or
similar model

Phase transitions in ER

Phase transition: Drastic changes observed if a parameter is
changed a little

Saw this in emergence of isolated nodes and giant component

Has connection to problems in physics
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Network models Variants of ER model and related problems

Planted clique problem . . . . . . 1

Theorem: Largest clique in G(n, 1
2)

Let G0 ∼ G(n, 1
2) and S be the largest clique in G.

P
(
|S| < 2 log2 n

)
= 1− o(1)

Planted k-clique
Let G0 ∼ G(n, 1

2)

Choose a random subset of nodes S of size k

Add all edges between nodes in S, and call the new graph G

G is a random graph with a planted clique S
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Network models Variants of ER model and related problems

Planted clique problem . . . . . . 2

Planted clique problem: Let k � 2 log2 n.

Can we find S?

Theorem: Finding large planted clique (Kucera, 1995)

Let G has a planted k-clique with k >
√
n lnn.

Let S = set of k nodes with highest degrees

S is the planted clique with probability 1− o(1)

Better algorithms till date can find planted cliques if k > ε
√
n

What happens when 2 log2 n� k �
√
n?

Planted clique conjecture:
No polynomial time algorithm can find planted clique of size
k �

√
n
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Network models Variants of ER model and related problems

Stochastic block model / Planted partition

Let G1, . . . , Gk ∼ G(s, p)
— If p is large, each graph is connected

G′ is a graph on n = sk nodes such that G′ = G1 ∪ . . . ∪Gk
— G′ has k connected components
— G′ has k communities with no interaction across communities

For every pair of nodes from two different communities:
— Add edge with probability q < p
— Call this new graph G

G is called stochastic block model
— G is a random graph, but has a hidden partition of nodes

Can analyse performance of graph partitioning algorithms on G
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Network models Configuration model

Configuration model
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Network models Configuration model

Revisiting ER model

Modelling reality with G(n, p) or G(n,m)

Real networks are sparse: p =
C

n

Degree distribution: Binomial (asymp Poisson) . . . not scale free

Clustering coefficient ≈ p =
C

n
. . . very low clustering

Diameter is O(lnn) if p >
C lnn

n

Giant component if p >
1

n

What about G(n,m)? — Nearly similar to G(n, p) for p =
m(
n
2

)
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Network models Configuration model

Configuration model . . . . . . 1

Generalisation of G(n,m)

Allows specification of node degrees

Generation process

Given degree sequence (d1, d2, . . . , dn) such that
∑
i di is even

Create di copies of node-i

Randomly pair any two node copies (each copy paired only once)

Merge all copies of same node
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Network models Configuration model

Configuration model . . . . . . 2

Example: Given degrees (3,2,2,2,1). Make copies of nodes

1
3

2
2

3
2

4
2

5
1

1

1

1

2

2

3

3

4

4

5

1
3

2
2

3
2

4
2

5
1

1

1

1

2

2

3

3

4

4

5

Randomly pair nodes Merge copies of same node

1

1

1

2

2

3

3

4

4

5

1

2

3

4 5 1

2

3

4 5

1

1

1

2

2

3

3

4

4

5

1

2

3

4 5 1

2

3

4 5
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Network models Configuration model

Configuration model . . . . . . 3

Generates different graphs with same degree sequence

1

1

1

2

2

3

3

4

4

5

1

2

3

4 5 1

2

3

4 5

Can also lead to self-loop or multi-edge

21 53 4

12 53 4

Solution: Collapse such edges . . . what happens if we do this?

21 53 4

12 53 4
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Network models Configuration model

Properties of configuration model

Edge probability

Let G = (V,E) be generated from CM with degrees (d1, . . . , dn),

P
(
(i, j) ∈ E

)
=

didj
2m− 1

≈ didj
2m

where m =
1

2

∑
i

di

Proof: Node-i has di copies.

Each copy can form an edge with node-j with probability
dj

2m− 1
.

Local properties
Degree distribution: Any specification . . . can choose power-law

Global clustering coefficient � C

n
for sparse graphs . . . too small
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Network models Small world models

Small world models
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Network models Small world models

Small world network

A small world network has:

Short distances among all nodes — O(lnn) average path length

Neighbours likely to be connected — High clustering coefficient

Contradictory features?

ER and Configuration: Short distances, but low clustering

Lattice graphs: High clustering, but large distances
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Network models Small world models

Watts-Strogatz model

Parameters: n, k, β

Start with n nodes arranged in circle

Connect each node to 2k nearest nodes

Rewiring:

For every edge (i, j) in original graph (with i on left of j)
with probability β, detach from j and connect to a random node
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Network models Small world models

Properties of Watts-Strogatz graph . . . . . . 1

Let Gβ ∼WSM(n, k, β)

Average degree = 2k (irrespective of β)

Consider β = 0

G0 only has connection with nearby nodes

Diameter ≈ n

2k

Average path length ≈ n

4k

Number of triangles containing node-i = 3
2k(k − 1)

Clustering coefficient (global / local) =
3(k − 1)

2(2k − 1)
(Exercise: Verify these properties)

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 110 / 330



Network models Small world models

Properties of Watts-Strogatz graph . . . . . . 2

Clustering coefficient of Gβ

CClocal(Gβ) ≈ CCglobal(Gβ) ≈ 3(k − 1)

2(2k − 1)
(1− β)3

Proof idea: For every triangle,

each of the 3 sides are not changed with probability (1− β)

all three sides not modified with probability (1− β)3

Average path length, L(Gβ)

L(Gβ) =


O(n) if β =

c

n

O

(
lnn

ln(2k − 1)

)
if β → 1
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Network models Small world models

Other small world models

Newman-Watts-Strogatz model

Instead of rewiring, add more edges with some probability

Kleinberg model

Start with a grid in R2

Add edges between non-adjacent u, v with probability

puv =
1

‖u− v‖r

Small world models produce networks with

average path length ≤ C lnn
clustering coefficient > ε
But, degree distributions are not power law (Why?)
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Network models Preferential attachment

Preferential attachment
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Network models Preferential attachment

Preferential attachment

Previous models directly generate large graphs

Many real networks grow over time

Preferential attachment process

Models how a network grows over time

Principle: The rich get richer

Rich get richer — in networks

New nodes in a network connect more with high degree nodes

Why should we consider preferential attachment?

Preferential attachment typically leads to power law distributions
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Network models Preferential attachment

Barabasi-Albert model . . . . . . 1

One of many models for preferential attachment (most popular)

Parameters

Initial graph G0 = (V0, E0)

Integer m ≤ |V0|

At each t = 1, 2, . . ., graph Gt is as follows

Add a new node v

Add edges between v and m random nodes in Vt−1

Probability of choosing node u ∈ Vt−1

pu =
du∑

i∈Vt−1

di

NOTE: If du is large, u is more likely to have new connections
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Network models Preferential attachment

Barabasi-Albert model . . . . . . 2

G0

G15

G5

m = 2
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Network models Preferential attachment

Properties of BA model

Let G0 be a small graph and t be large.
We study properties of Gt = (Vt, Et)

|Vt| =
(
|V0|+ t

)
≈ t, and |Et| =

(
|E0|+mt

)
≈ mt

Average degree, d =
2|Et|
|Vt|

≈ 2m

Degree distribution, p(d) � d−3 (power law)

Average path length, L(Gt) �
lnn

ln lnn

Clustering coefficient � (lnn)2

n
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Geometric graphs
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Geometric graphs

Neighbourhood graphs . . . . . . 1

Let v1, v2, . . . , vn ∈ Rd (can be some other metric space)

Neighbourhood graph G = (V,E):

V = {v1, v2, . . . , vn}
(vi, vj) ∈ E if the two points are close

Directed k-nearest neighbour graph:

Directed edge (vi, vj) ∈ E if

‖vi − vj‖ > ‖vi − u‖ for at most k − 1 other u ∈ V \{vi}

Undirected k-NN graphs:

standard k-NN: (vi, vj) ∈ E if

vj ∈ kNN(vi) or vi ∈ kNN(vj)

mutual k-NN: (vi, vj) ∈ E if

vj ∈ kNN(vi) and vi ∈ kNN(vj)
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Geometric graphs

Neighbourhood graphs . . . . . . 2

ε-neighbourhood graph:

Undirected edge (vi, vj) ∈ E if

‖vi − vj‖ ≤ ε

Example: n = 30 points in [0, 1]2

Directed k-NN, k = 3 ε-neighbourhood, ε = 0.3
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Geometric graphs

Motivation for geometric graphs . . . . . . 1

Not a typical model for social networks

Can model wireless or sensor networks

Two wireless devices communicate if they are close

Useful for standard data analysis (not related to network data)

Big complex data often lie on manifolds

Does not span whole of Rd

Example: Think of all possible 800× 600 RGB images of cats
— Can they be any arbitrary image in [0, 255]800×600×3?

It is often difficult to find / formally define these manifolds

Can we directly apply machine learning on the manifold?
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Geometric graphs

Motivation for geometric graphs . . . . . . 2

Data lies in a specific
region in Rd (manifold)

Circles in R2

S-curve in R3

Machine learning

Choose features

Kernel trick
(choose kernel)

Graph based

Learn manifold from
neighbourhood graph

Spectral embedding,
Isomap
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Geometric graphs Random geometric graphs

Random geometric graphs
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Geometric graphs Random geometric graphs

Random geometric graphs (RGG)

Various models for random graphs
Main component: Nodes are points in some space

First type of RGGs
f(·) is a probability density on some space
— example: Uniform distribuiton on unit cube / ball in Rd

v1, . . . , vn ∼iid f(·)
G is k-NN or ε-graph on v1, . . . , vn

Second type of RGGs
V = {v1, . . . , vn} lie in some space (may not be random)

G = (V,E) undirected with edges being independent

P
(
(vi, vj) ∈ E

)
∝ exp

(
−‖vi − vj‖

2

σ2

)
or

1

‖vi − vj‖α
(similar to Kleinberg’s model)
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Geometric graphs Random geometric graphs

Analysis of RGG . . . . . . 1

Motivation for studying RGG

Partly mathematical interest
— when are RGGs connected, have giant component etc.

Provides guidance for choice of parameters

Connectedness of undirected k-NN

Let v1, . . . , vn ∼ f , and G be undirected k-NN on them.
Under some conditions on f , with high probability

G is connected if k � lnn

G is not connected if k � lnn

Proof: Skipped.
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Geometric graphs Random geometric graphs

Analysis of RGG . . . . . . 2

Implication of above result

Fast NN search

n is large, and V = {v1, . . . , vn} entries in a database

Given query point v, find its nearest neighbour in V

Can we do in less than O(n) time?

k-NN graph based approximate NN search

1. Start with a random u ∈ V

2. If ‖v − u‖ < ‖v − x‖ for all x ∈ NN(u)
— return u,
— else repeat step-2 with u∗ = arg min

x∈NN(u)

‖v − x‖

Above algorithm cannot be accurate if graph is disconnected

Need to set k � lnn
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Geometric graphs Random geometric graphs

Analysis of RGG . . . . . . 3

Density estimation using ε-neighbourhood graph

Let v1, . . . , vn ∼iid f on Rd. Under some conditions on f and ε,

E[degree(vi)] ≈ f(vi) · nCdεd

for large n, where Cd volume of unit ball in Rd.

Proof idea: E[degree(vi)] =
∑
j 6=i

P
(
(vi, vj) ∈ E

)
=
∑
j 6=i

P
(
vj ∈ Bε(vi)

)
where Bε(x) = {y : ‖x− y‖ ≤ ε}

P
(
v ∈ Bε(vi)

)
=

∫
Bε(vi)

f(v)dv ≈ f(vi)Vol
(
Bε(vi)

)
if ε is very small

= f(vi) · Cdεd
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Spectral graph theory

Spectral graph theory
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Spectral graph theory

References

F. Chung. Spectral graph theory. Chapters 1, 2.
http://www.math.ucsd.edu/~fan/research/revised.html

U. von Luxburg. A tutorial on spectral clustering.
https://arxiv.org/pdf/0711.0189.pdf
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Spectral graph theory Spectra of graph Laplacians

Spectra of graph Laplacians
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Spectral graph theory Spectra of graph Laplacians

Graph as a matrix

Graphs can be represented by matrices

Adjacency matrix, Incidence matrix etc.

Matrix spectral theory

Many properties of matrices depend on eigenvalues and eigenvectors

Fan Chung writes:

Roughly speaking, half of the main problems of spectral theory lie in
deriving bounds on the distributions of eigenvalues. The other half
concern the impact and consequences of the eigenvalue bounds as
well as their applications.

Graph Laplacians

Other matrices defined from adjacency matrix
Spectra of Laplacians more useful than that of adjacency matrix
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Spectral graph theory Spectra of graph Laplacians

Unnormalised graph Laplacian

For undirected graph G = (V,E), let

A ∈ {0, 1}n×n (symmetric) is adjacency matrix
D ∈ Rn×n (diagonal) is degree matrix, Dii = degree(i)

Unnormalised graph Laplacian, L ∈ Rn×n

L = D −A

Exercise: For any vector f ∈ Rn

(Lf)i =
∑
j 6=i

Aij(fi − fj) and fTLf =
1

2

n∑
i,j=1

Aij(fi − fj)2

Think of f as a function f : V → R that is, fi = f(vi)

(fi − fj) = how much f changes across edge (i, j) . . . derivative!!!
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Spectral graph theory Spectra of graph Laplacians

Why call it Laplacian?

Laplace operator: Let f : R2 → R

∆f =
∂2f

∂x2
+
∂2f

∂y2

Computing ∆f at a point v = (x, y)

∆f(v) =
∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y)

≈ f(x+ h, y) + f(x− h, y)− 2f(x, y)

h2
+
f(x, y + h) + f(x, y − h)− 2f(x, y)

h2

(finite difference)

Set h = 1, and think of v = (x, y) as node in a grid graph
(x± 1, y) and (x, y ± 1) are neighbours of v

Lg be Laplacian of grid graph

∆f(v) ≈ −Lgf(v)
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 1

Properties of L

Let L be unnormalised Laplacian of undirected graph G

L is symmetric

L is positive semi-definite

Smallest eigenvalue of L is 0, with corresponding eigenvector
1n = (1, 1, . . . , 1)T

Proof:
1. A is symmetric, and D is diagonal. So L = D −A is symmetric.

2. fTLf =
1

2

∑
i,j

Aij(fi − fj)2 ≥ 0 for all f

3. (Lf)i =
∑
j 6=i

Aij(fi − fj) for every i, and so L1n = 0 = 0 · 1n
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 2

Node relabelling does not change eigenvalues

Let G′ be obtained from G by permuting node labels.
Let L be Laplacian of G, and L′ or G′.

Eigenvalues of L and L′ are same.

Let P ∈ {0, 1}n×n be the permutation matrix for node relabelling, that
is, Piπi = 1 if node-i in G is relabelled to node-πi in G′

L′ = P TLP

If (λ, v) is eigenpair for L =⇒ (λ, P T v) is eigenpair for L′

Proof: Exercise.
Start with proof of L′ = P TLP . Everything follow from there.
Note: For permutation matrix P , P TP = PP T = I
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 3

Eigenvalues of L and connectivity

Let L be unnormalised Laplacian of undirected graph G.
Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the n eigenvalues of L.

λ2 > 0 if and only if G is connected

Proof: Part 1 — Assume G is connected.

We show λ2 > 0.
OR We show there is exactly one eigenvalue = 0
OR We show if (0, f) is an eigenpair, then f = c1n

(0, f) is eigenpair =⇒ Lf = 0

0 = fTLf =
1

2

∑
i,j

Aij(fi − fj)2

Each term in sum is non-negative. So sum is zero if each term is zero.
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 4

For every pair i, j, any one of these should hold:

Aij = 0, that is, (i, j) /∈ E
fi = fj

If there is a path i1, i2, . . . , i`

fi1 = fi2 = . . . = fi`
Since G is connected

there is a path between any two nodes

fi = fj for all i, j =⇒ f = c1n
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 5

Part 2 — Assume G is disconnected

We can split V into two disjoints sets V1, V2 so that there is no edge
between V1 and V2

Let 1V1 ∈ {0, 1}n with ith coordinate 1 if i ∈ V1

and define 1V2 similar for V2

Observe:

1TV1
1V2 = 0 (we also write as 1V1 ⊥ 1V2)

L1V1 = 0 and L1V2 = 0

There are two orthogonal eigenvectors for the eigenvalue 0
Hence, eigenvalue 0 has multiplicity at least two =⇒ λ2 = 0.
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 6

Eigenvalues of L and connected components

Let graph G has k connected components V1, . . . , Vk.

L has exactly k zero eigenvalues

The eigenspace of the eigenvalue 0 is spanned by 1V1 , . . . ,1Vk

Let G1 = (V1, E1), . . . , Gk = (Vk, Ek) be the k connected subgraphs.
Li be the Laplacian for Gi.

Spectrum of L is union of the spectrum of L1, . . . , Lk

Note: For symmetric matrix M

Spectrum of M = set of all eigenvalues of M

Eigenspace of λ = {x : Mx = λx}
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 7

Proof: Start with last part. After reordering the nodes, we can write

L =


L1 0 · · · 0
0 L2 · · · 0
...

. . .

0 0 · · · Lk


Verify the following

Let (λ, v) be an eigenpair for L`

Define ṽ as ṽi = vi if i ∈ V`, and 0 otherwise

Then (λ, ṽ) is eigenpair for L

Doing this for every eigenvalue of every L` proves last part.

First two statements follow from above since

Each L` has exactly one eigenvalue 0

Corresponding eigenvector is constant on V`
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 8

Algebraic connectivity, λ2

G is a connected graph, and λ2 is smallest non-zero eigenvalue of L.

λ2 = min
f⊥1n

∑
i<j

Aij(fi − fj)2∑
i
f2
i

Proof: Note fTLf =
1

2

∑
i,j

Aij(fi − fj)2 =
∑
i<j

Aij(fi − fj)2

So we have to show λ2 = min
f⊥1n

fTLf

fT f

To prove this, we need Rayleigh’s principle (next slide).

The result follows by combining Rayleigh’s principle with the fact
λ1 = 0 with corresponding eigenvector 1n.
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Spectral graph theory Spectra of graph Laplacians

Properties of unnormalised Laplacian . . . . . . 9

Rayleigh’s principle: (follows from spectral decomposition)

Characterises eigenpairs as solution for optimisation problems

For symmetric matrix M ∈ Rn×n:

Let eigenvalues be λ1 ≤ λ2 ≤ . . . ≤ λn
vi be an eigenvector corresponding to λi

λ1 = min
x 6=0

xTMx

xTx
and λn = max

x 6=0

xTMx

xTx

λk = min
x 6=0

x⊥v1,...,vk−1

xTMx

xTx
= max

x 6=0
x⊥vk+1,...,vn

xTMx

xTx

vk = arg min
x 6=0

x⊥v1,...,vk−1

xTMx

xTx
= arg max

x 6=0
x⊥vk+1,...,vn

xTMx

xTx
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Spectral graph theory Spectra of graph Laplacians

Normalised Laplacians

Two versions:

Symmetric normalised graph Laplacian

Lsym = D−1/2LD−1/2 = I −D−1/2AD−1/2

Spectrum of Lsym related to important graph properties
Key property:

fTLsymf =
1

2

∑
i,j

Aij

(
fi√
di
− fj√

dj

)2

=
∑
i<j

Aij

(
fi√
di
− fj√

dj

)2

Random walk graph Laplacian

Lrw = D−1L = I −D−1A

Lrw connected to random walks on graphs (will discuss later)
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Spectral graph theory Spectra of graph Laplacians

Lsym vs Lrw

Eigenvalues of Lsym and Lrw

1 Lsym is symmetric and positive semi-definite

2 Lrw may not be symmetric, but all eigenvalues are non-negative

3 (λ, x) eigenpair for Lrw ⇐⇒ (λ,D1/2x) eigenpair for Lsym
4 (0,1n) is an eigenpair for Lrw
5 (0, D1/21n) is eigenpair for Lsym

Proof: Exercise.
1 — similar to L
3, 4, 5 — use definitions of Lrw and Lsym, and compute
2 — follows from 1 and 3
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Spectral graph theory Spectra of graph Laplacians

Lsym and connected components

Lsym and connected components

Let graph G has k connected components V1, . . . , Vk.

Lsym has exactly k zero eigenvalues

Eigenspace of the eigenvalue 0 is spanned by D1/21V1 , . . . , D
1/21Vk

Proof: Exercise. Similar to the unnormalised case.

Remark:
Many results, like above, for L,Lsym, Lrw also hold for weighted
undirected graphs.
But all edge weights must be non-negative (Why?)
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Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Lsym . . . . . . 1

Largest eigenvalue of Lsym

Let λ̃n be the largest eigenvalue of Lsym

‖Lsym‖2 = λ̃n ≤ 2

Proof: Rayleigh’s principle: λ̃n = max
x 6=0

xTLsymx

xTx
= ‖Lsym‖2 (since xTLsymx ≥ 0)

xTLsymx =
1

2

∑
i,j

Aij

(
xi√
di
− xj√

dj

)2

≤
∑
i,j

Aij ·
(
x2
i

di
+
x2
j

dj

)
note: (a+ b)2 ≤ 2(a2 + b2)

=
∑
i

∑
j

Aij · 2
x2
i

di

=
∑
i

2x2
i = 2xTx
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Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Lsym . . . . . . 2

Smallest non-zero eigenvalue of Lsym

Let G be a connected graph.
Let λ̃2 be the smallest non-zero eigenvalue of Lsym

λ̃2 = min
f⊥D1n

∑
i<j

Aij(fi − fj)2∑
i
f2
i di

= min
f⊥D1n

fTLf

fTDf

Proof: Recall λ̃1 = 0 with eigenvector D1/21n

Rayleigh’s principle:

λ̃2 = min
x 6=0

x⊥D1/21n

xTLx

xTx
= min

x 6=0
x⊥D1/21n

∑
i<j

Aij

(
xi√
di
− xj√

dj

)2

∑
i
x2
i

Replace x by f where fi = xi√
di

. Check
∑
i
fidi = 0 (f ⊥ D1n)
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Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Lsym . . . . . . 3

A key quantity in spectral graph theory:

λ̃2 related to many interesting properties of graph

Bound on graph diameter

Let diam = diameter of unweighted graph G = (V,E).

diam ≥ 1

2|E| · λ̃2

If G is weighted, replace 2|E| by
∑

i di.
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Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Lsym . . . . . . 4

Proof: Bound holds for disconnected graph.

Assume G is connected.

Recall λ̃2 = min
f⊥D1n

∑
i<j

Aij(fi − fj)2∑
i
f2
i di

Let f achieves the minimum in above

f ⊥ D1n =⇒
∑

i fidi = 0

Let v = arg max
i∈V

|fi|

There is u ∈ V such that fufv < 0 (fu, fv have opposite signs)

Let P = (i0, i2, . . . , i`) be shortest path between i0 = u and i` = v
— note: length of path ` ≤ diam
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Spectral graph theory Spectra of graph Laplacians

Eigenvalues of Lsym . . . . . . 5

Note: fv − fu =
`−1∑
k=0

fik+1 − fik =⇒ (fv − fu)2 ≤ `
`−1∑
k=0

(fik+1 − fik )2

(using Cauchy-Schwarz)

Now λ̃2 =

∑
i<j

Aij(fi − fj)2∑
i

f2
i di

≥

∑
i<j

Aij(fi − fj)2

f2
v

∑
i

di
note:

∑
i

di = 2|E|

≥

∑
(i,j)∈P

(fi − fj)2

f2
v · 2|E|

summing only over P , not all edges

≥
1
`
(fv − fu)2

f2
v · 2|E|

≥ 1

` · 2|E| note: (fv − fu)2 > f2
v

diam ≥ ` ≥ 1

2|E| · λ̃2
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Spectral graph theory Spectra of graph Laplacians

Cheeger constant . . . . . . 1

G = (V,E) is an undirected graph

unweighted or edges have non-negative weights Aij

Let S ⊂ V be a subset of nodes, and S̄ = V \S
Volume of a set: vol(S) =

∑
i∈S

di

Cut value: cut(S, S̄) =
∑

i∈S,j∈S̄
Aij

If G is unweighted, cut(S, S̄) = #edges between S andS̄

Cheeger constant

hG = min
S⊂V

h(S), where h(S) =
cut(S, S̄)

min{vol(S), vol(S̄)}
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Spectral graph theory Spectra of graph Laplacians

Cheeger constant . . . . . . 2

hG shows how well-connected a graph is

Examples (unweighted graphs):

G is not connected =⇒ hG = 0

G is complete graph =⇒ hG ≈
1

2

G is barbell graph =⇒ hG ≈
4

n2

Cheeger cut (cut that achieves hG) has:

both sets S, S̄ are large
— high vol(S) and vol(S̄)

few connection between S, S̄
— small cut(S, S̄)
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Spectral graph theory Spectra of graph Laplacians

Cheeger constant . . . . . . 3

Cheeger inequality for graphs

λ̃2

2
≤ hG ≤

√
2λ̃2

Proof: We prove only 1
2 λ̃2 ≤ hG

Let S, S̄ be a Cheeger cut, and define f ∈ Rn as

fi =
1

vol(S)
for i ∈ S, and fi = − 1

vol(S̄)
for i ∈ S̄

f ⊥ D1n, and so λ̃2 ≤
fTLf

fTDf
=

(
cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)

)
≤ 2hG

(exercise)

Will skip other part. If interested, see Chung’s book (Theorem 2.2) or
ML lecture slides.
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Communities in networks

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 154 / 330



Communities in networks
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Spectral clustering
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Communities in networks Spectral clustering

How do we define communities?

Many edges within each community

Few edges between two communities

Which are the communities here?
— How do we find them (algorithmically)?
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Communities in networks Spectral clustering

The minimum cut approach . . . . . . 1

cut(S, S̄) =
∑

i∈S,j∈S̄
Aij

Find S = arg min
S⊂V

cut(S, S̄)

Meaning:
Remove the minimum number of edges so that graph is disconnected

mincut
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Communities in networks Spectral clustering

The minimum cut approach . . . . . . 2

Mincut can be solved in polynomial time

May not produce balanced partition

mincut

Balanced partition helps when we want to split the network

for storage
for easier / faster network analysis
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Communities in networks Spectral clustering

Balanced graph partitioning . . . . . . 1

Approach 1: Add constraints to make sets nearly equal

Balanced mincut:

min
S⊂V

cut(S, S̄)

s.t. |S| ≤ (1 + ε)
|V |
2

|S̄| ≤ (1 + ε)
|V |
2

(
note: |S| = #nodes in S

)
Balanced mincut is a NP-hard problem
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Communities in networks Spectral clustering

Balanced graph partitioning . . . . . . 2

Approach 2: Modify objective to induce balancing

Cheeger cut: h(S) =
cut(S, S̄)

min{vol(S), vol(S̄)}

Normalised cut: N-Cut(S, S̄) = cut(S, S̄)

(
1

vol(S)
+

1

vol(S̄)

)

Ratio cut: R-Cut(S, S̄) = cut(S, S̄)

(
1

|S|
+

1

|S̄|

)
The terms |S| or vol(S) make partition more balanced . . . Why?

Minimising these objectives are also NP-hard

But, we can relax the optimisation problem (for N-Cut, R-Cut)
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Communities in networks Spectral clustering

Spectral relaxation of Ratio Cut . . . . . . 1

Min R-Cut problem:

min
S⊂V

R-Cut(S, S̄)

Re-writing the objective: Let fs ∈ Rn such that

(fs)i =



√
|S̄|

|V | · |S|
if i ∈ S

−

√
|S|

|V | · |S̄|
if i ∈ S̄

Exercise: Show that R-Cut(S, S̄) = fTs Lfs

Min R-Cut problem (rephrased):

min
S⊂V

fTs Lfs
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Communities in networks Spectral clustering

Spectral relaxation of Ratio Cut . . . . . . 2

Exercise: Verify that ‖fs‖2 = 1 and fs ⊥ 1n for any S

Relaxation:

f need not have the exact structure of fs for some S

We still impose the constraints ‖f‖2 = 1 and f ⊥ 1n

Relaxed R-Cut problem:

min
f∈Rn

fTLf

s.t. f ⊥ 1n

‖f‖2 = 1

Spectral connection: What is the optimal f for above problem?
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Communities in networks Spectral clustering

Spectral relaxation of Ratio Cut . . . . . . 3

Unnormalised Spectral Clustering: . . . for bi-partitioning

1 Compute f = eigenvector for second smallest eigenvalue of L

2 Let S = {i : fi ≥ 0}, and S̄ = V \S
. . . split based on intuition from fs

Remark:

If graph has 2 connected components, the algorithm returns them

What happens if graph has more than 2 connected components?
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Communities in networks Spectral clustering

k-way partitioning . . . . . . 1

R-Cut for bi-partitioning:
Let S1 = S and S2 = S̄ = S̄1

R-Cut(S1, S2) =
cut(S1, S2)

|S1|
+

cut(S1, S2)

|S2|

R-Cut for k-way partitioning:
Let V = S1 ∪ S2 ∪ . . . ∪ Sk, where Sj ∩ S` = ∅

R-Cut(S1, . . . , Sk) =

k∑
`=1

cut(S`, S̄`)

|S`|

How do we write R-Cut(S1, . . . , Sk) in terms of L?
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Communities in networks Spectral clustering

k-way partitioning . . . . . . 2

Define f1, . . . , fk ∈ Rn such that

f` =
1S`√
|S`|

that is (f`)i =


√

1

|S`|
if i ∈ S`

0 otherwise

Exercise: Let F = [f1, . . . , fk] ∈ Rn×k. Show that

‖f`‖2 = 1 and f` ⊥ fj for ` 6= j, that is, FTF = I

fT` Lf` =
cut(S`, S̄`)

|S`|

R-Cut(S1, . . . , Sk) =
k∑̀
=1

fT` Lf` = Trace(FTLF )
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Communities in networks Spectral clustering

k-way partitioning . . . . . . 3

Min R-cut problem:

min
S1,...,Sk

R-Cut(S1, . . . , Sk)

OR

min
F∈Rn×k

Trace(F TLF )

s.t. F = [f1, . . . , fk] has above structure

Relaxed R-cut problem:

min
F∈Rn×k

Trace(F TLF )

s.t. F TF = I

Solution: F = matrix of k leading orthonormal eigenvectors of L
. . . corresponding to k smallest eigenvalues
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Communities in networks Spectral clustering

k-way partitioning . . . . . . 4

Notation: Let Fi• be ith row of matrix F

Unnormalised Spectral Clustering: . . . for k-way partitioning

1 Compute F = matrix of k leading orthonormal eigenvectors of L

2 Normalise each row of F , that is, let F̃ ∈ Rn×k

F̃i• =
Fi•
‖Fi•‖2

3 Think of F̃1•, . . . , F̃n• as n points in Rk
— Use k-means clustering to group them into k clusters

4 Let S` =
{
i : F̃i• grouped into `th cluster

}
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Communities in networks Spectral clustering

k-way partitioning . . . . . . 5

Intuition for row normalisation and clustering:

Let F = [f1, . . . , fk], where f` =
1S`√
|S`|

After normalisation: F̃i` = 1{i ∈ S`}
F̃ = [1S1 , . . . ,1Sk ] ∈ {0, 1}n×k . . . cluster assignment matrix

If we cluster rows of above F̃ , the clusters correspond to S1, . . . , Sk
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Communities in networks Spectral clustering

Performance of unnormalised spectral clustering . . . . . . 1

Example:

Points sampled from mixture of 3 Gaussians

3-way partitioning of k-NN graph

Note: Smallest three eigenvalues of L are close to 0

3-D plot of F̃1•, . . . , F̃n• shows the 3 groups

5-NN graph λ1, . . . , λ10 F̃1•, . . . , F̃n•

v1 v2 vk vk+1 vk+2 v2k

v4k v4k-1 v3k+1 v3k v3k-1 v2k+1

min R-cut relaxed
R-cut
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Communities in networks Spectral clustering

Performance of unnormalised spectral clustering . . . . . . 2

In general, no guarantee that

solution of spectral relaxation = optimal R-Cut

Example: Cockroach graph on n = 4k nodes

optimal R-Cut value =
2

k
R-Cut value for spectral solution = 1

v1 v2 vk vk+1 vk+2 v2k

v4k v4k-1 v3k+1 v3k v3k-1 v2k+1

min R-cut relaxed
R-cut
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Communities in networks Spectral clustering

Performance of unnormalised spectral clustering . . . . . . 3

Guarantees hold for graphs that have some community structure
[Peng, Sun & Zanetti, COLT-2015; Rohe, Chatterjee & Yu, Ann. Stat.-2011]

Below is a result for stochastic block model

G ∼ SBM(s, k, p, q) if:

V = S1 ∪ S2 ∪ . . . ∪ Sk with |S`| = s

All edges are independent with

P
(
(i, j) ∈ E

)
=

{
p if i, j ∈ S` for some `
q if i, j belong to different groups

Consistency of spectral clustering

Let p, q ∈ (0, 1) with p > q. Let G ∼ SBM(n2 , 2, p, q).

Unnormalised spectral clustering outputs the underlying split with
probability 1− o(1) as n→∞.
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Communities in networks Spectral clustering

Normalised cut . . . . . . 1

N-Cut for bi-partitioning:

N-Cut(S, S̄) =
cut(S, S̄)

vol(S)
+

cut(S, S̄)

vol(S̄)

N-Cut for k-way partitioning:
Let V = S1 ∪ S2 ∪ . . . ∪ Sk, where Sj ∩ S` = ∅

N-Cut(S1, . . . , Sk) =
k∑
`=1

cut(S`, S̄`)

vol(S`)

=

k∑
`=1

fT` Lf` where f` =
1S`√

vol(S`)

Note: fT` Df` = 1 and fTj Df` = 0 for j 6= `
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Communities in networks Spectral clustering

Normalised cut . . . . . . 2

Let F = [f1, . . . , fk], and U = D1/2F

Relaxed N-cut problem:

min
F∈Rn×k

Trace(F TLF )

s.t. F TDF = I

OR:

min
U∈Rn×k

Trace(UTLsymU)

s.t. UTU = I

Spectral solution:
U = matrix of k leading orthonormal eigenvectors of Lsym

. . . corresponding to k smallest eigenvalues
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Communities in networks Spectral clustering

Normalised cut . . . . . . 3

Normalised Spectral Clustering: . . . for k-way partitioning

1 U = matrix of k leading orthonormal eigenvectors of Lsym

2 Normalise each row of U , that is, let Ũ ∈ Rn×k

Ũi• =
Ui•
‖Ui•‖2

3 Use k-means clustering to group Ũ1•, . . . , Ũn• ∈ Rk into k clusters

4 Let S` =
{
i : Ũi• grouped into `th cluster

}
Remark:

Spectral clustering is one way to relax R-Cut / N-Cut problem

Another popular relaxation: Semi-definite programming
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Modularity
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Communities in networks Modularity

Does a network have communities?

Spectral graph theory: 0 = λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃n eigenvalues of Lsym

λ̃k = 0 =⇒ G has at least k disjoint communities

Cheeger’s inequality: hG ≤
√

2λ̃2

Small λ̃2 =⇒ G has ≥ 2 sparsely connected communities

Higher-order Cheeger inequality: [Lee, Gharan & Trevisan, 2011]

Small λ̃k =⇒ G has ≥ k sparsely connected communities
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Communities in networks Modularity

Modularity . . . . . . 1

Statistical approach for quantifying community-ness of network

Community: Sub-group of nodes
— More connection among themselves than outside community

Which of the following have communities?

G ∼ G(n, p)

G ∼ SBM(s, k, p, q) for p > q

G ∼ CRM(d1, . . . , dn)

Recall: For G ∼ CRM(d1, . . . , dn)

P
(
(i, j) ∈ E

)
≈ didj

2m
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Communities in networks Modularity

Modularity . . . . . . 2

Let S ⊂ V , and GS = (S,ES) be the sub-graph on S

Under Configuration model

E
[
|ES |

]
=
∑
i,j∈S
i<j

P
(
(i, j) ∈ E

)
≈
∑
i,j∈S
i<j

didj
2m

Call S a community if |ES | � E
[
|ES |

]
Let S1, . . . , Sk be partition of V
— ψ : V → {S1, . . . , Sk} is cluster assignment function

Modularity(S1, . . . , Sk) =
1

2m

∑
i,j

(
Aij −

didj
2m

)
1{ψ(i) = ψ(j)}

≈ 1

m

k∑
`=1

|ES` | − E
[
|ES |

]
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Communities in networks Modularity

Modularity maximisation . . . . . . 1

What is the maximum modularity for a k-way partitioning?

Modularity matrix, B ∈ Rn×n

Bij = Aij −
didj
2m

or B = A− ddT

2m
d = (d1, . . . , dn)T

Modularity(S1, . . . , Sk) =
1

2m

k∑
`=1

1TS`B1S` (Verify)

Modularity maximisation:

max
F∈Rn×k

1

2m
Trace(F TBF )

s.t. F = [1S1 . . .1Sk ] . . . again NP-hard
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Communities in networks Modularity

Modularity maximisation . . . . . . 2

We relax the problem . . . will look at k = 2 case only

For S ⊂ V , let s ∈ {−1,+1}n

si =

{
+1 if i ∈ S
−1 if i ∈ S̄

Modularity(S, S̄) =
1

2m

∑
i,j

Bij
sisj + 1

2

note:
sisj + 1

2
= 1{ψ(i) = ψ(j)}

Maximum modularity split:

s∗ = arg max
s∈{−1,+1}n

sTBs

Observe: ‖s‖2 =
√
n
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Communities in networks Modularity

Modularity maximisation . . . . . . 3

Relaxing the hard constraint:

ŝ = arg max
‖s‖2=

√
n

sTBs

Spectral solution:
ŝ = eigenvector of B corresponding to largest eigenvalue

Spectral modularity maximisation: . . . for bi-partitioning

1 Compute ŝ = eigenvector of B corresponding to largest eigenvalue

2 Let S =
{
i : ŝi ≥ 0

}
and S̄ = V \S
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Graph embedding and visualisation
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Graph embedding and visualisation

References

Surveys for graph embedding algorithms:
https://arxiv.org/pdf/1705.02801.pdf

https://arxiv.org/pdf/1709.07604.pdf

Fruchterman-Reingold method for visualisation:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.

8444&rep=rep1&type=pdf

MDS, Isomap and more:
https://www.math.uwaterloo.ca/~aghodsib/courses/f06stat890/

readings/tutorial_stat890.pdf
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Graph embedding and visualisation Graph embedding (spectral methods)

Graph embedding (spectral methods)
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Graph embedding and visualisation Graph embedding (spectral methods)

Graph embedding

Which representation says something about the network structure?

v1 v2 vk vk+1 vk+2 v2k

v4k v4k-1 v3k+1 v3k v3k-1 v2k+1

min R-cut relaxed
R-cut

Graph embedding:
Find points x1, . . . , xn ∈ Rp, where xi = location of node-i

Representation should reflect graph structure

Example: F̃1•, . . . , F̃n• in spectral clustering

Graph drawing / visualisation:
Embed graph in R2 or R3 . . . and a bit more
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Graph embedding and visualisation Graph embedding (spectral methods)

Laplacian embedding

Idea: xi and xj should be close if (i, j) ∈ E

An optimisation problem

min
x1,...,xn∈Rd

∑
i<j

Ai,j‖xi − xj‖2

∑
i<j

Aij‖xi − xj‖2 =
1

2
Trace

(
XTLX

)
, where X =

 xT1
...
xTn


Without constraint, we get trivial solution X = 0
— Add constraint, XTX = I or XTDX = I

Solution:
Leading p eigenvectors of L or Lsym (depending on constraint)
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Graph embedding and visualisation Graph embedding (spectral methods)

Local linear embedding

Idea: Draw every node at the centre of its neighbours

xi ≈
1

di

∑
j∼i

xj

May not be achieved, and so, optimise

min
x1,...,xn∈Rd

n∑
i=1

∥∥∥∥∥∥xi −
∑
j 6=i

Aijxj

∥∥∥∥∥∥
2

=
∥∥X −D−1AX

∥∥2

F

Can be re-written as

min
X∈Rn×d

Trace
(
XTLTrwLrwX

)
s.t. XTX = I (avoids trivial solution)

Solution: Leading p eigenvectors of LTrwLrw
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Graph embedding and visualisation Graph embedding (spectral methods)

Applications of graph embedding

Visualising a network

Apply standard machine learning tools on networks

Community detection = clustering Laplacian embedding of nodes

Anomalous nodes = outlier detection in embedded nodes

Semi-supervised learning:
Given labels of few nodes, infer those of other nodes

Big picture: Graph embedding = feature learning for nodes
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Graph embedding and visualisation Force-based algorithms

Force-based algorithms
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Graph embedding and visualisation Force-based algorithms

Graph visualisation

Similar to embedding into R2 or R3

For p > 3, we cannot obviously visualise

The different layout methods in NetworkX

We may use LLE or Laplacian embedding
May not be good for visualisation

Let G = union of 2 disjoint cliques
— What is its embedding in R2?

Requirements of a good visualisation
Nodes should not overlap, and well spread

Adjacent nodes close, non-adjacent nodes far

Densely connected communities clearly visible
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Graph embedding and visualisation Force-based algorithms

Fruchterman-Reingold algorithm . . . . . . 1

Force based drawing

Place adjacent nodes close, but not too close

Based on a physical laws of attraction and repulsion

Let x1, . . . , xn ∈ R2 be the locations of the nodes

Every pair of nodes repel each other

fr(u, v) =
k2

‖xu − xv‖

fr(u, v) =∞ if xu = xv

Nodes cannot overlap, and well spread
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Graph embedding and visualisation Force-based algorithms

Fruchterman-Reingold algorithm . . . . . . 2

Adjacent nodes also pull each other closer

fa(u, v) =
‖xu − xv‖2

k

fa(u, v) large if (u, v) ∈ E, but ‖xu − xv‖ large

Adjacent nodes tend to be close

v2 u v1

fr(u,v1)
fa(u,v2) fr(u,v2)

[Image: Fruchterman & Reingold]
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Graph embedding and visualisation Force-based algorithms

Fruchterman-Reingold algorithm . . . . . . 3

Forces that act on node-u

For every v such that (u, v) /∈ E
Fu(v) = fr(u, v)−−−→xvxu

(−−−→xvxu = unit vector along xv to xu)

For every v such that (u, v) ∈ E
Fu(v) = fr(u, v)−−−→xvxu + fa(u, v)−−−→xuxv

All forces on u must cancel each other (at equilibrium)

∑
v 6=u

Fu(v) = 0

v2 u v1

fr(u,v1)
fa(u,v2) fr(u,v2)

Solving this for every u provides the location x1, . . . , xn
Algorithm skipped (see reference if interested)
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Graph embedding and visualisation Isomap

Isomap
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Graph embedding and visualisation Isomap

Metric multi-dimensional scaling (metric MDS)

General technique for embedding data

Let v1, . . . , vn be points in a metric space (V, d)
We do not observe the points

But we know the pairwise distances d(vi, vj) for all i, j

Metric MDS problem:
Find points x1, . . . , xn ∈ Rp that optimize

min
x1,...,xn

∑
i<j

(
d(vi, vj)− ‖xi − xj‖

)2
Can replace ‖ · ‖ by another metric to embed in a different space

Can we embed graphs using MDS?

Let V be the vertex set, and d = shortest path distance

Kamada-Kawai layout: variant of this approach
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Graph embedding and visualisation Isomap

Metric multi-dimensional scaling (metric MDS)

General technique for embedding data
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We do not observe the points

But we know the pairwise distances d(vi, vj) for all i, j

Metric MDS problem:
Find points x1, . . . , xn ∈ Rp that optimize
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x1,...,xn

∑
i<j

(
d(vi, vj)− ‖xi − xj‖

)2
Can replace ‖ · ‖ by another metric to embed in a different space

Can we embed graphs using MDS?
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Kamada-Kawai layout: variant of this approach
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Graph embedding and visualisation Isomap

Isomap . . . . . . 1

Isomap estimates “intrinsic geometry of a data manifold”

Example:

There is a S-curve in R3

Points inside the S-curve are
uniformly distributed

How can we verify uniformity
given the points in 3-dim?
OR Apply ML on this data?

Here, points lie on a low-dimensional manifold

Isomap shows how the points are distributed on this manifold
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Graph embedding and visualisation Isomap

Isomap . . . . . . 2

Method

1 Generate k-NN graph from the points

2 Compute dsp(u, v) for every u, v

3 Embed the data in a lower dimensional space using metric MDS

Remarks: We use graph . . .

as intermediate step to embed data into low-dimensional space

more generally, as a tool for manifold learning
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Random walks on graphs
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Random walks on graphs

References

L. Lovasz. Random walks on graphs: A survey
http://web.cs.elte.hu/~lovasz/erdos.pdf

F. Chung and W. Zhao. PageRank and random walks on graphs
http://www.math.ucsd.edu/~fan/wp/lov.pdf
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Random walks on graphs Basics of random walk

Basics of random walk
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Random walks on graphs Basics of random walk

Random walk on graph

G = (V,E) is an undirected unweighted graph

We start from node v0 at time t = 0

At time t = 1, randomly pick a neighbour of X0 and move there.
Call it X1

At time t, randomly pick a neighbour of Xt−1 and move there.
Call it Xt

(X0, X1, X2, . . .) is a random walk on G

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 202 / 330



Random walks on graphs Basics of random walk

Markov chain and random walk . . . . . . 1

Let {Xt} be a collection of random variables, indexed by
parameter t
— Think of t as time: t ∈ R or t = 0, 1, 2, . . .

Xt takes values in S (called states of chain)

Independent trial process:
For every t1, . . . , tk distinct, Xt1 , . . . , Xtk are mutually independent

Markov chain (first-order):
The value of Xt depends only on previous time instant

Example (walk on G):
Xt−1 = i =⇒ Xt is a neighbour of i (no influence of Xt−2)
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Random walks on graphs Basics of random walk

Markov chain and random walk . . . . . . 2

Markov chain is

finite if S is finite

discrete / continuous state if S is discrete / continuous

discrete / continuous time if t takes discrete / continuous values

Examples:

Random walk on graph: S = V finite, discrete time

Brownian motion of molecule: S = R3 continuous state and time

Transition probability in discrete time Markov chain:
For i, j ∈ S,

Mt(i, j) = P(Xt = j|Xt−1 = i) can depend on t
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Random walks on graphs Basics of random walk

Markov chain and random walk . . . . . . 3

Time-homogeneous Markov chain:

Transition probabilities do not depend on t

Characterised by single transition kernel M(·, ·)

For finite Markov chain, M represented by a matrix

Mij = P(Xt = j|Xt−1 = i)

Exercise: M is a row stochastic matrix, i.e.,
∑
j
Mij = 1

k-step transition probabilities:

Let M (k) be a matrix with M
(k)
ij = P(Xt+k = j|Xt = i)

Exercise: Show that M (k) = Mk

Hint: M
(2)
ij =

∑
`Mi`M`j
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Random walks on graphs Basics of random walk

Random walk on R

A gambler goes to a casino, and bets 1 euro in each round

The gambler gets 2 euros on winning, else loses the 1 euro.
Win probability p

Xt = net gain of gambler after t rounds

10 2-1

p pp

1-p1-p 1-p

21 3

54 6

Many interesting probability problems based on this

Example: Gambler starts with N euros, and keeps playing.
With probability 1, the gambler will get broke eventually (skipped)
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Random walks on graphs Basics of random walk

Random walk on graph — formally . . . . . . 1

S = V (set of vertices)

Transition probability: For any t,

P(vt = j|vt−1 = i) =


1

di
if (i, j) ∈ E

0 if (i, j) /∈ E

Transition probability matrix M = D−1A = I − Lrw
Mij = P(vt = j|vt−1 = i)

M = D−1A also for weighted / directed graphs
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Random walks on graphs Basics of random walk

Random walk on graph — formally . . . . . . 2

Let v0 be sampled from probability mass function p(0)

Let p(t) = p.m.f for vt. View p(t) as a n-dim row vector

p
(t)
i = P(vt = i)

Exercise:

p(1) = p(0)M, p(t) = p(t−1)M

p(t+k) = p(t)Mk for any k = 0, 1, 2, . . .

Let M (k) ∈ Rn×n with M
(k)
ij = P(vt+k = j|vt = i)

Recall M (k) = Mk

What happens to the walk as t→∞?
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Random walks on graphs Basics of random walk

Stationary distribution . . . . . . 1

π is stationary distribution of the random walk if:

p(0) = π =⇒ p(t) = π for every t

Spectral connection:

— π satisfies π = πM

— π is a left eigenvector of M corresponding to eigenvalue 1

Does there exists such a π?

— Set πi =
di
2m

— Verify that π = πM and π is a p.m.f.

How many stationary distributions can a graph have?
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Random walks on graphs Basics of random walk

Stationary distribution . . . . . . 2

What are the eigenvalues of M?

M = I − Lrw =⇒ λ(M) = 1− λ(Lrw) = 1− λ(Lsym)

Exercise:
— All eigenvalues of M are real if G is undirected

— All eigenvalues of M lie between [−1, 1]

G is connected =⇒M has exactly one eigenvalue equal to 1

The eigenvalue 1 has:

— π =

(
d1

2m
, . . . ,

dn
2m

)
as left eigenvector, π = πM

— 1n as right eigenvector, M1n = 1n
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Random walks on graphs Basics of random walk

Long term behaviour . . . . . . 1

If p(0) = π (stationary distribution), then p(t) = π for all t

What happens if p(0) is arbitrary?

Assume G is connected:

— G is not bipartite =⇒ lim
t→∞

p(t) = π

— G is bipartite
=⇒ p(t) may oscillate between two p.m.f. for odd and even t

If G is not connected:
— lim

t→∞
p(t) depends on which connected component we start
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Random walks on graphs Basics of random walk

Long term behaviour . . . . . . 2

Bipartite case — Example

Consider a complete bipartite graph

Assume that walk starts on node-1, p(0) = (1, 0, . . . , 0)

10 2-1

p pp

1-p1-p 1-p

21 3

54 6

p(1) = uniform on 4, 5, 6

p(2) = uniform on 1, 2, 3

This oscillation goes on between every odd and even t
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Random walks on graphs Basics of random walk

Long term behaviour . . . . . . 3

Random walk on connected non-bipartite graph

Let G be a connected non-bipartite graph.
Consider a random walk on G with initial distribution p(0) = p.

lim
t→∞

p(t) = lim
t→∞

pM t = π, where πi =
di
2m

Proof:

Need to analyse M t

— Cannot use eigen decomposition as M = D−1A is asymmetric

Write M = D−1/2ND1/2, where N = D−1/2AD−1/2 = I − Lsym

Let 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1 be eigenvalues of N
(Why the upper and lower bounds?)
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Random walks on graphs Basics of random walk

Long term behaviour . . . . . . 4

Facts about N (exercise)

λ1 = 1 with eigenvector v1 =
1√
2m

D1/21n

λ2 < 1 if G is connected

λn > −1 if G is non-bipartite (skip this proof)

M t = D−1/2N tD1/2, and N t =
∑
i

λtiviv
T
i

We now analyse pM t

pM t =
n∑
i=1

λtipD
−1/2viv

T
i D

1/2

=
1

2m
p1n1

T
nD︸ ︷︷ ︸

=π

+

n∑
i=2

λti︸︷︷︸
→0

pD−1/2viv
T
i D

1/2
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Random walks on graphs Basics of random walk

Hitting and commute times . . . . . . 1

Shortest path distance
— Distance between two nodes if we take shortest route

How far are two nodes if we follow a random walk?

Hitting time / Access time

Assume v0 = i

Let Tij = min{t ≥ 0 : vt = j} (smallest #steps to reach j from i)

Hitting time, Hij = E[Tij |v0 = i] (expected time to reach j from i)

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 215 / 330



Random walks on graphs Basics of random walk

Hitting and commute times . . . . . . 2

Commute time / Commute distance

In general, Hij 6= Hji

Commute time, Cij = Hij +Hji

(expected time to go from i to j and back)

Computing hitting and commute times

Let L†sym ∈ Rn×n be the pseudo-inverse of Lsym

Hij = 2m


(
L†sym

)
jj

dj
−

(
L†sym

)
ji√

didj
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Random walks on graphs Basics of random walk

Hitting and commute times . . . . . . 3

Proof: Will skip the full proof, but discuss some key points.
Complete proof in Luxburg, Radl & Hein, JMLR, 2014.

Steps discussed here:
— What is pseudo-inverse?
— Basic idea for computing Hij

Pseudo-inverse:

Let B ∈ Rn×n symmetric with spectral decomposition
n∑
k=1

µkuku
T
k

B−1 =
n∑
k=1

1

µk
uku

T
k exists if all eigenvalues are non-zero

B† =
∑

k:µk 6=0

1

µk
uku

T
k is pseudo-inverse
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Random walks on graphs Basics of random walk

Hitting and commute times . . . . . . 4

Computing Hij:

Hii = 0

For i 6= j,

Hij = 1 +
1

di

∑
`∼i

H`j = 1 +
(
D−1AH

)
ij

— Tij = 1 + T`j for any ` neighbour of i

— After one step, we reach any neighbour of i with probability
1

di

Can be re-written as (LrwH)ij = 1 for i 6= j

Solving the set of equations for i = j and i 6= j gives the result
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Random walks on graphs Modified random walks

Modified random walks
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Random walks on graphs Modified random walks

Lazy random walk

If graph has no self loop,
— walk always moves away from current location

Lazy walk: Move to a neighbour with probability α ∈ (0, 1), else
stay at current position

Assume there is no self loop

Mij = P(vt+1 = j|vt = i) =

{
1− α if j = i
α/di if j 6= i, but (i, j) ∈ E

More generally, M = (1− α)I + αW

— W = D−1A = transition matrix for the standard random walk
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Random walks on graphs Modified random walks

Random walk with restart

Let s be seed node from which walk starts

Restart: With probability 1− α, we start afresh from s

Mij = P(vt+1 = j|vt = i) =

{
1− α if j = s
α/di if (i, j) ∈ E

M = (1− α)ese
T
s + αW

— es = sth standard basis vector

Alternatively, one can write in terms of the distribution

p(t+1) = (1− α)eTs + αp(t)W
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Random walks on graphs Modified random walks

Random surfer (walk behind PageRank)

With probability 1− α, move to a random node

— Helps to reach different components in disconnected graphs

Mij = P(vt+1 = j|vt = i) =
1− α
n

+ α
Aij
di

=⇒ M =
1− α
n

1n1
T
n + αW

In terms of the distribution

p(t+1) =
1− α
n

1Tn + αp(t)W
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Random walks on graphs Modified random walks

Personalised PageRank (walk)

Restart: Fixes a specific seed node for restarting

=⇒ p(t+1) = (1− α)eTs + αp(t)W

Random surfer: Restarts from a uniformly random node

=⇒ p(t+1) =
1− α
n

1Tn + αp(t)W

Personalised PageRank: A generalisation of both

Let q be a given distribution over the nodes

— Restart by randomly choosing a node according to q

=⇒ p(t+1) = (1− α)q + αp(t)W
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Random walks on graphs Modified random walks

Random walk on weighted graph

A = weighted adjacency of graph, and di =
∑

j Aij

Mij = P(vt+1 = j|vt = i) =
Aij
di

=⇒ M = D−1A

Exercise:
Can we write each of the above walks in terms of walks on some
weighted graph?
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Random walks on graphs PageRank and Eigen-centrality

PageRank and Eigen-centrality
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Random walks on graphs PageRank and Eigen-centrality

PageRank for undirected graph

Under random surfer model with α ∈ (0, 1)

p(t+1) =
1− α
n

1Tn + αp(t)W

— p
(t)
i = probability that walk is at node-i at step-t

What happens as t→∞?
— Convergence to a stationary distribution πpr

πpr =
1− α
n

1Tn + απprW

PageRank vector is the unique stationary distribution in this case

πpr =
1− α
n

1Tn
(
I − αW

)−1

Why don’t we need to assume connected and non-bipartite?
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Random walks on graphs PageRank and Eigen-centrality

More centrality measures

High (πpr)i = node-i more likely to be frequently visited

— Measures importance of node

Instead of random surfer, consider standard random walk

— π =

(
d1

2m
, . . . ,

dn
2m

)
, steady-state distribution of walk

— Does π correspond to a centrality measure?

Eigen centrality:

π = left eigenvector of D−1A corresponding to largest eigenvalue

Instead, simply consider eigenvectors of A

— Av = λv where λ is largest eigenvalue of A

vi = eigen centrality of node-i
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Semi-supervised learning
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Semi-supervised learning Information propagation in graph

Information propagation in graph
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Semi-supervised learning Information propagation in graph

Random walk to information propagation

Standard random walk: p(t+1) = p(t)W

p(0) = ei =⇒ p
(1)
j =

1

di
for j ∼ i

— probability mass at i gets distributed to its neighbours

Personalised PageRank (PPR): p(t+1) = (1− α)q + αp(t)W

p(0) = q = ei =⇒ p
(1)
i = 1− α, p

(1)
j =

α

di
for j ∼ i

— node-i retains α mass, and rest is distributed among neighbours

Same occurs if p(t) is replaced by an arbitrary vector f (t) ∈ Rn

— In each step, node-i shares its information f
(t)
i with neighbours
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Semi-supervised learning SSL: Problem and algorithm

SSL: Problem and algorithm
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Semi-supervised learning SSL: Problem and algorithm

Semi-supervised learning problem

Reference:

Zhou et al. Learning with Local and Global Consistency, NIPS-2004.

https://papers.nips.cc/paper/

2506-learning-with-local-and-global-consistency.pdf

Given:

Data points, x1, . . . , x`, x`+1, . . . , xn ∈ Rd

Labels, y1, . . . , y` ∈ {−1, 1}

Similarity matrix A ∈ Rn×n
— Aij = similarity score between xi and xj

Problem: Infer labels of x`+1, . . . , xn
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Semi-supervised learning SSL: Problem and algorithm

Label propagation . . . . . . 1

Consider graph with (weighted) adjacency matrix A

Define a row vector q ∈ Rn

qi =


yi for i ≤ `

0 for i > `

Perform PPR starting with f (0) = q and some α ∈ (0, 1)

f (t+1) = (1− α)q + αf (t)D−1A

Do we need to run this for t→∞?
— No, we can compute steady-state vector

πppr = (1− α)q (I − αW )−1
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Semi-supervised learning SSL: Problem and algorithm

Label propagation . . . . . . 2

Predict labels y`+1, . . . , yn as follows

yi =


+1 if (πppr)i > 0

−1 if (πppr)i < 0

Choose arbitrarily if (πppr)i = 0

Remarks:

Often q and πppr defined as column vectors. Then

πppr = (1− α)
(
I − αAD−1

)−1
q

Label propagation is not formally a random walk
— We can replace W = D−1A by other matrices, for instance,

π = (1− α)
(
I − αD−1/2AD−1/2

)−1
q

We can drop (1− α)-factor as it does not affect final result

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 234 / 330



Semi-supervised learning SSL: Problem and algorithm

Label propagation . . . . . . 3

Label propagation algorithm

1 Define q ∈ {−1, 0,+1}n as

qi =


yi if label of node-i is known

0 otherwise

2 Compute either of following:

π =


(1− α)

(
I − αAD−1

)−1
q for PPR

(1− α)
(
I − αD−1/2AD−1/2

)−1
q symmetric case

3 Predict labels as

yi =


+1 if πi ≥ 0

−1 if πi < 0
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Semi-supervised learning SSL: Problem and algorithm

Label propagation . . . . . . 4

Label propagation for k-class

1 Define Q ∈ {0, 1}n×k as

Qij = 1 if yi is known and yi = j

2 Compute Π ∈ Rn×k

Π = (1− α)
(
I − αD−1/2AD−1/2

)−1
Q

3 Predict unknown labels as

yi = arg max
j∈{1,...,k}

Πij
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Semi-supervised learning SSL: Problem and algorithm

A regularisation framework

Consider the binary setting, and define q ∈ {−1, 0,+1}n as before

Minimise the cost

J(f) =

n∑
i=1

(fi − qi)2

︸ ︷︷ ︸
fitting constraint

+ λ

n∑
i,j=1

Aij

(
fi√
di
− fj√

dj

)2

︸ ︷︷ ︸
smoothing constraint

For optimal f = f∗ (exercise)

∂J

∂fi

∣∣∣∣
f=f∗

= 0 for all i =⇒
(

(1 + λ)I − λD−1/2AD−1/2
)
f = q

f∗ = π for α =
λ

1 + λ
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Network dynamics
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Network dynamics
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Network dynamics Epidemics in networks

Epidemics in networks
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Network dynamics Epidemics in networks

SIR model . . . . . . 1

Models how a disease spreads and it is cured (proposed in 1927)

Population of n people

Three types of states for each person (varies over time)

Susceptible −→ Infected −→ Recovered

Susceptible individuals get disease from infected people

Infected people are gradually cured

Recovered individuals cannot be further infected
(model for smallpox etc.)
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Network dynamics Epidemics in networks

SIR model . . . . . . 2

Originally not associated as a network
Alternative view: Everyone interacts (complete graph)

Mathematical model:
S(t), I(t), R(t) — number of people in each state at time t

S(t) + I(t) +R(t) = n

dS

dt
= −βSI

dI

dt
= βSI − αI

dR

dt
= αI

S(t) R(t)

I(t)
S(t)

I(t)

[Image: Wikipedia]

Note: SI = total #interactions between infected and susceptibles

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 242 / 330



Network dynamics Epidemics in networks

SIS model . . . . . . 1

SIR cannot model diseases like flu

SIS: Each individual switches between 2 states
Susceptible individuals get disease from infected people

Infected people are gradually cured, but are susceptible

Mathematical model:
S(t), I(t) — number of people in each state at time t

dI

dt
= βSI − αI

dS

dt
= −βSI + αI

n = S(t) + I(t)

S(t) R(t)

I(t)
S(t)

I(t)

[Image: Wikipedia]
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Network dynamics Epidemics in networks

SIS model . . . . . . 2

Simplifying the equations

dI

dt
= βI(n− I)− αI

= rI

(
1− β

r
I

)
(r = βn− α)

Key quantity: Basic reproduction number, R0 =
βn

α
— how fast the virus reproduces

Case 1: R0 < 1 =⇒ r < 0

dI

dt
≤ rI =⇒ I(t) ≤ I(0)ert =⇒ lim

t→∞
I(t) = 0

Disease is eventually cured completely
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Network dynamics Epidemics in networks

SIS model . . . . . . 3

Case 2: R0 > 1 =⇒ r > 0

I(t) =

r

β

1 +

(
r

βI(0)
− 1

)
e−rt

=⇒ lim
t→∞

I(t) =
r

β
= n− α

β

Disease becomes endemic (always exists)

Case 3: What happens for R0 = 1?
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Network dynamics Epidemics in networks

SIS on arbitrary graph . . . . . . 1

Let G = (V,E) be an undirected graph on population

Infection can spread only through edges

Model is slightly different from above

Xi(t) = indicator that node-i is infected at time t (random)

{Xi(t) : i ∈ V, t ≥ 0} is a continuous time Markov chain

— infection spread randomly with some transition rate

— more complicated to describe than discrete time case
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Network dynamics Epidemics in networks

SIS on arbitrary graph . . . . . . 2

Informal intuition (assuming discrete time)

P
(
Xi(t+ 1) = 1

∣∣Xi(t) = 0, X(t)
)
∝ β

∑
j

AijXj(t)

P
(
Xi(t+ 1) = 0

∣∣Xi(t) = 1, X(t)
)
∝ α

Threshold for disease becoming endemic (Ganesh et al., 2005)

Let λ1 be largest eigenvalue of the graph adjacency matrix, and
I(t) =

∑
iXi(t).

β

α
<

1

λ1
=⇒ P

(
I(t) = 0

)
→ 1 as t→∞

Proof skipped.
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Network dynamics Network cascades

Network cascades
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Network dynamics Network cascades

Recall: Information flow in label propagation

Few nodes had label information {±1}

Labels shared with neighbours

Neighbours propagate the partial label information they receive
— A node shares his information even if it has a small value

Does this model behaviour of:

forwarding tweets?

spread of news in media?

— What happens in this case?
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Network dynamics Network cascades

Network cascade / Information cascade

How does information spread in internet / media?

How does popularity (of product) spread in social network?

How does epidemic spread?

Glive

S

T

v
u

Information originates from few
source nodes / seeds

Seeds activate some of their
neighbours (using some rule)

In every iteration, activated nodes try
to activate their neighbours

[Image: Castillo et al. 2012]
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Network dynamics Network cascades

Linear threshold (LT) model

Given weighted directed graph G = (V,E)

For every node v,
∑

uAuv ≤ 1

Every node has a threshold, θv ∼ Uniform[0, 1]

Let Xv(t) ∈ {0, 1} denote v is active at time t (discrete)
— once activated, a node stays active

v is seed =⇒ Xv(0) = 1

v becomes at time t active if
∑

uAuvXu(t− 1) ≥ θv

Process stops when number of active nodes achieve steady state
— If G is strongly connected, do all nodes get activated?
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Network dynamics Network cascades

Independent cascade (IC) model

Given unweighted directed graph G = (V,E)

Each edge (u, v) has a probability puv of spreading information

Seeds activated at time t = 0

Let u is activated at time t− 1

For every v such that (u, v) ∈ E
at time t, u activates v with probability puv

All random activations are independent

Process stops at T if no further nodes are activated at T
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Network dynamics Network cascades

LT vs. IC models

Duration of influence

LT: Active nodes can always influence neighbours

IC: Nodes activated at t− 1 can only influence at time t

Source of randomness

LT: Every node has a personal random threshold for activation

IC: Activation controlled by the probabilities on edges

Graph type

LT: Weighted graph

IC: Unweighted graph with transmission probability for each edge
Alternative view of IC:
— Glive = random directed graph with edge probability puv
— (u, v) ∈ Elive and u activated at t− 1 =⇒ v activated at t
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Network dynamics Influence maximisation

Influence maximisation
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Network dynamics Influence maximisation

Influence maximisation

Basic problem of viral marketting
Manufacturer gives free samples to few individuals

Product recommendation spreads through word of mouth

Everyone who hears about it, buys the product

Who should be given free samples?

LT and IC model how influence spreads in network

Influence spread σ(S): Starting from seed set S,

σ(S) = expected #active nodes when diffusion process ends

Problem: For a given budget k

maximise
S⊂V :|S|≤k

σ(S) (NP-hard problem)
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Network dynamics Influence maximisation

Influence maximisation

Basic problem of viral marketting
Manufacturer gives free samples to few individuals

Product recommendation spreads through word of mouth

Everyone who hears about it, buys the product

Who should be given free samples?

LT and IC model how influence spreads in network

Influence spread σ(S): Starting from seed set S,

σ(S) = expected #active nodes when diffusion process ends

Problem: For a given budget k

maximise
S⊂V :|S|≤k

σ(S) (NP-hard problem)
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Network dynamics Influence maximisation

A greedy algorithm

Greedy algorithm

1 Set Ŝ = ∅

2 For i = 1, . . . , k

i Let vi = arg max
v∈V \Si−1

σ
(
Ŝ ∪ {v}

)
ii Ŝ = Ŝ ∪ {vi}

Approximation guarantee for greedy algorithm

σ(Ŝ) ≥
(

1− 1

e

)
max
|S|≤k

σ(S)

Proof: Step 1 - Show that σ is a monotone submodular function

Step 2 - Analyse greedy for maximising any monotone submodular f
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Network dynamics Influence maximisation

Monotone submodular functions . . . . . . 1

Monotone function

Let V be a set, and f : 2V → R

f is monotone if

S ⊂ T =⇒ f(S) ≤ f(T )

Submodular function

f : 2V → R is submodular if for any S ⊂ T and v ∈ V \T
f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T )

Equivalent definition: f is submodular if for any A,B ⊂ V
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)

(Exercise: Prove equivalence)
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Network dynamics Influence maximisation

Monotone submodular functions . . . . . . 2

Example:

Assume IC model

Influence spread σ : 2V → R is a monotone submodular function

Proof:

Let Glive = random sample of live graph in IC model

Let rGlive(S) = #nodes activated by S in Glive

(equivalent definition of rGlive(S)?)

σ(S) = expected #nodes activated by S

=
∑
Glive

P(Glive)rGlive(S)
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Network dynamics Influence maximisation

Monotone submodular functions . . . . . . 3

Exercise:
If f1, . . . , fm are monotone submodular and a1, . . . , am ∈ [0,∞),

then f =
∑
j
ajfj is monotone submodular

We will show rGlive is monotone submodular

=⇒ σ is also monotone submodular

rGlive(S) = #nodes in Glive reachable from S

Obviously monotone

rGlive
is submodular:

— Let S ⊂ T ⊂ V and v ∈ V \T
— To show: rGlive

(S ∪ {v})− rGlive
(S) ≥ rGlive

(T ∪ {v})− rGlive
(T )

— Let u is reachable from v but not from T (u contributes to rhs)

— Then u is also not reachable from S =⇒ u contributes to lhs
Glive

S

T

v
u
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Network dynamics Influence maximisation

Analysis of greedy method . . . . . . 1

Let f : 2V → R be monotone, submodular and f(∅) ≥ 0

Suppose greedy algorithm is used to maximize
|S|≤k

f(S)

We show f(Ŝ) ≥
(
1− 1

e

)
f(S∗) where S∗ = arg max

|S|≤k
f(S)

Greedy algorithm (rephrased)

1 Set S0 = ∅

2 For i = 1, . . . , k

i vi = arg max
v∈V \Si−1

f
(
Si−1 ∪ {v}

)
= arg max
v∈V \Si−1

(
f(Si−1 ∪ {v})− f(Si−1)

)
ii Si = Si−1 ∪ {vi}

3 Return Ŝ = Sk
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Network dynamics Influence maximisation

Analysis of greedy method . . . . . . 2

Si = {v1, . . . , vi}, where vi = arg max
v∈V \Si−1

(
f(Si−1 ∪ {v})− f(Si−1)

)
Let optimal set S∗ = {v∗1, . . . , v∗k}

By monotonicity, f(S∗) ≤ f(Si ∪ S∗)

f(Si ∪ S∗) = f(Si) +

k∑
j=1

(
f(Si ∪ {v∗1, . . . , v∗j })− f(Si ∪ {v∗1, . . . , v∗j−1}︸ ︷︷ ︸

∅ for j=1

)
)

≤ f(Si) +

k∑
j=1

(
f(Si ∪ {v∗j })− f(Si)

)
(by submodularity)

≤ f(Si) + k
(
f(Si ∪ {vi+1}︸ ︷︷ ︸

Si+1

)− f(Si)
)

(vi+1 gives max increment)
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Network dynamics Influence maximisation

Analysis of greedy method . . . . . . 3

From above, we have

f(Si+1)− f(Si) ≥
1

k

(
f(S∗)− f(Si)

)
Define δi = f(S∗)− f(Si)

=⇒ f(Si+1)− f(Si) = δi − δi+1 ≥
δi
k

Observe δ0 = f(S∗)− f(∅) ≤ f(S∗) and δi+1 ≤
(

1− 1

k

)
δi

=⇒ δk ≤
(

1− 1

k

)k
δ0 ≤

1

e
f(S∗)

(use 1− x ≤ e−x)

So f
(
Ŝ
)

= f(S∗)− δk ≥
(

1− 1

e

)
f(S∗)
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Further topics (not part of exam)

Further topics (not part of exam)
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Further topics (not part of exam) Graph kernels

Graph kernels
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Further topics (not part of exam) Graph kernels

ML Recap: Kernel functions . . . . . . 1

Linearly separable data (easy for machine learning)

Classification:
— Linear hyperplane separates the two
classes (SVM, LDA)

Clustering:
— Group into disjoint balls (k-means)

Non-linearly separable data: [Image: G. Bonaccorso]

Apply a non-linear function Φ(·) to make data linearly separable
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Further topics (not part of exam) Graph kernels

ML Recap: Kernel functions . . . . . . 2

Difficult to find a suitable function Φ

Often ML algorithms do not require Φ(x),Φ(y)

— but only ‖Φ(x)− Φ(y)‖ or Φ(x)TΦ(y)

— Example: kernel SVM, kernel k-means

Kernel function: For an input space X ,

k : X × X → R
is a positive semidefinite kernel if for any x1, . . . , xn ∈ X ,

k(xi, xj) = k(xj , xi)

K ∈ Rn×n with Kij = k(xi, xj) is positive semidefinite

Result: For every positive semidefinite kernel k, there is

Φk : X → Z such that k(x, y) = Φk(x)TΦk(y)
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Further topics (not part of exam) Graph kernels

Kernels on graphs . . . . . . 1

Machine learning on vertices

Given graph G = (V,E)
— Think of V = {v1, . . . , vn} as data points

Graph embedding:
— Conceptually similar to PCA for the vertices

Communities / Graph partitioning:
— Clustering of vertices

Label propagation:
— Predict labels of unlabeled vertices (classification)

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 267 / 330



Further topics (not part of exam) Graph kernels

Kernels on graphs . . . . . . 2

If we have kernel function k : V × V → R
— Can do above using using kernel k-means, kernel SVM etc.

Example:
Diffusion kernel (Kondor & Lafferty, ICML 2002)

Kernel matrix K = e−βL =

∞∑
i=0

(−β)i

i!
Li

— L = unnormalised Laplacian, and β > 0 is a parameter

— Connections to random walk on graph

ML on graph without kernel
— Is there a generic alternative to kernel based techniques?

(distances between nodes)
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs . . . . . . 1

When can we say that graph G and G′ are similar?

Similar graph properties

— density, degree distribution, motif counts, . . .

— Laplacians are similar, have similar eigenvalues, . . .

How can we quantify the similarity between graphs G and G′?

Graph distances (distance between two graphs)

Graph kernels (kernel function on space of graphs)
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs . . . . . . 2

Case 1: Graphs with common vertex set

G = (V,E) and G′ = (V,E′)

— AG, LG = adjacency and Laplacian matrices of G

— AG′ , LG′ = adjacency and Laplacian matrices of G′

A graph distance

d(G,G′) = ‖AG −AG′‖F
— Complicated version in (Mukherjee, Sarkar & Lin, NIPS 2017)

Laplacian graph kernel (Kondor & Pan, NIPS 2016)

k(G,G′) =

∣∣(1
2LG + 1

2LG′)
−1
∣∣1/2∣∣L−1

G

∣∣1/4 ∣∣L−1
G′

∣∣1/4 (| · | is deteminant)
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Further topics (not part of exam) Graph kernels

Kernels and distances between graphs . . . . . . 3

Case 2: Graphs of different sizes

G = (V,E) and G′ = (V ′, E′)

Application: Compare molecular / protein structures

Difficult to compare, and so mostly open problem

Some kernel functions available

— Random walk kernel (Vishwathan, Borgwardt, Kondor &
Schraudolph, JMLR 2010)

— Weisfeller-Lehmann kernel (Shervashidze, Schweitzer, van
Leeuwen, Mehlhorn & Borgwardt, JMLR 2011)

— Multiscale Laplacian graph kernel (Kondor & Pan, NIPS 2016)
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Further topics (not part of exam) Deep learning on graphs

Deep learning on graphs
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Further topics (not part of exam) Deep learning on graphs

Convolutional neural networks . . . . . . 1

Convolutional Neural Network

Neural network

Let h(t) = output of tth layer

Input layer: h(0) = x (input vector)

Hidden unit: h
(t+1)
i = σ

(∑
j w

(t)
ij h

(t)
j

)
σ = non-linear activation

Output of hidden layer: h
(t+1)
i = σ

(
W (t)h(t)

)
Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 273 / 330



Further topics (not part of exam) Deep learning on graphs

Convolutional neural networks . . . . . . 2

Convolutional neural network (CNN)

Originally used for image data

Input layer: h(0) = x (input image/matrix/tensor)
— xi is ith pixel of image

Hidden unit: h
(t+1)
i = σ

( ∑
j∈Nbh(i)

w
(t)
ij h

(t)
j

)
— sum only over neighbourhood of i (convolution / filtering)

Output of each conv layer: h
(t+1)
i = σ

(
W (t)h(t)

)
— W (t) has a lot of zeros

In each stage, different activation functions are used
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Further topics (not part of exam) Deep learning on graphs

Graph convolutional network (GCN) . . . . . . 1

Will discuss architechture of Kipf & Welling (ICLR 2017)

Neighbourhood is defined by graph G = (V,E)

Nodes can additional k-dim features
— Input matrix H(0 = X ∈ Rn×k

Can use convolution layer of the form, H(t+1) = σ
(
AH(t)

)
Typically a normalised matrix is used M = D̃−1/2ÃD̃−1/2

— normalised adjacency of graph with self loops added

Above has no parameter to tune in each layer
— Multiply another parameter matrix,

H(t+1) = σ
(
MH(t)W (t)

)
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Further topics (not part of exam) Deep learning on graphs

Graph convolutional network (GCN) . . . . . . 2

Output layer: Typically a matrix Y ∈ Rn×k′

— k′ = feature dimension for each node
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Further topics (not part of exam) Machine learning on graph data

Machine learning on graph data
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Further topics (not part of exam) Machine learning on graph data

ML with graph data

Each data instance is a graph
— Data {G1, G2, . . . , Gm}

Graphs on a common vertex set
— Example: Each graph is the brain network of an individual

Graphs on different vertices
— Example: Each graph is a molecule / protein structure

Learning problems:
— Clustering, classification, hypothesis testing

Generic methods:
— Graph kernels / distances
— Embedding (represent each graph as a point in Euclidean space)
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Appendix Python and NetworkX

Python and NetworkX
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Appendix Python and NetworkX

References for Python

You can find many tutorials / references for Python online

If you have not used Python or Jupyter notebook before, watch
this video on installing and working with Jupyter
https://www.youtube.com/watch?v=HW29067qVWk

The channel also has videos on Python for beginners

For a crash course on Python, you can look at the tutorial by
Diego Fioravanti provided during Machine Learning course
It is in form of a Jupyter notebook (see Assignment-1)

To find functions that you need, see documentation of important
packages like numpy or matplotlib
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References for NetworkX

Python package for network analysis.
Tutorials and list of functions in the NetworkX package can be
found in their documentation.
https://networkx.github.io/documentation/stable/

For a very basic introduction to NetworkX, you can watch
https://www.youtube.com/watch?v=sGAT2npnNLc&t=24s

There are other packages like SNAP or iGraph that can be used
with R, Python or C/C++.
We will only use NetworkX for convenience.
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Appendix Inequalities for sum of random variables

References

Reviews of Linear Algebra and Probability Theory
http://cs229.stanford.edu/section/cs229-linalg.pdf

http://cs229.stanford.edu/section/cs229-prob.pdf

For probability basics, Chapters 1-2 of Bruce Hajek’s book
http://hajek.ece.illinois.edu/Papers/randomprocJuly14.pdf

List of some important concentration inequalities (with proofs)
http://www.math.ucsd.edu/~fan/wp/concen.pdf

Roman Vershynin’s book (for concentration and also more
probability)
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
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LLN and CLT . . . . . . 1

X1, X2, . . . , Xn independent and identically distributed (iid)
random variables

E[Xi] = µ and Var(Xi) = E
[
(Xi − µ)2

]
= σ2

Sn =
n∑
i=1

Xi

Law of Large Numbers
Sn
n
→ µ as n→∞ . . . in probability (weak LLN)

. . . almost surely (strong LLN)

Central Limit Theorem
Sn − nµ√

nσ
→ N (0, 1) as n→∞ . . . in distribution
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LLN and CLT . . . . . . 2

LLN and CLT are important, but often not enough for analysis

Asymptotic statements

What happens for finite n?

How large is

∣∣∣∣Snn − µ
∣∣∣∣ for n = 1000?

What is distribution of
Sn√
n

for n = 1000?

Independence assumption

What happens if the random variables are dependent?
What if there is a weak dependence? — Only few are dependent

Variants of LLN and CLT that provide bounds for finite n

Concentration inequalities (deviation form of weak LLN)
Berry-Esseen theorem (deviation form of CLT)
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Concentration of random variables . . . . . . 1

Markov’s inequality

Let Y be a random variable and h(·) be a non-negative function.

P
(
h(Y ) ≥ a

)
≤ E[h(Y )]

a
for all a > 0

Proof : Note that a1
{
h(Y ) ≥ a

}
≤ h(Y )

Take expectation on both sides

Standard Markov’s inequality: If Y is non-negative r.v., then

P
(
Y ≥ a

)
≤ E[Y ]

a

Chebyshev’s inequality: For any r.v. Y

P
(
|Y − E[Y ]| ≥ a

)
≤ Var[Y ]

a2
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Concentration of random variables . . . . . . 2

Chernoff bound (general)

Let Y be a random variable. For any a ∈ R,

P
(
Y ≥ a

)
≤ min

t>0

E
[
etY
]

eta

Proof : f(x) = etx is a monotonic increasing function for any t > 0
So P

(
Y ≥ a

)
= P

(
etY ≥ eta

)
.

Use Markov’s inequality, and note that it holds for all t > 0

Chernoff bound (for sum of independent r.v.)

Let X1, X2, . . . , Xn be independent (may not be iid). For any a ∈ R,

P

(
n∑
i=1

Xi ≥ a

)
≤ min

t>0
e−ta

n∏
i=1

E
[
etXi

]
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Concentration of random variables . . . . . . 3

Hoeffding’s inequality (application of Chernoff’s bound)

Let X1, . . . , Xn be independent with Xi ∈ [ai, bi] almost surely.

Let S =
n∑
i=1

Xi. For any a > 0,

P
(
|S − E[S]| ≥ a

)
≤ 2 exp

(
− 2a2∑

i(bi − ai)2

)
Proof : See detailed proof in Wikipedia

P
(
|S − E[S]| ≥ a

)
≤ P

(
S − E[S] ≥ a

)
+ P

(
E[S]− S ≥ a

)
. . . union bound (gives factor of 2)

Note that S − E[S] =
∑

iXi − E[Xi], and apply Chernoff.
Bound E

[
et(Xi−E[Xi])

]
using Hoeffding’s lemma

E
[
et(Xi−E[Xi])

]
≤ exp

(
1
8 t

2(bi − ai)2
)

Finally optimize over t.
Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 289 / 330
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Concentration of random variables . . . . . . 4

Bennett’s inequality, Bernstein’s inequality:
Improved bounds in terms of Var(Xi)

Special bounds hold when Xi ∼ Bernoulli(pi)

We can compute E[etXi ] = 1− pi + pie
t

What if Xi is not bounded (say Gaussian)?

Variants of Hoeffding or Bernstein based on sub-Gaussian norms
See Vershynin’s book. We may not need them in this course

McDiarmid’s inequality: Concentration of an arbitrary
function f(X1, . . . , Xn)

Assumption: f does not change much if only one Xi is changed

Azuma’s inequalities: Variants of above

When X1, . . . , Xn is a martingale (particular type of dependence)
Useful in learning theory
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Union bound and concentration

Basic union bound

Let E1, . . . , Em be m events

P

(
m⋃
i=1

Ei

)
≤

m∑
i=1

P(Ei)

Useful when we do not have independence

Powerful in combination with Chernoff’s bounds

Example:
Let X1, . . . , Xn, Xn+1, . . . , X2n, X2n+1, . . . Xkn be r.v.s

We only know X(j−1)n+1, . . . , Xjn are independent for j = 1, . . . , k

Decompose into k parts and use Chernoff’s bound for each term

P

(
kn∑
i=1

Xi > a

)
≤ P

(
k⋃
j=1

{
jn∑

i=(j−1)n+1

Xi >
a

k

})
≤

k∑
j=1

P

(
jn∑

i=(j−1)n+1

Xi >
a

k

)
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Appendix Metric spaces, distances and norms

Distances and metrics

V is a set of elements (finite / countably infinite / uncountable)

Distance: A function that measures how far two objects are

No formal mathematical definition

Metric: d : V × V → [0,∞) is a metric if

d(u, v) = d(v, u) for all u, v ∈ V
d(u, v) = 0 if and only if u = v

d(u, v) ≤ d(u,w) + d(v, w) for all u, v, w ∈ V (triangle inequality)

Metric space: (V, d)

Set V along with a metric d defined on it
We can define different metric spaces on the same set V
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Examples of metrics

V = Rn or {0, 1}n

Euclidean distance, d(u, v) =

√
n∑
i=1

(ui − vi)2 where u = (u1, . . . , un)

Hamming distance, d(u, v) =
n∑
i=1

1{ui 6= vi} where 1{·} is indicator

d(u, v) =
n∑
i=1

|ui − vi| (same as Hamming distance for {0, 1}n)

d(u, v) = max
1≤i≤n

|ui − vi|

V = arbitrary set
Discrete metric, d(u, v) = 1{u 6= v}

V = set of strings
Edit distance, dedit(u, v) is minimum number of substitution /
insertion / deletion needed to change one string into another
dedit(Apple, Apfel) = 3 (Apple → Apfle → Apfl�e → Apfel)
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Graph metrics

Shortest path distance
V = vertex set of a graph
dsp(u, v) = length of shortest path/paths between u and v

Metric on an undirected connected graph
What happens if graph is not connected?
— Set dsp(u, v) =∞ if u, v are in different connected components
— Need to change metric definition as d : V × V → [0,∞]

(does not cause any serious problem)

Resistance distance

Another metric for graphs (see Wikipedia)
Views graph as electric circuit

Exercise: Why is dsp a metric? Is it a metric for di-graphs?

Debarghya Ghoshdastidar Statistical Network Analysis Tübingen WS 18/19 295 / 330
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References

For matrix concentration, see Chapter 2 of Terence Tao’s book
https://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

Can be difficult without math background

Roman Vershynin’s book for concentration (scalar or matrix) and
also more probability
https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-book.pdf
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Norm and normed vector space

Intuition: metric ≡ distance, norm ≡ length

Let V be a vector space (over R)

If u, v ∈ V , then u+ v ∈ V
If λ ∈ R, v ∈ V , then λv ∈ V

Norm: ‖ · ‖ : V → [0,∞) is a norm if

‖u‖ = 0 if and only if u = 0 (0 ∈ V is zero vector)

‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V
‖λv‖ = |λ|‖v‖ for all v ∈ V , λ ∈ R

Normed space: (V, ‖ · ‖)
Vector space V along with a norm ‖ · ‖ defined on it
Note: V must be a vector space to define a norm (Why?)
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Appendix Random matrices

Examples of norms: Vector norms

V = Rn

Euclidean (2-) norm, ‖v‖2 =

√
n∑
i=1

v2i where v = (v1, . . . , vn)

p-norm, ‖v‖p =

(
n∑
i=1

|vi|p
)1/p

for 1 ≤ p <∞

∞-norm, ‖v‖∞ = max
1≤i≤n

|vi|

Every norm induces a metric
‖ · ‖ is norm ⇒ d(u, v) = ‖u− v‖ is a metric

Every metric is not generated by a norm
Shortest path distance on graphs (here, V is not vector space)

On Rn, recall Hamming distance d(u, v) =
∑
i 1{ui − vi 6= 0}

It is induces by the zero-“norm”, ‖v‖0 =
∑
i 1{vi 6= 0}

But zero-“norm” is not a norm (Why?)
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Examples of norms: Matrix norms

V = Rm×n

Frobenius norm, ‖M‖F =

√√√√ m∑
i=1

n∑
j=1

M2
ij

Nuclear norm, ‖M‖∗ =
min{m,n}∑

i=1

σi(M)

where σ1(M), σ2(M), . . . are singular values of M

Induced p-norm, ‖M‖p = max
x∈Rn

x 6=0

‖Mx‖p
‖x‖p

for 1 ≤ p ≤ ∞

Intuition for induced p-norm

Think of M as a linear transformation M : Rn → Rm

‖M‖p denotes the maximum rescaling of length (norm) caused by
the transformation M
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Examples of norms: Spectral norm

Same as induced 2-norm / operator norm

Assume M is symmetric n× n matrix

‖M‖2 = max
x∈Rn
x6=0

‖Mx‖2
‖x‖2

= σ1(M) σ1(M) is largest singular value of M

= max
x∈Sn−1

∣∣xTMx
∣∣ Sn−1 = {x ∈ Rn : ‖x‖ = 1}

Exercise: Show that all definitions are equivalent

Hint: Spectral / eigenvalue decomposition of symmetric matrix

M =

n∑
i=1

λixix
T
i (λi, xi) is eigenvalue, eigenvector pair

σi(M) = |λi| and {x1, . . . , xn} are orthonormal vectors
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Concentration of random matrices . . . . . . 1

Spectral norm of random matrix

M ∈ Rn×n is a symmetric random matrix with following properties:

Mii = 0 for all i (zero diagonal)

{Mij : i < j} are mutually independent

E[Mij ] = 0 and |Mij | ≤ 1 almost surely for all i, j

For any δ ∈ (0, 1),

P
(
‖M‖2 ≥ Cδ

√
n
)
≤ δ

for some constant Cδ > 0 that depends only on δ.

Note: If M is not random but arbitrary, then ‖M‖2 ≤ n− 1
assuming zero diagonal and |Mij | ≤ 1 (Why?)
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Concentration of random matrices . . . . . . 2

Proof:

Recall that ‖M‖2 = max
x∈Sn−1

∣∣xTMx
∣∣. Fix an x ∈ Sn−1

P
(∣∣xTMx

∣∣ ≥ a) = P

∣∣∣∣∣∣
∑
i<j

Mijxixj

∣∣∣∣∣∣ ≥ a

2

 ≤ 2 exp

(
−a

2

4

)
Exercise: Prove above using Hoeffding and the fact ‖x‖ = 1

How do we go from here to max over all x ∈ Sn−1?
— Union bound
— Does not really work as Sn−1 is uncountable

ε-net approach: Approximate Sn−1 by a finite set
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Concentration of random matrices . . . . . . 3

ε-net and maximal ε-net

Σ is an ε-net for Sn−1 if

Σ ⊂ Sn−1
for every x, y ∈ Σ, we have ‖x− y‖ ≥ ε

Σ is a maximal ε-net if

we cannot add any more point to Σ and retain the property of ε-net

Size of maximal ε-net for Sn−1∣∣Σ∣∣ ≤ (1 +
2

ε

)n
≤ exp

(
2n

ε

)
Note: 1 + x ≤ ex

‖M‖2 ≤
1

(1− 2ε)
max
x∈Σ

∣∣xTMx
∣∣

Exercise: Let ε = 1
4 . Use above + union bound to complete proof
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Appendix Proofs: Network models

Revisiting some concentration inequalities . . . . . . 1

First moment method / simple Markov’s inequality

X is a non-negative random variable and t > 0.

P(X ≥ t) ≤ E[X]

t

Special cases

If E[X] = 0, then P(X ≥ t) = 0 for any t > 0

Let X1, X2, . . . be a sequence of non-negative random variables.

lim
n→∞

P(Xn ≥ t) ≤ lim
n→∞

E[Xn]

t
for any t > 0

If E[Xn]→ 0 as n→∞, then

lim
n→∞

P(Xn ≥ t) = 0, which we write as P(Xn ≥ t) = o(1)
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Revisiting some concentration inequalities . . . . . . 2

Second moment method / Chebyshev’s inequality

Let X be a random variable and t > 0.

P
(∣∣X − E[X]

∣∣ ≥ t) ≤ Var[X]

t2

Special case

Let X1, X2, . . . be a sequence of non-negative random variables.
Let lim

n→∞
E[Xn] > 0 and E[X2

n] ≤
(
1 + o(1))

(
E[Xn]

)2
P(Xn = 0) ≤ P

(∣∣Xn − E[Xn]
∣∣ ≥ E[Xn]

)
≤ Var[Xn](

E[Xn]
)2

= o(1) (due to assumption)
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Isolated nodes in ER . . . . . . 1

Theorem: Number of isolated nodes

Let G ∼ G(n, p), and Xn = #isolated nodes in G.

E[Xn] = n(1− p)n−1

lim
n→∞

E[Xn] = 0 if p >
lnn

n
, and lim

n→∞
E[Xn] =∞ if p <

lnn

n
.

Proof: E[Xn] =
∑

i P(di = 0) =
∑

i(1− p)n−1

Let p = c lnn
n .

lim
n→∞

E[Xn] = lim
n→∞

n

(
1− c lnn

n

)n
= lim

n→∞
ne−c lnn since lim

n→∞
e−an = lim

n→∞

(
1− an

n

)n
= lim

n→∞
n1−c
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Isolated nodes in ER . . . . . . 2

Corollary: Presence of isolated nodes

Let G ∼ G(n, p)

P(G contains isolated nodes) =


o(1) if p >

lnn

n

1− o(1) if p <
lnn

n

Here, x = o(1) means lim
n→∞

x = 0. Equivalently,

P(Xn ≥ 1) = o(1) if p >
lnn

n

P(Xn = 0) = o(1) if p <
lnn

n

Proof (first part): P(Xn ≥ 1) ≤ E[Xn] = o(1) if p > lnn
n
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Isolated nodes in ER . . . . . . 3

Proof (second part): Use second moment method. Compute E[X2
n].

Xn =

n∑
i=1

1{di = 0}

X2
n =

∑
i

1{di = 0}+
∑
i 6=j

1{di = 0, dj = 0}

E[X2
n] = nP(d1 = 0) + n(n− 1)P(d1 = 0, d2 = 0)

= n(1− p)n−1 + n(n− 1)(1− p)2(n−1)−1

E[X2
n](

E[Xn]
)2 =

1

n(1− p)n−1
+

1

1− p
− 1

n(1− p)
= 1 + o(1)

if p = c lnn
n with c < 1. Now use second moment result.
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Diameter of ER . . . . . . 1

Theorem: Phase transition in diameter

Let G ∼ G(n, p).

P
(
diameter(G) ≤ 2

)
=


1− o(1) if p >

√
2 lnn

n

o(1) if p <

√
2 lnn

n
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Diameter of ER . . . . . . 2

Let Xn = number of pairs i, j such that dsp(i, j) > 2

P
(
diameter(G) ≤ 2

)
= P(Xn = 0)

Theorem: Phase transition in diameter (restated)

Let G ∼ G(n, p).

P(Xn ≥ 1) = o(1) if p >

√
2 lnn

n

P(Xn = 0) = o(1) if p <

√
2 lnn

n
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Diameter of ER . . . . . . 3

Proof: Let us call {i, j} bad pair

if dsp(i, j) > 2,

or equivalently,
if i, j not adjacent and do not share a common neighbour,

or equivalently,
if (i, j) /∈ E and for every v 6= i, j, either (i, v) /∈ E or (j, v) /∈ E

P(i, j bad pair) = (1− p)
(
1− p2

)n−2

Xn =
∑
i<j

1{i, j bad pair} =
1

2

∑
i 6=j

1{i, j bad pair}

E[Xn] =
n(n− 1)

2
(1− p)

(
1− p2

)n−2
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . . . . . . 1

Let M ∈ Rn×n be a symmetric matrix

Definition: (λ, v) is eigenvalue-eigenvector pair for M

Mv = λv and v 6= 0

Geometric meaning:

M : Rn → Rn is a linear function

Let y = Mx
— In general, y may not have the same direction as x

Let Mv = λv
— v is special in the sense that M does not rotate v
— M only rescales v by λ
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Eigenvalues and eigenvectors . . . . . . 2

How many eigenvectors are possible?

Infinite: (λ, v) is eigenpair ⇒ (λ, cv) is also eigenpair

How many different directions of eigenvectors are possible?

OR: How many eigenvectors v are possible such that ‖v‖2 = 1?

Can still be infinite:
— Suppose Mx = λx and My = λy with y 6= cx
— Let z = (1− α)x+ αy with α ∈ (0, 1)

Mz = λz and Mz′ = λz′ for z′ = z
‖z‖2

How many orthonormal eigenvectors v1, v2, . . . are possible?

Orthonormal: ‖vi‖2 = 1 for all i, and vTi vj = 0 for i 6= j

Why look for orthonormal?
— There can be at most n vectors
— Let Mv1 = λ1v1 and Mv2 = λ2v2. If λ1 6= λ2, then vT1 v2 = 0
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . . . . . . 3

Fact: M has n eigenvalues, λ1, . . . , λn
These are solutions of the equation, det(M − λI) = 0

(also holds for non-symmetric matrices)

For M real and symmetric
— All eigenvalues are real
— Corresponding eigenvectors are real

Note: All eigenvalues of M may not be distinct

Suppose λ1, . . . , λn are all distinct

Eigenvectors v1, . . . , vn are orthonormal
— Let V = [v1, . . . , vn] ∈ Rn×n, then V TV = V V T = I

Let Λ ∈ Rn×n diagonal with entries λ1, . . . , λn

MV = V Λ or M = V ΛV T =
n∑
i=1

λiviv
T
i
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . . . . . . 4

Fact: Let λ occurs k times in λ1, . . . , λn
For M symmetric,
one can find k orthonormal vectors v1, . . . , vk such that Mvi = λvi

Note: This set set of k vectors may not be unique
— Think of eigenvectors for I

Spectral decomposition (of real symmetric matrix)

Let M ∈ Rn×n symmetric

There are λ1, . . . , λn ∈ R and orthonormal v1, . . . , vn ∈ Rn such that

M = V ΛV T =
n∑
i=1

λiviv
T
i

Implication: {v1, . . . , vn} is an orthonormal basis

Every x ∈ Rn can be written as x =
n∑
i=1

civi, and Mx =
n∑
i=1

λicivi,
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Appendix Spectral theory (for symmetric matrices)

Eigenvalues and eigenvectors . . . . . . 5

Eigenvalues govern various matrix functions (exercise)

Trace(M) =
n∑
i=1

Mii =
n∑
i=1

λi

det(M) =
n∏
i=1

λi

Let f(·) be a polynomial (example: f(M) = M3 + 3M2 + I)
f(M) = V f(Λ)V T

Spectral norm: ‖M‖2 = max
x 6=0

‖Mx‖2
‖x‖2

= max
i
|λi|

(hint: use previous slide, and fact ‖x‖22 = xTx)
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Appendix Spectral theory (for symmetric matrices)

Positive definite matrices

Let M ∈ Rn×n be symmetric

Definition: M is positive semi-definite if

xTMx ≥ 0 for all x ∈ Rn

M is positive definite if xTMx > 0 for all x ∈ Rn, x 6= 0

Results:

M is positive semi-definite ⇐⇒ λi ≥ 0 for all i
M is positive definite ⇐⇒ λi > 0 for all i

(why? — use spectral decomposition)

Note: Alternative terminology

M is positive definite if xTMx ≥ 0 for all x
M is strictly positive definite if xTMx > 0 for all x 6= 0
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Appendix Spectral theory (for symmetric matrices)

Singular value decomposition . . . . . . 1

What happens if M ∈ Rn×n is not symmetric?

Some of previous conclusions do not hold

(λ1, x1) and (λ2, x2) are eigen pairs with λ1 6= λ2
— Cannot claim xT1 x2 = 0

M is positive definite may not imply λi > 0 for all i

What happens if M ∈ Rm×n where m 6= n?

Note: MTM ∈ Rn×n and MMT ∈ Rm×m
Both always symmetric and positive semi-definite (why?)

Let MTM = V Λ̃V T =
n∑
i=1

λ̃iviv
T
i

and MMT = U Λ̂UT =
m∑
i=1

λ̂iuiu
T
i
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Appendix Spectral theory (for symmetric matrices)

Singular value decomposition . . . . . . 2

Assume m ≥ n (for convenience)

Let λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n ≥ 0 and λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂m ≥ 0
— Can show

λ̃i = λ̂i for i ≤ n and λ̂i = 0 for n < i ≤ m

Let Σ ∈ Rm×n diagonal (only principle diagonal non-zero)

with entries σi =

√
λ̃i for i ≤ min{m,n}

Singular value decomposition: We can write M ∈ Rm×n as

M = UΣV T =
min{m,n}∑

i=1
σiuiv

T
i

σ1, σ2, . . . — singular values
u1, u2, . . . — left singular vectors
v1, v2, . . . — right singular vectors
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Appendix Consistency of spectral clustering

Consistency of spectral clustering
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Appendix Consistency of spectral clustering

Spectral clustering under SBM

Consistency of spectral clustering as n→∞
Let p, q ∈ (0, 1) be fixed scalars with p > q.

Let G ∼ SBM(n2 , 2, p, q) with underlying split V = S1 ∪ S2.

Let unnormalised spectral clustering outputs the split Ŝ1, Ŝ2.

P
(

(Ŝ1, Ŝ2) 6= (S1, S2)
)

= 1− o(1)

Proof: First part in scanned notes (next few slides).

For second part, we need few tools.
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Appendix Consistency of spectral clustering

Spectral perturbation theory . . . . . . 1

Let M ∈ Rn×n and E ∈ Rn×n symmetric

Let M ′ = M + E
— Think of M ′ as a noisy observation of M

How far are eigenvalues and eigenvectors of M and M ′?

Weyl’s inequality (simplified)

Let λ1 ≤ . . . ≤ λn be eigenvalues of M , and
λ′1 ≤ . . . ≤ λ′n be eigenvalues of M ′.

|λi − λ′i| ≤ ‖E‖2
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Appendix Consistency of spectral clustering

Spectral perturbation theory . . . . . . 2

What happens to eigenvectors?

Difficult to answer since eigenvectors can be rotated

(λ, v) is eigenpair =⇒ (λ,−v) is also eigenpair

But ‖v − (−v)‖2 can be very large

More complicated if λ has multiplicity more than 1

Clear answer by Davis-Kahan perturbation theory

Complicated since it takes care of also possible rotation and
rescaling of eigenvectors
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Appendix Consistency of spectral clustering

Applying spectral perturbation theory

Eigenvector perturbation in our setting

Let f̂ be eigenvector of L corresponding to second smallest eigenvalue.

Let f be eigenvector of L corresponding to second smallest eigenvalue.

Let ‖f̂‖2 = ‖f‖2 = 1.

min
{
‖f̂ − f‖2, ‖f̂ + f‖2

}
≤ 4‖L− L‖2

min{λ2 − λ1, λ3 − λ2}

where λ1 ≤ . . . ≤ λn be eigenvalues of L

Observe: Denominator in bound is n
2 min{q, p− q}

(grows linearly with n)

How large is ‖L− L‖2?
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Appendix Consistency of spectral clustering

Bounding ‖L− L‖2 . . . . . . 1

‖L− L‖2 ≤ ‖D −D‖2 + ‖A−A‖2

Bounding the first term:

‖D −D‖2 = max
i

∣∣di − E[di]
∣∣ = max

i

∣∣di − d∣∣
Similar to Assignment-2, we can show for every i

|di − d| ≤ 2

√
n ln

(
1

δ

)
with probability 1− δ

Applying union bound, we get

max
i
|di − d| ≤ 2

√
n ln

(n
δ

)
with probability 1− δ

So ‖D −D‖2 ≤ Cδ
√
n lnn
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Appendix Consistency of spectral clustering

Bounding ‖L− L‖2 . . . . . . 2

Bounding the second term:

A−A is symmetric random matrix with

independent entries in [−1, 1]
entries have mean zero

Concentration of random matrix

M ∈ Rn×n is a symmetric random matrix with following properties:

Mii = 0 for all i (zero diagonal)

{Mij : i < j} are mutually independent

E[Mij ] = 0 and |Mij | ≤ 1 almost surely for all i, j

For any δ ∈ (0, 1),

P
(
‖M‖2 ≥ C ′δ

√
n
)
≤ δ

for some constant C ′δ > 0 that depends only on δ.
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Appendix Consistency of spectral clustering

Finishing the proof

min
{
‖f̂ − f‖2, ‖f̂ + f‖2

}
≤ 4‖L− L‖2

n
2 min{q, p− q}

≤ C ′′δ

√
lnn

n

Bound holds with probability 1− 2δ

If we let δ → 0 as n→∞,

C ′′δ grows slowly

So as n→∞, f̂ ≈ ±f with probability 1− o(1)

Hence, partitioning is also correct with probability 1− o(1)
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