- 1. Let $f(x, y) = e^x \sin y$. Expand f(x + h, y + k) in power of h and k in Taylor's series up to second order term and write the remainder R_3 .
- 2. Expand $f(x, y) = x^2 y + \sin y + e^x$ in powers of (x 1) and $(y \pi)$ in Taylor's series up to second order term and and write the remainder R_3 .
- 3. Show that for $0 < \theta < 1$,

$$e^{ax}\sin by = by + abxy + \frac{1}{6}[(a^3x^3 - 3ab^2xy^2)\sin(b\theta y) + (3a^2bx^2y - b^3y^3)\cos(b\theta y)]e^{a\theta x}.$$

- 4. Expand $e^x \tan^{-1} y$ about (1, 1) upto second degree in (x 1) and (y 1), and find the remainder term.
- 5. Expand $f(x, y, z) = e^{z} \sin(x + y)$ in Taylor's series up to second order term about the point (0, 0, 0).
- 6. Verify that the function $f(x, y) = x^3 y^2 (1 x y)$ has a maximum at $(\frac{1}{2}, \frac{1}{3})$.
- 7. Find the stationary points of the following functions and classify them. Or in other words, find the local maximum or local minimum values of the following functions.
 - (a) $f(x, y) = x^2y 2xy^2 + 3xy + 4$ (b) $f(x, y) = x^3 + y^3 - 3axy$ (c) $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$
- 8. Find a point within a triangle such that the sum of the square of its distances from the three vertices is minimum.
- 9. Show that the minimum value of $f(x, y) = xy + \frac{a^3}{x} + \frac{a^3}{y}$ is $3a^2$.
- 10. Of all the triangles with the same perimeter, determine the triangle with the greatest area using Lagrange's method of multiplier.
- 11. Express the number 27 into product of three parts x, y, z such that 2yz + 3zx + 4xy is maximum.
- 12. Find the greatest and least values of the function f(x, y) = xy that the function takes on the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$.
- 13. Prove that of all rectangular parallelopiped of the same volume, the cube has the least surface.
- 14. Which point of the sphere $x^2 + y^2 + z^2 = 1$ is at a maximum distance from the point P(2, 1, -2)?

15. Prove that if x + y + z = 1, then the function u(x, y, z) = ayz + bzx + cxy has an extreme value equal to

$$\frac{abc}{(2bc+2ca+2ab+a^2-b^2-c^2)}.$$
 (1)

Prove also that if a, b, c > 0 and $c \in (a + b - 2\sqrt{(ab)}, a + b + 2\sqrt{(ab)})$ then (1) gives the true maximum and if a, b, c < 0 and $c \in (a + b - 2\sqrt{(ab)}, a + b + 2\sqrt{ab})$, then (1) gives the true minimum.

- 16. Determine the minimum value of the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the condition x 2y 4z = 5.
- 17. Show that the maximum and minimum value of ax+by (where the constants a, b > 0) subject to the constraint $x^2 + y^2 = 1$ are $\sqrt{a^2 + b^2}$ and $-\sqrt{a^2 + b^2}$ respectively.
- 18. For the extremum values of $x^2 + y^2 + z^2$ subject to the constraints $ax^2 + by^2 + cz^2 = 1$ and lx + my + nz = 0, show that the stationary points satisfy the relation $\frac{l^2}{(1+a\lambda_1)} + \frac{m^2}{(1+b\lambda_1)} + \frac{n^2}{(1+c\lambda_1)} = 0$.
- 19. Show that the maximum and minimum of radius $r = \sqrt{x^2 + y^2 + z^2}$ of the section of the surface $(x^2 + y^2 + z^2)^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$ by the plane $\lambda x + \mu y + \nu z = 0$ satisfies the equation

$$\frac{a^2\lambda^2}{1-a^2r^2} + \frac{b^2\mu^2}{1-b^2r^2} + \frac{c^2\nu^2}{1-c^2r^2} = 0.$$

- 20. Find the maximum/minimum values of the following functions using Lagrange's method of multipliers.
 - (a) $f(x,y) = 81x^2 + y^2$ subject to the constraint $4x^2 + y^2 = 9$.
 - (b) $f(x,y) = 4x^2 + 10y^2$ on the disk: $x^2 + y^2 \le 4$.
 - (c) f(x,y) = 5x 3y subject to the constraint $x^2 + y^2 = 136$.
- 21. Find the absolute maximum and absolute minimum of the following functions.
 - (a) $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate in the first quadrant bounded by x = 0, y = 2 and y = 2x.
 - (b) $f(x,y) = x^2 xy + y^2 + 1$ on the closed triangular plate in the first quadrant bounded by x = 0, y = 4 and y = x.
- 22. Expand $f(x,y) = \tan^{-1} \frac{y}{x}$ in the neighborhood of (1,1) upto third-degree terms. Hence compute f(1.1, 0.9) approximately.
- 23. Use Taylor's formula to find quadratic approximation of $f(x, y) = e^x \sin y$ at the origin. Estimate the error in the approximation if |x| < 0.1 and |y| < 0.1.
- 24. Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if |x| < 0.1 and |y| < 0.1.