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Linear ODE, existence and uniqueness of solutions
Linear initial value problem:
X)) =AW X®) +F(@), telab],  X(to) = Xo,
where X (t), F(t) € Cv™, A(t) € C"*", and A, F are piecewise continuous [a,b].

Theorem: The initial value problem has a unique solution.

Proof. on the following slide.



Linear ODE, existence and uniqueness of solutions

The existence and uniqueness proof.

W.l.0.g9. tog = 0. The function X solves the initial value problem
X(t)y=A®)X@®) + F(®), X(0)= Xo
iff
t
X)) =v(X)®) = Xo —|—/ A(s) X(s) + F(s) ds.
0
We show that the operator X — W(X) is a contraction with respect to the norm

| X| = m[ax] le XX (t)||, where L:=2 sup ||[A®)|, | -| any submultiplicative norm.
telab tela,b]

Then the existence and uniqueness statement follows from the contraction mapping
theorem. For two matrix functions X7, Xo,

W (X1) (1) — W(X2) (@)

| . A(s)(X1(s) — Xa(s)) ds||

t
L
< /—eLSe_LSHXl(s)—X2(S)||ds
0]

2
L t
< —/ el® | X1 — Xo|ds
2 Jo
L s=—t ].
< > [e" /L] —, | X1 — Xa| < EeLt|X1 — X>|.

Multiplying the latter inequality with e £t and maximizing yields

1
W(X1) ~ W(X)| € 2 (X1 — Xal.



Fundamental solution, transition map, variation of parameters formula.

The unique solution & : [a,b] — C*"*™ of
D(t) = A(t) P(b), P(tg) =1 (identity matrix)

is called the fundamental solution at tg. ®(t) is invertible for all t. Suppose not. Then
y(t) := d(t)z = 0 for some z € C*\ {0} and some t. The function y satisfies y = Ay,
y(t) = 0. By uniqueness, y = 0. In particular 0 = y(to) = ®(t9)z = z, contradiction.

Define the transition map by

d(t,s) 1= PP 1(s), s,t € [a,b].
This map does not depend on tg. Then the solution of

X(t)=A@) X(@t)+ F(t), te€la,b], X (to) = Xo, (%)
IS given by

X)) = &) (Xo—|— Cb(s)lF(s)ds>

lo

t
= D(t,to) Xo+ | P(t,s) F(s)ds.
to

Proof. The ansatz X (t) = ®(t) C(¢) for the solution of (x) yields

C(t) = P() L F ), C(to) = Xo. = Ct) = Xo+ / d(s)"I F(s), ds.



Linear time invariant ODE and matrix exponential

The unique solution of
d(t) = AP(), P(0) =1 (A constant)

IS given by the matrix exponential

0 k
Cb(t) — At = exp(At) = Z (1?:') =1+ At + (A2t)2 + (A6t)3 + ...
k=0 '
The solution of
X(t)=AX@)+ F(t), teR, X (0) = Xo, (%)

IS given by
t t
X@) = et <X0+/ eASF(s)ds> = eAth—I—/ e P (s) ds.
0 0

More generally, for any to € R, the solution of (x) satisfies

t t
X(t) = eAl-to) (X(to)—l— / eA(tO_S)F(s)ds> = A1) X (¢o) + / eAt=9) F(s) ds.
to to



Matrix exponential of commuting matrices

Proposition. Let A, B e C"™", t € R.

AB=BA = ATBt = At Bt — Bt At

Proof. From AB = BA it follows that A*B = BAF, k € N, whence et B = B e4t.
Let X (t) = etteBt. Then X(0) =1 ,and by the product rule

X(t) =Aet Bt e BePl = At Pt + BettePt = (A4 B) X(t).

By uniqueness of the solution of linear initial value problems: X (t) = e(A+DB)t

Remark. If A and B do not commute,

t2
edteBt =% Z(t)=(A+ B)t+ (AB — BA)E + infinite series of commutators.

(Baker-Campbell-Hausdorff formula)



T he case of diagonalizable matrix

Proposition. Suppose that A € C"*" has a basis V = [v1,...,v,] Of eigenvectors s.t.
A’Uk — >\k: Vi - (*)
Then
Wy
el = Vdiag(eMt,..., eV = 7 eMyw)], where V-1 = | :
-
w?’l,

Remark. The row vectors w, are the left eigenvectors w, A = A\, w, .
The matrices P, = v, w,;r e C™*" are called spectral projectors.

Proof. The relations (x) can be written as
AV = VA, where A :=diag(\1,..., ).
Since V is nonsingular: A =V AV~L1. Furthermore, we have
eNt = diag(eM?, ... eM?).
Let X(t) :=VeMV~L Then X(0) =1 and
X1t) =VA VI =VAVIveMy—t = A X (1).

By uniqueness: X (t) = e



The case A\ + N, N nilpotent

Let N € C™*" be nilpotent of index v, i.e. N*"1 £ 0 = N¥. Then for any X € C,
(AT+N)t At I_I_Nt_I_NQtQ _I_N3t3 + _I_Nl/—l tl/—l ( )
e =e — — 4+ ... S — *
2 3! (v —1)!
Proof. Let X(t) denote the right hand side of (x). Verify that X(0) =1, X = A X.

Corollary. For a Jordan block,

t2 tﬂ—l =
S ] 1t 3 =11
A1 t
J = = elt = et 2
1 2
A 1 t
B 1




The case of a 2x2 matrix

For A € C?*2 with distinct eigenvalues A1, \» € C,

A—XM1 Ao et — \qetet eMt — ghit

A—X I
At — it 2 4 et — I+

A1 — A2 A2 — A1 A2 — A1 Ao — A\
Proof. Diagonalization or use methods explained later on.

For A € C?*2 with only one eigenvalue )\,

e =M+ (A-NDT).
Proof. A — M1 is nilpotent.

Real 2 x 2 Example. Let a,w € R.
At ot [COS(wt) —sin(wt)

A= | ¢ e =ce
w o sin(wt) cos(wt)

— X (1)

Proof. Verify, that X(0) =1, X(t) = AX(t).



The general real 2 x 2 case. Let

A = [a b] c R2%2
C

d
The eigenvalues of A are the zeros of its characteristic polynomial
XD =X = 20+ (ad — be),
i.e.
AL = ("’+b)2i @, disc = (a — d)? + 4be.
Define w = ,/|disc|. Then

if disc > 0 (real simple eigenvalues)

e | COSh(wt) 4 2=¢ Sinhw?) p Sinh(w)
=er Si”h(‘ﬁf) i " ud sinh(w?) | 7
c—_ cosh(wt) — 3 -
if disc < 0 (nonreal simple eigenvalues)
(atd)t COS(Q} t) —|— a—d M b M
eAt =e 2 Sin(th) w w Lsinn |
c— cos(wt) — &8 =>—=2
w 2 w

if disc = 0 (equal eigenvalues)

ct 1 — la—d)t

eAt:e@ [1+% bt ]
2



Phase portrait of © = Az, where A € R?*?

File Edit View Insert Tools Desktop Window Help

NEde | ARANDEL- S| 08| e
This user interface shows
the flow of the linear
ODE dot x= A*x
’ Trajectories and Eigenspaces
Matrix A Ly
Le] [] o[ 0 | 10233 | [d] Z |rhe
0.4186 0 P
T D | P
Discriminant: Eigenvalues: e
17134 | 0.65448 ol
| 0.65448
02t
-04F :
06 .
08

04 -02 0 02 04 06 08 1



Phase portrait of z = Ax, where

Edit View Insert Tools Deskiop Window Help

A € R?*2

Dade|h

VRUDEL- S| 0EH|aD

This user interface shows
the flow of the linear
ODE dot x= A*x

Trajectories and Eigenspaces

Matrix A:
L] | o[ 0 | 065116 [« ]
[« ] [»] | 023286 | [ 023256 | [q] =]
Discriminant: Eigenvalues:

-0.55165

| 0. MB28+0.37137i

| -0.11628-0.37137i




Phase portrait of © = Az, where A € R?*?

File Edit View Insert Tools Desktop Window Help

NEde K ARANDEL- S| 08| uDT
This user interface shows
the flow of the linear
ODE dot x= A™x
Trajectories and Eigenspaces

Matrix A:
L] ] DR | 10233 [d]
FIE [»] | 1023 || © [4] &

Discriminant: Eigenvalues:

-4.1882 | 0+1.0233

| 0-1.0233i




Phase portrait of © = Az, where A € R?*?

File Edit View Insert Tools Desktop Window Help

NEde | AKRNDBL-

S| 0E| =D

This user interface shows
the flow of the linear
ODE dot x= A*x

Matrix A:

Trajectories and Eigenspaces

[ B | 0.93023 |U.02?908 [4]

[v] | 0046512 | | 097674 | []

Discriminant: Eigenvalues:

0.99637

0.0073556 |

| 0.91061

02t

04t

wl,” 2/, /ﬂ

_q L " A .
-1 08 06 -04 02



The scalar Riccati differential equation.

Suppose
x| _|la b| |x ,
[y] = [C d] [y] (a,b,c,d may be time dependent)
Set
t
s(t) ;= & (slope of the vector).
z(t)
Then
_ yr —yx
T T
_ (ex+dy)z —y(azx + by)
T 2
xr

2
c+(d-a)l —vL
T T

c+(d—a)s—bs

This is a quadratic ODE for s, called Riccati ODE.
Note that the solution may have finite escape time (x(¢) may become 0 for some t).

The solution of the Riccati ODE can be found via the associated linear ODE.



T he scalar time variant case

The solutions of the scalar homogeneous ODE

2(t) = a(t) z(t)
satisfy

z(t) = z(tp) e, where A(t) = /ta(s)ds.

Proof. Direct verification, since A(t) = a(t).

(Simplified) Gronwall inequality: Suppose
z(t) < a(t) z(¢)

Then for ¢t > to,
z(t) < z(to) e*®.
Proof. We have

% (2(1) D) = i(®)e 4D —2(®) a() 4O < 0.

Thus
(1) e A < 2(tg) e ) = z(¢p).



Digression: invariant subspaces

Let A: )V — V be a linear operator on the vector space V.

A subspace U is said to be A-invariant if

AU CU.

Examples. kernel and image of A are A-invariant:

KerA:={v|Av =0 }. AKerAC KerA
ImA:={Av|veV} AImA CIm A.

Suppose U = [u1,...u,] iS a basis of the invariant subspace . Then

Auk:ZKjku]':ZUjEjk kzl,...?",

where £;;, are elements of the underlying field. Let L = [¢;;]. Then, in matrix notation,
AU = UL.

L is said to be the representation of A with respect to the basis U.



Invariant subspaces and linear ODE

Suppose
AU =UL where A, U, L are complex matrices.

Then forany k=1,2,...,
ARU =U L*.

Summation yields
eMU = U e,

Suppose zg €e ImU, i.e. xog = UE for some £. Then
ellry = eMUE =Uelle € ImU
Thus:

if the solution to the homgeneous linear ODE z = Ax starts in an A-invariant subspace,
then it stays in that subspace for all time.

Note: The 1-dimensional invariant subspaces of A are its eigenspaces.



Linear operators
and

polynomials



Linear operators and polynomials

In the sequel K[x] denotes the set of polynomials

p(x) = pna" +po_12™ P+ ...+ prx+ po

with coefficients in the field K. V is a vector space over K, and £(V,V) is the set of
linear operators A : VYV — V. If V is finite dimensional A is identified with its matrix with
respect to the standard basis. Definition:

p(A) =p, A" +pp 1 AV 4+ .+ prA+pol

Then
(1) 1(A) =1, r(A) = A,
(2) (pEq)(A) = p(A) £4q(A), (rq)(A) = p(A)q(A) = q(A)p(A),

(3) if AB = BA then for any p € K[X], Kerp(A) and Imp(A) are B-invariant.

Proof of (3).
0=p(A)v = 0= Bp(A)v = p(A)Bw. y =p(A)v = By = Bp(A)v = p(A)Bw.




Linear operators and polynomials

Definition: A nonempty subset Z C K[x] is called an Ideal if
(1) p,gqel = pxtqgel, (2) peZ = apeZl forall aeKx].

Basic facts:
(a) Let Z be an ideal. Let p € Z be a polynomial of minimum degree. Then

I=Klz]p={ap|aecK|z]}.

(b) Let T={>;_,arpr | ar € K[z] } be the ideal generated by p1,...,pr € K[z].
Let d € K[z] be a greatest common divisor of the polynomials p;. Then
7 =Klz] d

In particular, there are polynomials a; such that
T
d=) o (Bezout identity) (%)
k=1

Proof. (a) A polynomial p € Z of mininum degree in Z divides any other polynomial
qg € 7 since otherwise we could write ¢ = ap + r with degree(r) <degree(p), r %= O.
= r=gq—apecZ. Contradiction.

(b) By (a) a polynomial d € Z of minimum degree divides any polynomial in Z. In
particular, it is a common divisor of the p,. From (%) it follows that any common divisor
of the p;. divides d.

Remark: The factors oy in (x) can be computed by the Euclidean algorithm.



Linear operators and polynomials

Kernel intersection Lemma: Let d be the greatest common divisor of p,q € K[x].

Then for A e L(V,V),
Kerd(A) = Kerp(A) N Kerq(A).

Proof. There exist «, 8 € K[x] such that d = ap + 8¢ (Bezout-identity) . Thus
d(A) = a(A) p(A) + B(A) q(A).

Thus, p(A)v = g(A)v = 0 implies d(A)v = 0, whence Kerp(A) N Kerq(A) C Kerd(A).
On the other hand let vd = p. Then v(A) d(A) = p(A). So d(A)v = 0 implies p(A)v = 0,
whence Kerd(A) C Kerp(A).



Linear operators and polynomials

Kernel decomposition theorem.
Let p = [[,—; Pk, Where p1,...p, € K[z] are pairwise coprime. Then for A € L(V,V),
v Ifg=k

1) there exist K such that Kerp;(A) implies A)v =
) i € Ka] € Kerpy(4) implies m(ayo={0 DI 0

(2) Kerp(A) = @}, Ker p(A).

Proof. The polynomials ¢, = H;le#kpj, k=1,...,r have no common factor.
Thus, there exist fi € K[x] such that

=T

r 7 Ar h
1:Zak Hpj.
k=1

J=1.j%k

It follows that for all v € V,

v=1ITv= Z’ﬂ'k(A)U. (%)
k

(1) Each 7, j # k, contains the factor p;. Thus v € Kerp;(A) implies m;(A)v = 0 for
j # k, and then by (x), v = m;(A)w.
(2) We have pr(A)m(A) = ar(A) p(A) Thus v € Kerp(A) implies mp(A)v € Kerpip(A).

Thus, Kerp(A) is the sum of the subspaces Kerp;(A). The sum is direct: applying m;(A)
on the relation

0= Z”Uj, (IS Kel’pj(A)
J
yields v, = 0.



Linear operators and polynomials

Kernel decomposition theorem.

Let Ae L(V,V), where V is vector space over an arbitrary field K.

Let p = [[,—;pr, Where p1,...p, € K[z] are pairwise coprime.

(1) Then there exist oy € K[x] such that

1= Z 877 H Py (*)
k=1 j=1j%k

(2) The operators 7 (A) satisfy:

(a) zziwkm), () v e Kerpp(A) implies m(Aw=40 Ti=k

— O otherwise.
(3) Kerp(A) = P Kerpi(A).
k=1

Proof: The polynomials ¢, = H;Zl,j#kpj, k=1,...,r have no common factor. = (1).

(2a) is immediate from (1). (2b). Each =«;, i = k, contains the factor p.

Thus v € Kerp,(A) implies m;(A)v = 0 for i = k, and then by (2a), v = 7, (A)w.
(3) We have pr(A)m(A) = ar(A) p(A). Thus, v € Kerp(A) implies m(A)v € Ker pi(A).
Thus, Kerp(A) is the sum of the subspaces Kerp;(A). The sum is direct:
applying m;(A) on the relation 0 = ). v; with v; € Kerp;(A) yields v, = 0.



Linear operators and polynomials

Remarks on the polynomial identity

(1) This identity is equivalent to the incomplete partial fraction expansion

T
1 [e%2

—=r .

(2) If pp(x) = (& — \p)™, k= 1,...,r with distinct )\, € C,

then £ (z) = [[j=q j2r(z —A;)™ 1, and

mk—l

1/ d 1
ar(z) = Z F (dazj 0o ()

j=0

) (z — ).

$:>\k

in particular deg(4;) < m; — 1, and

ar(x) = const = 1 H (A, — )\j)mf_l

J=1.j%k

Proof. see Wikipedia (Partial Fraction Expansion)

(Taylor expansion of 1/4;(x))

it mp — 1.



Digression: scalar ODE of higher order with constant coefficients

Application of kernel decomposition theorem:
Solutions of homogeneous linear ODE of higher order with constant coefficients

Let p(z) = 2" + Z] Oajx = [[—1 (& — Ax)™, where the \; € C are distinct.

All solutions of the scalar ODE

d _ .
0= () 40 = 4D + 1oy IO o+ IO+ 200
are given by
y() = aqi(t) e, qx polynomial of degree < mj, — 1. (%)

Proof. By the kernel decomposition theorem,  Kerp () = @;_; Ker (£ —x,)™

Any differentiable function vy, can be written in the form vy, (t) = q,(t) et. We have

d d e
= =\ t) = gp(t)eMt = — A t) = ¢\™) ()M,
(5 = M) m() = e (5-M) w=d"we
Thus,
d i
yr € Ker (E — Ak) & qémk) =0 <« g is polynomial of degree< m; — 1.

Terminology: functions of the form (%) are called Bohl functions.



Digression: scalar ODE of higher order with constant coefficients

Suplement:
solution formula for inhomogeneous initial value problem of higher order

Let ¢o,...,0,—1 : R — C be the solutions of the homogeneous initial value problem
o)+ 1ol W 4 A p1dk() +pod(®) =0, ¢ (0) =8, j=0,....n—1

(Bohl functions). Then

n—1 t
VIRSC y =3 ot - t)mt [ a(t—s) f()ds
k=0 to

is the unique solution of the initial value problem

@) + pa1 @) . o1yt + poy(t) = f(1), y®) (t0) = yp.

Question: Is there a nice way for computing the functions ¢, 7

Answer: Yes. Method will be shown after some remarks on the next slides.



Digression: scalar ODE of higher order with constant coefficients

Example to the solution formula
Consider the ODE of second order (harmonic oscillator):
§(t) + w?y(t) = F(1), w>0. (%)

The functions
¢o(t) = cos(wt), $1(t) = w tsin(wt)

solve the homogeneous ODE

¢(t) +w?o(t) =0
with initial conditions qb,gj) = ;5. T hus, the solutions of (x) are
t

y(t) = y(to) cos(w (t —to)) + y(to) w'sin(w (t —to)) + [ w™'sin(w (t —s)) f(s) ds.

lo



Digression: scalar ODE of higher order with constant coefficients
Remark on the integral part of the solution formula

For a cont. function g(¢,s) which is continuosly differentiable in ¢ the following holds:

d (! td
G 9w ds =g+ [ Jats)ds
Thus,
p =0
R ¢n 1(t—8) f(s)ds = ‘P 1(t—t)f(t)+ ¢n 1(t—s) f(s)ds
to

/ boa(t—s) f(s)ds = % / do1(t— 5) f(s) ds

dt?

— ¢n 1(t_t)f(t)+ ¢n 1(t—8)f(8)d8

-0 to

dn — S S S _ d (n 1) — S S S
o ¢n 1(t —s) f(s)ds = p” (t—s) f(s)d
— <" 1)(t—t)f(t)—|—/ o0 (¢ — 5) f(5) ds

=1

Summing up:

n

> Opkﬁ/ b1t =) f(s) ds = f<t>+/thlpk¢ (£ =) () ds

7

=0



Digression: scalar ODE of higher order with constant coefficients

The basis solutions ¢, can be computed in the following way.

Step 1. Perform partial fraction expansion

1 1 A
p(z) [ ey (@ — Ap)me Z Z (= M)’

k=1 7=1
Set
RNOED SED privs
n—-1(t) 1= | Qj 7
= = G-
Step 2. Set
¢n—2 = DPn-1 ¢n—1 + ¢;n—17
¢n—3 — DPn-2 an—l + ¢n—27

b0 = p1Pn_1+ b1.
Then p(4)¢, = 0 and ¢ (0) = §;.

Proof. The function ¢,,_1 defined in Step 1 solves the ODE by the kernel decomposition

theorem. The conditions qbfj)l(O) = J;»—1 Can be verified by direct computation or by
Laplace transformation. Obviously, the functions of Step 2 solve the ODE. The initial
condition properties follow by differentiating p(%)%—l = 0 and setting t = 0.



Digression: scalar ODE of higher order with constant coefficients

Example to the solution formula method for ODE of higher order

Let
p(z) =2 +p2z® + prz+po = (z — A1) (z — X2)(z — A3), A, € C distinct.

Partial fraction expansion yields

1 ai ao

p(:c)::c—)\1+:c—)\2+x—)\37

as

where
1/a1 = (A1 —2A2)(M1 —A3), 1/ao=(A2—2A1)(A2—A3), 1/az= (A3 —A1)(A3— A2).
Thus, the general solution of
vy + i+ pry+poy=f
IS .
y(t) = ¢o(t —to) y(to) + ¢1(t — to) y(to) + d2(t — to) y(to) + | ¢2(t — s) f(s)ds,

where to

$o(t) = areM’ 4 as, e +aze™!
_ e)\lt + 6)\2t + 6)\3t |
(A1 —=22)(A1—A3) (A= 2A1)(A2—A3) (A3 —A1)(A3 — A2)
p1(t) = p2ga(t) + ¢2(t),
do(t) = p1da(t) + d1(t).



Matrix exponential and ODE of higher order

Proposition. Suppose A € CV*N satisfies the polynomial identity

O=p(A)=A"+p, 1 A" 1+ . . +p1 A4+ pol. (We may have N # n)
Then

n—1
et =" r(t) AF,
k=0
where the scalar functions ¢ : R — C satisfy

d . |
p(a> ¢r = 0, 69 (0) = 6,1, i k=0,.. . n—1.

Proof. We have (%)k et = Ak el Thus, p (%) et = p(A) et = 0.

Thus (by our result on ODE of higher order):

= AF,

n—1 k
d
et = E () Vi with the matrices Y, = <£> et
k=0 t=0

Corollary (Solution formula without matrix exponential).
p(t) = Ax(t) = () =7t on(t —to) Abz(to) and p (L) z(t) = 0.



Matrix exponential with respect to polynomial basis I
The theorem below generalizes the statement from the slide before.

Representation theorem. Suppose A € CV*N satisfies the polynomial identity

O=p(A)=A"+p, 1 A"+ . . +p1 A4+ pol. (We may have N # n)

Let Bo(x), B1(x),...,Bn_1(x) be a basis of the set of polynomials of degree <n — 1.
Let ag, cp, mj € C be coefficients such that (polynomial division)

n—1
1=0
and Y74 ¢ Br(x) = 1. Then,

n—1
M= () Bu(A), (%)
k=0

where the scalar functions ;. solve the initial value problem

[ o(t) | moo ... Mmon-1 | [ Yo(t) | [ 0(0) | co
a | () | _ : : P1(t) P1(0) | _ | a
dt : : : : ’ : — |
_wn—l(t)_ \_mn—l,O oo mn—l,n—l_/ _wn—l(t)_ _wn—l(o)_ _Cn—l_
-~

Proof. Show that the right hand side of (x) solves the same initial value problem as e“?.



Matrix exponential with respect to polynomial basis II
Special cases of the representation theorem.
(1) For Bi(z) =«*, k=0,...,n—1, we have

2Bu(x) = Brya(z), k=0,...,n—2, B 1(z) =2" =p(x) — "L pi Bi(x).
Thus, _ _

o) —Po
Mg = 1 . _?1 (companion matrix)
L 1 _p’l’L—l_

In this case the functions %, equal the function ¢; from our considerations
of ODE of higher order.

(2) Let A1,..., A\, be the zeros of p counting multiplicities. For the (Newton)basis

n—1

Bo(z) =1, pi(z)=xz—XA1, BLo=(x—-A)(x—X2), ..., Bu-1(z) = H(ﬂf —Aj)

j=1
we have 1 = Bo(x) = Bo(x) + Zkzl 0 Br(x) = vo(0) = 1,9, (0) =0 for k> 1, and
r Br(z) = Brt1(x) + M\ Be(x), k=0,...,n—2, T fn-1(z) = p(x) + An Bn-1(z).

In this case
_)\1 |

1 A = A
. .2 ) N {¢o 1 %0

Ok = N1 U+ Gpg, k> 1 (Putzer algorithm)

Mg =




Matrix exponential with respect to polynomial basis III

Example to the Putzer algorithm.

Suppose A € C™*™ has minimal polynomial
pa(@) = (z — A1) (z — A2)%, A1 # Ao

The associated Newton Basis is

Bo(x) =1, fi(z) =(z—A1), B2(z) = (z—A1)(z - A2).

Thus,
et = ho(t) I +Y1(t) (A= A1) 4+ ¢o(t) (A— A I)(A— X2 D),

where

Yo(0) =1, o=Avo, = o(t)=eM",

, et _ ot
P1(0) =0, Y1 =Xopy1+vo, = Yi(t) = :
AL — Ao
At €>\2t e)\zt

. e
Y2(0) =0, Yo=Xopo+ Y1, = Pa(t) = i m)? v t.



Linear operators and polynomials
Polynomial identities, minimal polynomial, characteristic polynomial

Suppose the linear operator A € L(V,V) satisfies a polynomial identity:
p(A) = 0.

Then the Ideal Z4 := { q € K[z] | ¢(A) = 0 } contains a unique monic polynomial p4
of minimum degree (the minimal polynomial). Thus ¢g(A) = 0 iff ualqg. Let

A = H 7, fi irreducible over K.
k=1
By the kernel decomposition theorem:

(1) V =Kerpua(A) = P, _, Ker f"(A),
(2) there are 7, € K[x] such that 7;,(A) : V — Ker f"(A) are the associated projectors.

Furthermore, by the kernel intersection lemma and its proof (homework):
B)m>m, = Kerf"(A) = Ker f;""(A).

(4) q(A) is invertible and there is a polynomial ¢ with q(A) = ¢(A)~! iff f, fq for any k.

Cayley-Hamilton theorem: Let ya(z) := det(x I — A) be the characteristic
polynomial of A € K™*™. Then xa(A) = 0. Thus, pa|xa.



Digression: Proof of the Cayley-Hamilton Theorem

Let A = [ax] = [a1,...,a,] € K"*". Let e; € K" be the jth canonical basis vector. Then

;Jget(al,...,ai_l,ej,ai_|_1,...,an)J a;r = det(ai,...,a;1, E €j Qik, Qit1, - - -, An)
J —d y
v = det(a1,...,ai-1,ak, Qit1,...,0n)

In matrix notation:  A*A =det(A)I, where A= [agj] (matrix of cofactors).
Replacing A by I — A with z € K, we have

(xf—A)ﬂ(a;f—A)=det(a;1—A)1=(ijazﬂ‘) I (%)

The entries of (zI — A)? are polynomials of degree n — 1. Thus, (I — A)f = Z?;} B; 2.

Equating coefficients of =/ in (x) we obtain

—BoA=pol, Bj1—-BjA=p;1 for j=1,...,n—1, B,-1=npnl.
Multiplying the jth equation with A’ gives
—BoA=1pol, Bj 1AV —BjAT =p. A for j=1,...,n—1, Bp_1 A" = p, A",.

Summing up these equations we obtain

0=-BoA+ (BoA—BiA’)+...+(By2 A" ' =B, 1A")+ B, 1 A" =) p; Al.



2 Methods to compute the spectral projectors 7, (A). Let

r r
paA = H i, fr irreducible over K, b, = Mni = H f?ﬂ', E=1,2,...,r
k=1 K J=1,j#k

Method 1 (already discussed). Incomplete partial fraction expansion:

o _r = m(A) = ap(A) £, (A).

Method 2. Let o(z) = Y ;_, &(z). Then o(A)~! exists and is a polynomial of A. We have

m(A) = o (A) 7 4.(A) ()

Proof. The sum ¢ is not divisible by any f; since f;|¢, for j = k and f; J¢;.
Hence ua and o have no common factor, and there exist polynomials «a, 8 with

aoc+ Bus=1 = a(A)o(A) =1 = a(Ad) =c(A)"L.

The matrices m,(A) of (x) satisfy > m(A) =1, mp(A)m;j(A) = 0.1, f"(A) m(A) = 0.
This yields a second proof of the kernel decomposition theorem.



Linear operators and polynomials

The spectral decomposition theorem

Let A e L(V,V), where V is a vector space over C. Suppose

p(A) = 0, where p(X) = [[(z—A)™, X distinct.
k=1

Let P, :=m.(A) : YV —>Ker(A— Xz I)™, k=1,...,r be the projectors for the decomp.

V=P Ker(A— D)™
k=1

Furthermore, let Ny := (A — Xz I)P.. Then

A:Z;.;:l()\kpk'FNk:)a and N]T’“:O.

i.e. Ni is nilpotent. All these operators commute with each other:
Pjpk = PkPj = jk:Pk:: Nij = PkNj = jk:Nj; Nij = NkNj.

Proof. From I =Y, _, m(A) = > ,_, Py it follows that

k=1 k=1 N,

All operators commute because they are polynomials of A. We have

N = (A= N I)™P™ = (A= X\, 1)™P, =0, since P, is a projector onto Ker (A — X, I)™.



The spectral decomposition and the matrix exponential

Let A € C*"*™ have the spectral decomposition

A=Y (B4 N),  NMU#O0, NM=0
k=1
Then
At — : At (Nit)? | (Ngt)® (Vg t)mk1>
) _;;16 (Pk+th+ > T Tt T ()

Proof. Let Y denote the right hand side of (x). Using the relations
Pjpk m— PkPj = jl{lP]{l7 Nij: = PkNj m— jkNj, Nij = NkNj

it is easily verified that Y = AY. Furthermore, Y (0) = I.

Corollary. All components of e/t are Bohl functions.




Spectral decomposition and block diagonalization

Let V = [V4,V5,...,V;] where V. is a matrix whose columns form a basis
of Ker (A — X\, I)™. Then there are nilpotent matrices N, such that

Thus,
A1 I+ Ny ]
A = Vv A2 I + N -1
] A+ Ny
T
T r W];r
= ZVk()\kI+Nk)Wl<;T = Z)\k ViW, + Vi, Ny W,/ where Wo | =yt
N—— N——— :
k=1 k=1 P, N,
k k WTT_
Furthermore,
‘e(/\11+N1)t 7
A e I+N2) 1 1 Sy A "
et =V VT, e THNIE — At —Nj.
' — 4|
e T+N) j=0




The spectral decomposition and the resolvent (z1 — A)~1
Let A € C"*"™ have the spectral decomposition
T
A=) (AP + N, N™ 1 #£0, N™=0.
k=1

Then, as already mentioned,

r

At _ Aot (Npt)? | (Npt)? (th)m’“_l)
e _k;e (Pk—|—th—|— 5 + 3l +...+(mk_1)! .

Using the properties of the spectral factors it can be shown that for any z € C,

B - P, N, N2 Nt )
[— At = k k ,
(rf=4) ;(x—/\k+<x—/\k>2+<x—/\k>3+ HICESDT

(this is a partial fraction expansion).

Note, that (zI — A)~! is the Laplace transformation of e,

oo

L{e ) (z) = /t—O e TleMtdt = (a1 — AL, R(x) > max R(AL).



The spectral decomposition and matrix functions

From the spectral decomposition

A=) (PN,  NPT#EO, NM=0.
k=1

it follows that for any polynomial p,

T

p(4) =3 (pw) P+ Nep/Ow) +

k=1

NP | NEp® () NP Ow)
2 + 3! et (mg — 1)! '

Taking limits, it follows that for any analytic function defined on
neighborhood of the spectrum of A,

T

fay =3 (fo\;a P+ Ni fO) +

k=1

NE f"Ow) | NP Ow) N D (Ow)
2 + 3! Tt (my, — 1)! )



The spectral decomposition theorem and stability
Definition: A € C™" is said to be (Hurwitz) stable if lim;_ . e’ = 0.

From

T

At — N7 i (N t)? | (N t)* (N )™
e _kz::le (Pk+th+ > T T G

it follows that A is stable iff all of its eigenvalues have negative real part.

Reason: for any polynomial p and X\ € C,

oo R(A) >0 or (R(AN) =0 and degree(p) > 0),
Jim leMp(t)| = Jim N )] = {|p| R(\) =0 and degree(p) < 0,
0 R\ <O.

Corollary. If 3 > max{R(Xx) | k=1,...,r } (spectral abscissa) then
to any norm || - || there is a constant M > 1 such that
led|| < M Pt for t > 0. ( (M, B)-stability)

Proof. A— 31 is stable. Thus |e4=#D!| < M for some M and all ¢t > 0.



Examples: transient behaviour of stable matrices

The picture below shows the function ¢ — |||, for the stable matrix

__1—0.6 ¢
e 1)

and several values of c € R.

Norm of e
T T T

20

0 2 4 6 8 10 12 14 16 18 20
time t



Examples: transient behaviour of stable matrices

The picture below shows the function t — |le?||> for the stable matrix

(-1 —100 O —-150 0 200 —1000]
-1 1 -10 25 11 —-200

1

0 0 -1 400 -30 O 250
A= 10 0 -1 -1 5 5 200

o) 0 o) o) -1 =2 30

o) 0 o) o) o) -1 —-625

0 0 0 0 o) 1 —1

The eigenvalues of A are —1,—1 4+ 107, —1 £+ 207, —1 £ 25z.

Norm of et
600 . . .

500

400 -

300

200

100

o

time t



Growth bounds for |[e4|| (More growth bounds on the next slide collection).

Let || - || be a submultiplicative norm with ||I|| = 1. Especially,
Al = max D laal, 14lle = VAmaA™D), - 1Al = max ) faad,

Then we have for t > O:

(1) flet!] < el i,

(2) Br=min{ >0| A <eft, t>0} =  p=imiltAll=1
t\,0 t
(3) B = maxy (Rlaw) + Ciselanl) B2 = Amax (35L), Foo = maxs (R(air) + Sy lase])

(4) Suppose A = Vdiag(A1,..., ) VL Let o = max{R(\1),...,R(\,)}. Then
le ) < VIV e
(IVIIIV~1|| = condition number of V, a = spectral abscissa).

Proof. (1) and (4) are trivial. For (2) and (3) see
Hinrichsen, Pritchard: Mathematical Systems Theory 1.



Stability and bounded inputs

Let A € C**" be stable such that
et < MePt g <o,

where || - || satisfies || Xv|| < || X]| ||v|| for matrices X and vectors v. Then the solution of
x=Ax, x(0)=0

satisfies

(|M7| SUPsefoq £ (),
< <

()] = ‘ [t sy as

1/q 1/p
M () (B IFeIPds) T, gz 1 p i gt =

Proof. We have for ¢ > 1,

t t t _
1 — 918t M4
/ |eAt=9)||7 ds :/ le?®]|9 ds < Mq/ e8ls gg = ppa = — € < .
0 0 0 q|B| q|B|

Now, using HoOlder inequality,

t t t 1/q t 1/p
A(t—s) A (t—s) A(t—s)|1q p
‘ [ et ssyas| < /O [eAC=)] |17(s) | ds < ( /O e 6= ds) ( /O 1£()| ds) .

0




Stability and periodic inputs

Let A € C"*™ be stable, and let f : [0,00) — C" be T-periodic,
i.e. f(t+T) = f(t) for some T > 0.

Then any solution of = Axz+4 f converges for t — oo to the T-periodic function

z(t) = /OOO e f(t — s)ds

In particular, for any w € R and any vector v the solutions of

= Az + ¥ty

converge to

z(t) = e“tvy, where v, = (Gwl—A) 1.

Proof. We have
t t 00

t) = At 0 _|_/ A(t—s) ds = At 0 _|_/ At t — d _>/ At t — d,

z(t) = e""z(0) e f(s)ds ejo() e f(t—s)ds o f(t—s)ds

and for f(t) = e“'w,

/ eAseiw (t=5) 4y = ei‘”t/ eA=wD)s gy ds = ' A—iw I)_1/ (A —iw I)e(A_i‘”I)SJ vds = Z(t).
0 0 0 ~

—d (A—iwD)s
dse



Stability and small nonlinear feedback
Theorem. Let A € C"*™ be stable. Let

1
r = = min n(twl — A stability radius
maxweRH(iwI—A)—ng mir O'mln( ) ( \' )

Let f be differentiable and such that

[f(t, )2 <7zl
Then the solutions of

x(t) = Ax(t) + f(¢, x(t))

satisfy
lim z(¢t) = 0.

t—o0

Proof. This follows from the KYP-Lemma. A more general result will be given later.



Relationship between stability radius and frequency response

spectral norm of (i wl1—A) 1

250 F — Araxitmum amptification- - -~ p - - - - - - - - - - - - - - — - - (- - — - - - — - — — - — — — — — — — — — —|
=1/(stability radius)

200 —

150 —

100 [—

50 —

—50 L L L L L L L
—80 —60 —40 —20 40 60 80

o 20
imaginary axis (frequencies w)

Recall: for stable A the solutions of
T = Az + ¥ty
converge to
z(t) = et (iwl — A) .

Signal amplification: a = “(WIH:JII?_IUHQ

, in worst case a = ||(iw I — A)71|>.

Stability radius:
1 1

maxeer ||[(iw I — A)~1]l»  maximum amplification factor’




Jordan canonical form
T he Jordan chains

A finite sequence vi,v2,...,vp € V \ {0} is said to be a Jordan chain
of Ae L(V,V) to the eigenvalue A € K if

Avi = A1y < (A—XDvi =0
AUQI)\U2+U1 <~ (A—)\])UQI’Ul

Avp = Avp+v_1 & (A—)\I)Ug = Vyp_1

For a Jordan chain we have

1 -
A1
Alvi v .. v = [vr v ... v/
1
! Al
Ti(N), Jordan‘glock of size ¢
and
v = (A — A1)y, (A=XDvy = (A—=XDv; =0,
Thus

v € Ker (A —=XD* C Ker (A —\I)"

It is easily verified that the vectors of a Jordan chain are linearly independent
and span an A-invariant subspace.



Jordan canonical form

The Jordan canonical form theorem
Let A € C"™ with minimal polynomial pa(x) = [[,_(x — Ag)™.
Then C™ has a basis V = [v1,v,...v,] consisting of Jordan chains, i.e.

VYAV =diag(J1,..., ), T = diag (T, (Mr), -+ o Tou (A1), - .

The A\, are the eigenvalues of A.
The sizes of the Jordan blocks are unique (up to ordering).
The maximum size of a Jordan block to the eigenvalue \.

equals the multiplicity myg of Ax in ua.

Proof. omitted.

y



Jordan canonical form

Jordan canonical form and matrix exponential

Fact 1: Let v1,...,v, be a Jordan chain for A to the eigenvalue X\ such that
Avy = vy, Avy = Avp + v, kE=2,...,4.

Then the functions

z1(t) = eMh,

zo(t) = e (vo 4+ tvr),

42
3(t) = eMi(vz+tvs+ —vl)
42 -1
z(t) = eM'(vp+ toe 1-|-—U£ 2+ .. +(£—1)' v1)

fulfill the homogeneous ODE
ii(t) = Awm;(t).

Proof. direct computation.

Fact 2: All solutions of £ = Ax are linear combinations of the above.



Jordan canonical form

Jordan canonical form and matrix exponential

Fact 3. Exponential of Jordan block:

1
>
'—\

]
|—l
~

~ N[

Proof. The matrix on the right fulfils Y = JY, Y(0) = I.

Fact 4. For all powers k=1,2,...,

A=Vdiag(A41,...,A) V™ = AF =V diag(A4?%,...

By summation it follows that

A=Vdiag(41,...,A) V!t = M =Vdiag(et?,...

This in particular holds if the matrices A; are Jordan blocks.

12
2
1 t
1 -
Aby YL
: GA,.t) V—l



Jordan form and realization
Basic question of realization theory:

For a prescribed function of the form (Bohl function)

T mp—1

tJ
Gty = e > Gy, Gy; € CP4
k=1 j=0 J

find matrices A, B,C such that the output y of the linear system

= Ax+ Bu, y=Czx, xz(0)=0 (%)
IS given by

y(t) = /o G(t —s)u(s)ds = / Ce %) By(s) ds.

0

This can always be achieved by a matrix A consisting of Jordan blocks
(though this might not be the optimal way).
An example is given on the following page.

Note that the Laplace transform of (x) is

r mp—1 ‘
()= 6@, GER=Y Y

k=1 j=0

G is called the transfer function of the system (x).



Jordan form and realization

Realization example. Suppose

t2
G(t) = eM'Gy + et <G20 + Ga1t + Gao 5) :

Let
A1 ] i 7
. Ao 1 1 . 0 I
I Ao 1] |1 ]
Then
_eAlt] 1 [T T eMt T T
At ehet [ ooty e/\ztgl 0 _ e)\zt%l
et eMtiT| |0 et ¢ ]
€>\2tl I e>\2t[
and
B e)\ltl N
A ety
Ce'B = [Gl Goo Goi GQQ] )\th = G(1).
et t]
| e! T




Perturbation of matrix exponential

For A,E € C™", t € R,

¢ t
At = ety [ AP s = ety [ A peds as 4 (B,
0 0

Proof. Let X (t) = e(A+E)t Then

X0)=I, XW)=A+E)X1)=AXH)+ F@{), F(@)=FEeAtDt
Thus,

c(A+E)E X@) = AtI_|_/ A (t— S)F(S) ds

At_|_/ A (t— S)E e(A—I—E)s ds.
G(S)

By the same formula with ¢t replaced with s,

G(s) = e(ATE)s — gAs 4 /S AG—) p J(A+E)T g0
0

Thus,

t t S
SAFE)E _ eAt_I_/ eA(t—s)EeAst_I_/ eA(t—s)E/ AG=T) g JATE)T g o
0 0 0

7

O(|1E?)



Numerical computation of the matrix exponential

Method, implemented as MATLAB function expm(A):

Pade approximation combined with scaling and squaring.

Pade approximation (rational approximation) of scalar exponential:

(2m — j)! m!
m — 7)1 (2m)! 7!

pm(x)

: el (good for |z| small)
Pm(—x)

e’ ~ rp(x) =

where pp,(z) = zm:
=

For any integer m, edt = (eAt/™)™ Thus (scaling and squaring):
S S S
e = (%) =Bs, where By =¢Y? B 1 =B7 k=1,...,s—1.

MATLAB:
et xrg(A)25)2,  ||A/2%00 < 1/2.

For more sophisticated methods see book and talks (WWW) by N. Higham.



Final comments:

Literature on numerical computation of matrix exponential:

1) Cleve Moler, Charles Van Loan.
Paper: Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Year Later. SIAM review, 45, No 1, (2003)

2) N. J. Higham.
Book: Functions of Matrices: Theory and Computation. SIAM (2008)

3) N. J. Higham.
Slides: How and How Not to Compute the Exponential of a Matrix

http://www.maths.manchester.ac.uk/ higham/talks/exp10.pdf

Matrix exponential in MATLAB: expm(A)

Examples of |let]| are from Hinrichsen, Pritchard: Mathematical Systems Theory 1

'Ansatz’ (german) in math. context: preparation, basic approach

Piers Bohl (1865 1921) was a Latvian mathematician



