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Linear ODE, existence and uniqueness of solutions

Linear initial value problem:

Ẋ(t) = A(t)X(t) + F (t), t ∈ [a, b], X(t0) = X0,

where X(t), F (t) ∈ Cn×m, A(t) ∈ Cn×n, and A,F are piecewise continuous [a, b].

Theorem: The initial value problem has a unique solution.

Proof. on the following slide.



Linear ODE, existence and uniqueness of solutions

The existence and uniqueness proof.

W.l.o.g. t0 = 0. The function X solves the initial value problem

Ẋ(t) = A(t)X(t) + F (t), X(0) = X0

iff

X(t) = Ψ(X)(t) := X0 +

∫ t

0

A(s)X(s) + F (s) ds.

We show that the operator X 7→ Ψ(X) is a contraction with respect to the norm

|X| := max
t∈[a,b]

‖e−LtX(t)‖, where L := 2 sup
t∈[a,b]

‖A(t)‖, ‖ · ‖ any submultiplicative norm.

Then the existence and uniqueness statement follows from the contraction mapping
theorem. For two matrix functions X1, X2,

‖Ψ(X1)(t)−Ψ(X2)(t)‖ = ‖
∫ t

0

A(s)(X1(s)−X2(s)) ds‖

≤
∫ t

0

L

2
eLs e−Ls‖X1(s)−X2(s)‖ ds

≤ L

2

∫ t

0

eLs |X1 −X2| ds

≤ L

2

[
eLs/L

]s=t

s=0
|X1 −X2| ≤

1

2
eLt|X1 −X2|.

Multiplying the latter inequality with e−Lt and maximizing yields

|Ψ(X1)−Ψ(X2)| ≤
1

2
|X1 −X2|.



Fundamental solution, transition map, variation of parameters formula.

The unique solution Φ : [a, b] → Cn×n of

Φ̇(t) = A(t)Φ(t), Φ(t0) = I (identity matrix)

is called the fundamental solution at t0. Φ(t) is invertible for all t. Suppose not. Then
y(t) := Φ(t)z = 0 for some z ∈ Cn \ {0} and some t. The function y satisfies ẏ = Ay,
y(t) = 0. By uniqueness, y ≡ 0. In particular 0 = y(t0) = Φ(t0)z = z, contradiction.

Define the transition map by

Φ(t, s) := Φ(t)Φ−1(s), s, t ∈ [a, b].

This map does not depend on t0. Then the solution of

Ẋ(t) = A(t)X(t) + F (t), t ∈ [a, b], X(t0) = X0, (∗)
is given by

X(t) = Φ(t)

(

X0 +

∫ t

t0

Φ(s)−1 F (s) ds

)

= Φ(t, t0)X0 +

∫ t

t0

Φ(t, s)F (s) ds.

Proof. The ansatz X(t) = Φ(t)C(t) for the solution of (∗) yields

Ċ(t) = Φ(t)−1 F (t), C(t0) = X0. ⇒ C(t) = X0 +

∫ t

t0

Φ(s)−1 F (s), ds.



Linear time invariant ODE and matrix exponential

The unique solution of

Φ̇(t) = AΦ(t), Φ(0) = I (A constant)

is given by the matrix exponential

Φ(t) = eAt := exp(At) :=

∞∑

k=0

(At)k

k!
= I + At+

(At)2

2
+

(At)3

6
+ . . .

The solution of

Ẋ(t) = AX(t) + F (t), t ∈ R, X(0) = X0, (∗)
is given by

X(t) = eAt
(

X0 +

∫ t

0

e−As F (s) ds

)

= eA tX0 +

∫ t

0

eA(t−s) F (s) ds.

More generally, for any t0 ∈ R, the solution of (∗) satisfies

X(t) = eA(t−t0)
(

X(t0) +

∫ t

t0

eA(t0−s) F (s) ds

)

= eA(t−t0)X(t0) +

∫ t

t0

eA(t−s) F (s) ds.



Matrix exponential of commuting matrices

Proposition. Let A,B ∈ Cn×n, t ∈ R.

AB = BA ⇒ e(A+B) t = eAt eB t = eB t eA t.

Proof. From AB = BA it follows that AkB = BAk, k ∈ N, whence eA tB = B eA t.

Let X(t) = eA t eB t. Then X(0) = I ,and by the product rule

Ẋ(t) = AeA t eB t + eA tB eB t = AeA t eB t +B eA t eB t = (A+ B)X(t).

By uniqueness of the solution of linear initial value problems: X(t) = e(A+B) t.

Remark. If A and B do not commute,

eA t eB t = eZ(t), Z(t) = (A+B) t+ (AB −BA)
t2

2
+ infinite series of commutators.

(Baker-Campbell-Hausdorff formula)



The case of diagonalizable matrix

Proposition. Suppose that A ∈ Cn×n has a basis V = [v1, . . . , vn] of eigenvectors s.t.

Avk = λk vk. (∗)
Then

eAt = V diag(eλ1 t, . . . , eλn t)V −1 =
∑n

k=1 e
λk t vkw

⊤
k , where V −1 =





w⊤
1
...
w⊤
n



 .

Remark. The row vectors w⊤
k are the left eigenvectors w⊤

k A = λk w
⊤
k .

The matrices Pk = vkw
⊤
k ∈ Cn×n are called spectral projectors.

Proof. The relations (∗) can be written as

AV = V Λ, where Λ := diag(λ1, . . . , λn).

Since V is nonsingular: A = V ΛV −1. Furthermore, we have

eΛ t = diag(eλ1 t, . . . , eλn t).

Let X(t) := V eΛ tV −1. Then X(0) = I and

Ẋ(t) = V ΛeΛ tV −1 = V ΛV −1 V eΛ tV −1 = AX(t).

By uniqueness: X(t) = eAt.



The case λ I +N, N nilpotent

Let N ∈ Cn×n be nilpotent of index ν, i.e. Nν−1 6= 0 = Nν. Then for any λ ∈ C,

e(λ I+N) t = eλ t
(

I +N t+N2t
2

2
+N3 t

3

3!
+ . . .+Nν−1 tν−1

(ν − 1)!
.

)

(∗)

Proof. Let X(t) denote the right hand side of (∗). Verify that X(0) = I, Ẋ = AX.

Corollary. For a Jordan block,

J =








λ 1
λ 1

.. . . . .
1
λ








⇒ eJt = eλ t











1 t t2

2
. . . tℓ−1

(ℓ−1)!

1 t
. . .

. . . . . . t2

2
1 t

1











.



The case of a 2×2 matrix

For A ∈ C2×2 with distinct eigenvalues λ1, λ2 ∈ C,

eAt = eλ1 t
A− λ2 I

λ1 − λ2
+ eλ2 t

A− λ1 I

λ2 − λ1
=

λ2 eλ1 t − λ1 eλ2 t

λ2 − λ1
I +

eλ1 t − eλ1 t

λ2 − λ1
A.

Proof. Diagonalization or use methods explained later on.

For A ∈ C2×2 with only one eigenvalue λ,

eAt = eλ t (I + (A− λ I) t) .

Proof. A− λ I is nilpotent.

Real 2× 2 Example. Let α, ω ∈ R.

A =

[

α −ω
ω α

]

⇒ eAt = eα t
[
cos(ω t) − sin(ω t)

sin(ω t) cos(ω t)

]

︸ ︷︷ ︸

=:X(t)

.

.

Proof. Verify, that X(0) = I, Ẋ(t) = AX(t).



The general real 2× 2 case. Let

A =

[

a b
c d

]

∈ R
2×2.

The eigenvalues of A are the zeros of its characteristic polynomial

χ(λ) = λ2 − a+ b

2
λ+ (ad− bc),

i.e.

λ± =
(a+ b)±

√
disc

2
, disc := (a− d)2 +4bc.

Define ω = 1
2

√

|disc|. Then

if disc > 0 (real simple eigenvalues)

eAt = e
(a+d)t

2

[

cosh(ω t) + a−d
2

sinh(ω t)
ω

b sinh(ω t)
ω

c sinh(ω t)
ω

cosh(ω t)− a−d
2

sinh(ω t)
ω

]

,

if disc < 0 (nonreal simple eigenvalues)

eAt = e
(a+d)t

2

[

cos(ω t) + a−d
2

sin(ω t)
ω

b sin(ω t)
ω

c sin(ω t)
ω

cos(ω t)− a−d
2

sin(ω t)
ω

]

,

if disc = 0 (equal eigenvalues)

eAt = e
(a+d)t

2

[

1+ (a−d)t
2

b t

c t 1− (a−d)t
2

]

.



Phase portrait of ẋ = Ax, where A ∈ R2×2



Phase portrait of ẋ = Ax, where A ∈ R2×2



Phase portrait of ẋ = Ax, where A ∈ R2×2



Phase portrait of ẋ = Ax, where A ∈ R2×2



The scalar Riccati differential equation.

Suppose
[

ẋ
ẏ

]

=

[

a b
c d

] [

x
y

]

(a, b, c, d may be time dependent)

Set

s(t) :=
y(t)

x(t)
(slope of the vector).

Then

ṡ =
ẏ x− y ẋ

x2

=
(cx+ dy) x− y (ax+ by)

x2

= c+ (d− a)
y

x
− b

y2

x2

= c+ (d− a) s− b s2.

This is a quadratic ODE for s, called Riccati ODE.

Note that the solution may have finite escape time (x(t) may become 0 for some t).

The solution of the Riccati ODE can be found via the associated linear ODE.



The scalar time variant case

The solutions of the scalar homogeneous ODE

ẋ(t) = a(t)x(t)

satisfy

x(t) = x(t0) e
A(t), where A(t) =

∫ t

t0

a(s) ds.

Proof. Direct verification, since Ȧ(t) = a(t).

(Simplified) Gronwall inequality: Suppose

ẋ(t) ≤ a(t)x(t)

Then for t ≥ t0,

x(t) ≤ x(t0) e
A(t).

Proof. We have

d

dt

(

x(t) e−A(t)
)

= ẋ(t)e−A(t) − x(t) a(t) e−A(t) ≤ 0.

Thus

x(t) e−A(t) ≤ x(t0) e
−A(t0) = x(t0).



Digression: invariant subspaces

Let A : V → V be a linear operator on the vector space V.
A subspace U is said to be A-invariant if

AU ⊂ U .

Examples. kernel and image of A are A-invariant:

KerA := { v | Av = 0 }. AKerA ⊂ KerA

ImA := { Av | v ∈ V }. A ImA ⊂ ImA.

Suppose U = [u1, . . . ur] is a basis of the invariant subspace U. Then

Auk =

r∑

j=1

ℓjk uj =

r∑

j=1

uj ℓjk k = 1, . . . r,

where ℓjk are elements of the underlying field. Let L = [ℓjk]. Then, in matrix notation,

AU = UL.

L is said to be the representation of A with respect to the basis U .



Invariant subspaces and linear ODE

Suppose

AU = UL where A,U,L are complex matrices.

Then for any k = 1,2, . . . ,

Ak U = U Lk.

Summation yields

eAtU = U eLt.

Suppose x0 ∈ ImU , i.e. x0 = Uξ for some ξ. Then

eAtx0 = eAtUξ = U eLtξ ∈ ImU

Thus:
if the solution to the homgeneous linear ODE ẋ = Ax starts in an A-invariant subspace,

then it stays in that subspace for all time.

Note: The 1-dimensional invariant subspaces of A are its eigenspaces.



Linear operators

and

polynomials



Linear operators and polynomials

In the sequel K[x] denotes the set of polynomials

p(x) = pn x
n + pn−1 x

n−1 + . . .+ p1 x+ p0

with coefficients in the field K. V is a vector space over K, and L(V,V) is the set of
linear operators A : V → V. If V is finite dimensional A is identified with its matrix with
respect to the standard basis. Definition:

p(A) = pnA
n + pn−1A

n−1 + . . .+ p1A+ p0 I

Then

(1) 1(A) = I, x(A) = A,

(2) (p± q)(A) = p(A)± q(A), (pq)(A) = p(A)q(A) = q(A)p(A),

(3) if AB = BA then for any p ∈ K[X], Ker p(A) and Im p(A) are B-invariant.

Proof of (3).

0 = p(A)v ⇒ 0 = Bp(A)v = p(A)Bv. y = p(A)v ⇒ By = Bp(A)v = p(A)Bv.



Linear operators and polynomials

Definition: A nonempty subset I ⊂ K[x] is called an Ideal if

(1) p, q ∈ I ⇒ p± q ∈ I, (2) p ∈ I ⇒ αp ∈ I for all α ∈ K[x].

Basic facts:

(a) Let I be an ideal. Let p ∈ I be a polynomial of minimum degree. Then

I = K[x] p = {αp | α ∈ K[x] }.

(b) Let I =
{∑r

k=1 αk pk
∣
∣ αk ∈ K[x]

}
be the ideal generated by p1, . . . , pr ∈ K[x].

Let d ∈ K[x] be a greatest common divisor of the polynomials pk. Then

I = K[x] d

In particular, there are polynomials αk such that

d =

r∑

k=1

αk pk. (Bezout identity) (∗)

Proof. (a) A polynomial p ∈ I of mininum degree in I divides any other polynomial
q ∈ I since otherwise we could write q = αp + r with degree(r) <degree(p), r 6= 0.
⇒ r = q − αp ∈ I. Contradiction.
(b) By (a) a polynomial d ∈ I of minimum degree divides any polynomial in I. In
particular, it is a common divisor of the pk. From (∗) it follows that any common divisor
of the pk divides d.

Remark: The factors αk in (∗) can be computed by the Euclidean algorithm.



Linear operators and polynomials

Kernel intersection Lemma: Let d be the greatest common divisor of p, q ∈ K[x].

Then for A ∈ L(V,V),
Ker d(A) = Ker p(A) ∩ Ker q(A).

Proof. There exist α, β ∈ K[x] such that d = αp+ β q (Bezout-identity) . Thus

d(A) = α(A) p(A) + β(A) q(A).

Thus, p(A)v = q(A)v = 0 implies d(A)v = 0, whence Ker p(A) ∩ Ker q(A) ⊂ Ker d(A).

On the other hand let γ d = p. Then γ(A) d(A) = p(A). So d(A)v = 0 implies p(A)v = 0,

whence Ker d(A) ⊂ Ker p(A).



Linear operators and polynomials

Kernel decomposition theorem.

Let p =
∏r
k=1 pk, where p1, . . . pr ∈ K[x] are pairwise coprime. Then for A ∈ L(V,V),

(1) there exist πk ∈ K[x] such that v ∈ Ker pj(A) implies πk(A)v =

{
v if j = k

0 otherwise.
,

(2) Ker p(A) =
⊕r

k=1Ker pk(A).

Proof: The polynomials ℓk =
∏r
j=1,j 6=k pj, k = 1, . . . , r have no common factor.

Thus, there exist fk ∈ K[x] such that

1 =

r∑

k=1

=:πk
︷ ︸︸ ︷

αk

r∏

j=1,j 6=k
pj .

It follows that for all v ∈ V,

v = I v =
∑

k

πk(A)v. (∗)

(1) Each πk, j 6= k, contains the factor pj. Thus v ∈ Ker pj(A) implies πk(A)v = 0 for
j 6= k, and then by (∗), v = πj(A)v.

(2) We have pk(A)πk(A) = αk(A) p(A) Thus v ∈ Ker p(A) implies πk(A)v ∈ Ker pk(A).

Thus, Ker p(A) is the sum of the subspaces Ker pj(A). The sum is direct: applying πk(A)
on the relation

0 =
∑

j

vj, vj ∈ Ker pj(A)

yields vk = 0.



Linear operators and polynomials

Kernel decomposition theorem.

Let A ∈ L(V,V), where V is vector space over an arbitrary field K.

Let p =
∏r
k=1 pk, where p1, . . . pr ∈ K[x] are pairwise coprime.

(1) Then there exist αk ∈ K[x] such that

1 =

r∑

k=1

=:πk
︷ ︸︸ ︷

αk

r∏

j=1,j 6=k
pj . (∗)

(2) The operators πk(A) satisfy:

(a) I =

r∑

k=1

πk(A), (b) v ∈ Ker pk(A) implies πi(A)v =

{
v if i = k

0 otherwise.
.

(3) Ker p(A) =

r⊕

k=1

Ker pk(A).

Proof: The polynomials ℓk =
∏r
j=1,j 6=k pj, k = 1, . . . , r have no common factor. ⇒ (1).

(2a) is immediate from (1). (2b). Each πi, i 6= k, contains the factor pk.

Thus v ∈ Ker pk(A) implies πi(A)v = 0 for i 6= k, and then by (2a), v = πk(A)v.

(3) We have pk(A)πk(A) = αk(A) p(A). Thus, v ∈ Ker p(A) implies πk(A)v ∈ Ker pk(A).

Thus, Ker p(A) is the sum of the subspaces Ker pj(A). The sum is direct:

applying πk(A) on the relation 0 =
∑

i vi with vi ∈ Ker pi(A) yields vk = 0.



Linear operators and polynomials

Remarks on the polynomial identity

1 =

r∑

k=1

αk

=:ℓk
︷ ︸︸ ︷

r∏

j=1,j 6=k
pj .

(1) This identity is equivalent to the incomplete partial fraction expansion

1
∏r
k=1 pk

=

r∑

k=1

αk

pk
.

(2) If pk(x) = (x− λk)
mk, k = 1, . . . , r with distinct λk ∈ C,

then ℓk(x) =
∏r
j=1,j 6=k(x− λj)mj−1, and

αk(x) =

mk−1∑

j=0

1

j!

(
dj

dxj
1

ℓk(x)

∣
∣
∣
∣
x=λk

)

(x− λk)
j. (Taylor expansion of 1/ℓk(x))

in particular deg(ℓk) ≤ mk − 1, and

αk(x) ≡ const = 1

/
r∏

j=1,j 6=k
(λk − λj)

mj−1 if mk = 1.

Proof. see Wikipedia (Partial Fraction Expansion)



Digression: scalar ODE of higher order with constant coefficients

Application of kernel decomposition theorem:

Solutions of homogeneous linear ODE of higher order with constant coefficients

Let p(x) = xn +
∑n−1

j=0 aj x
j =

∏r
k=1(x− λk)

mk, where the λk ∈ C are distinct.

All solutions of the scalar ODE

0 = p

(
d

dt

)

y(t) = y(n)(t) + pn−1 y
(n−1)(t) + . . .+ p1 ẏ(t) + p0 y(t).

are given by

y(t) =

r∑

k=1

qk(t) e
λk t, qk polynomial of degree≤ mk − 1. (∗)

Proof. By the kernel decomposition theorem, Ker p
(
d
dt

)
=

⊕r
k=1Ker

(
d
dt
− λk

)mk

.

Any differentiable function yk can be written in the form yk(t) = qk(t) e
λk t. We have

(
d

dt
− λk

)

yk(t) = q̇k(t)e
λk t, ⇒

(
d

dt
− λk

)mk

yk(t) = q(mk)
k (t)eλk t.

Thus,

yk ∈ Ker

(
d

dt
− λk

)mk

⇔ q(mk)
k ≡ 0 ⇔ qk is polynomial of degree≤ mk − 1.

Terminology: functions of the form (∗) are called Bohl functions.



Digression: scalar ODE of higher order with constant coefficients

Suplement:

solution formula for inhomogeneous initial value problem of higher order

Let φ0, . . . , φn−1 : R → C be the solutions of the homogeneous initial value problem

φ(n)
k (t) + pn−1 φ

(n−1)
k (t) + . . .+ p1 φ̇k(t) + p0 φk(t) = 0, φ(j)

k (0) = δjk, j = 0, . . . , n− 1

(Bohl functions). Then

y : R → C, y(t) =

n−1∑

k=0

φk(t− t0) yk +

∫ t

t0

φn−1(t− s) f(s) ds

is the unique solution of the initial value problem

y(n)(t) + pn−1 y
(n−1)(t) + . . .+ p1 ẏ(t) + p0 y(t) = f(t), y(k)(t0) = yk.

Question: Is there a nice way for computing the functions φk ?

Answer: Yes. Method will be shown after some remarks on the next slides.



Digression: scalar ODE of higher order with constant coefficients

Example to the solution formula

Consider the ODE of second order (harmonic oscillator):

ÿ(t) + ω2 y(t) = f(t), ω > 0. (∗)
The functions

φ0(t) = cos(ω t), φ1(t) = ω−1 sin(ω t)

solve the homogeneous ODE

φ̈(t) + ω2 φ(t) = 0

with initial conditions φ(j)
k = δjk. Thus, the solutions of (∗) are

y(t) = y(t0) cos(ω (t− t0)) + ẏ(t0) ω
−1 sin(ω (t− t0)) +

∫ t

t0

ω−1 sin(ω (t− s)) f(s) ds.



Digression: scalar ODE of higher order with constant coefficients

Remark on the integral part of the solution formula

For a cont. function g(t, s) which is continuosly differentiable in t the following holds:

d

dt

∫ t

t0

g(t, s) ds = g(t, t) +

∫ t

t0

d

dt
g(t, s) ds.

Thus,

d

dt

∫ t

t0

φn−1(t− s) f(s) ds =

=0
︷ ︸︸ ︷

φn−1(t− t) f(t) +

∫ t

t0

φ̇n−1(t− s) f(s) ds

d2

dt2

∫ t

t0

φn−1(t− s) f(s) ds =
d

dt

∫ t

t0

φ̇n−1(t− s) f(s) ds

= φ̇n−1(t− t)
︸ ︷︷ ︸

=0

f(t) +

∫ t

t0

φ̈n−1(t− s) f(s) ds

...
dn

dtn

∫ t

t0

φn−1(t− s) f(s) ds =
d

dt

∫ t

t0

φ(n−1)
n−1 (t− s) f(s) ds

= φ(n−1)
n−1 (t− t)

︸ ︷︷ ︸
=1

f(t) +

∫ t

t0

φ(n)
n−1(t− s) f(s) ds

Summing up:

n∑

k=0

pk
dk

dtk

∫ t

t0

φn−1(t− s) f(s) ds = f(t) +

∫ t

t0

n∑

k=1

pk φ
(k)
n−1(t− s)

︸ ︷︷ ︸
=0

f(s) ds



Digression: scalar ODE of higher order with constant coefficients

The basis solutions φk can be computed in the following way.

Step 1. Perform partial fraction expansion

1

p(x)
=

1
∏r
k=1(x− λk)mk

=

r∑

k=1

mk∑

j=1

αkj

(x− λk)j
.

Set

φn−1(t) :=

r∑

k=1

eλk t
mk∑

j=1

αkj
tj−1

(j − 1)!
.

Step 2. Set

φn−2 := pn−1 φn−1 + φ̇n−1,

φn−3 := pn−2 φn−1 + φ̇n−2,
...

φ0 := p1 φn−1 + φ̇1.

Then p( d
dt
)φk = 0 and φ(j)

k (0) = δjk.

Proof. The function φn−1 defined in Step 1 solves the ODE by the kernel decomposition

theorem. The conditions φ(j)
n−1(0) = δj,n−1 can be verified by direct computation or by

Laplace transformation. Obviously, the functions of Step 2 solve the ODE. The initial
condition properties follow by differentiating p( d

dt
)φn−1 = 0 and setting t = 0.



Digression: scalar ODE of higher order with constant coefficients

Example to the solution formula method for ODE of higher order

Let

p(x) = x3 + p2 x
2 + p1 x+ p0 = (x− λ1)(x− λ2)(x− λ3), λk ∈ C distinct.

Partial fraction expansion yields

1

p(x)
=

a1

x− λ1
+

a2

x− λ2
+

a3

x− λ3
,

where

1/a1 = (λ1 − λ2)(λ1 − λ3), 1/a2 = (λ2 − λ1)(λ2 − λ3), 1/a3 = (λ3 − λ1)(λ3 − λ2).

Thus, the general solution of

y(3) + p2 ÿ+ p1 ẏ+ p0 y = f

is

y(t) = φ0(t− t0) y(t0) + φ1(t− t0) ẏ(t0) + φ2(t− t0) ÿ(t0) +

∫ t

t0

φ2(t− s) f(s) ds,

where

φ2(t) = a1 e
λ1 t + a2, e

λ2 t + a3 e
λ3 t

=
eλ1 t

(λ1 − λ2)(λ1 − λ3)
+

eλ2 t

(λ2 − λ1)(λ2 − λ3)
+

eλ3 t

(λ3 − λ1)(λ3 − λ2)
,

φ1(t) = p2 φ2(t) + φ̇2(t),

φ0(t) = p1 φ2(t) + φ̇1(t).



Matrix exponential and ODE of higher order

Proposition. Suppose A ∈ CN×N satisfies the polynomial identity

0 = p(A) = An + pn−1A
n−1 + . . .+ p1A+ p0 I. (We may have N 6= n)

Then

eAt =

n−1∑

k=0

φk(t)A
k,

where the scalar functions φk : R → C satisfy

p

(
d

dt

)

φk = 0, φ(j)
k (0) = δjk, j, k = 0, . . . , n− 1.

Proof. We have
(
d
dt

)k
eAt = Ak eAt. Thus, p

(
d
dt

)
eAt = p(A) eAt = 0.

Thus (by our result on ODE of higher order):

eAt =

n−1∑

k=0

φk(t)Yk with the matrices Yk =

(
d

dt

)k

eAt

∣
∣
∣
∣
∣
t=0

= Ak.

Corollary (Solution formula without matrix exponential).

ẋ(t) = Ax(t) ⇒ x(t) =
∑n−1

k=0 φk(t− t0)Akx(t0) and p
(
d
dt

)
x(t) = 0.



Matrix exponential with respect to polynomial basis I

The theorem below generalizes the statement from the slide before.

Representation theorem. Suppose A ∈ CN×N satisfies the polynomial identity

0 = p(A) = An + pn−1A
n−1 + . . .+ p1A+ p0 I. (We may have N 6= n)

Let β0(x), β1(x), . . . , βn−1(x) be a basis of the set of polynomials of degree ≤ n− 1.

Let ak, ck,mik ∈ C be coefficients such that (polynomial division)

xβk(x) = ak p(x) +

n−1∑

i=0

mik βi(x), k = 0, . . . , n− 1,

and
∑n−1

k=0 ck βk(x) = 1. Then,

eAt =

n−1∑

k=0

ψk(t) βk(A), (∗)

where the scalar functions ψk solve the initial value problem

d

dt







ψ0(t)
ψ1(t)

...
ψn−1(t)






=







m00 . . . m0,n−1
... ...
... ...

mn−1,0 . . . mn−1,n−1







︸ ︷︷ ︸
=:Mβ







ψ0(t)
ψ1(t)

...
ψn−1(t)






,







ψ0(0)
ψ1(0)

...
ψn−1(0)






=







c0
c1
...

cn−1






.

Proof. Show that the right hand side of (∗) solves the same initial value problem as eA t.



Matrix exponential with respect to polynomial basis II

Special cases of the representation theorem.

(1) For βk(x) = xk, k = 0, . . . , n− 1, we have

xβk(x) = βk+1(x), k = 0, . . . , n− 2, x βn−1(x) = xn = p(x)−
∑i−1

i=0 pi βi(x).

Thus,

Mβ =







0 −p0
1 −p1

. . . ...
1 −pn−1






. (companion matrix)

In this case the functions ψk equal the function φk from our considerations
of ODE of higher order.

(2) Let λ1, . . . , λn be the zeros of p counting multiplicities. For the (Newton)basis

β0(x) = 1, β1(x) = x− λ1, β2 = (x− λ1)(x− λ2), . . . , βn−1(x) =

n−1∏

j=1

(x− λj)

we have 1 = β0(x) = β0(x) +
∑

k≥1 0 βk(x) ⇒ ψ0(0) = 1, ψk(0) = 0 for k ≥ 1, and

xβk(x) = βk+1(x) + λk βk(x), k = 0, . . . , n− 2, x βn−1(x) = p(x) + λn βn−1(x).

In this case

Mβ =







λ1
1 λ2

. . . . . .
1 λn







⇒
{
ψ̇0 = λ1 ψ0

ψ̇k = λk+1 ψk + ψk−1, k ≥ 1
(Putzer algorithm)



Matrix exponential with respect to polynomial basis III

Example to the Putzer algorithm.

Suppose A ∈ Cn×n has minimal polynomial

µA(x) = (x− λ1)(x− λ2)
2, λ1 6= λ2.

The associated Newton Basis is

β0(x) = 1, β1(x) = (x− λ1), β2(x) = (x− λ1)(x− λ2).

Thus,

eAt = ψ0(t) I + ψ1(t) (A− λ1 I) + ψ2(t) (A− λ1 I)(A− λ2 I),

where

ψ0(0) = 1, ψ̇0 = λ1 ψ0, ⇒ ψ0(t) = eλ1 t,

ψ1(0) = 0, ψ̇1 = λ2 ψ1 + ψ0, ⇒ ψ1(t) =
eλ1 t − eλ2 t

λ1 − λ2
,

ψ2(0) = 0, ψ̇2 = λ2 ψ2 + ψ1, ⇒ ψ2(t) =
eλ1 t − eλ2 t

(λ1 − λ2)2
− eλ2 t

λ1 − λ2
t.



Linear operators and polynomials

Polynomial identities, minimal polynomial, characteristic polynomial

Suppose the linear operator A ∈ L(V,V) satisfies a polynomial identity:

p(A) = 0.

Then the Ideal IA := { q ∈ K[x] | q(A) = 0 } contains a unique monic polynomial µA

of minimum degree (the minimal polynomial). Thus q(A) = 0 iff µA|q. Let

µA =

r∏

k=1

fmk

k , fk irreducible over K.

By the kernel decomposition theorem:

(1) V = Ker µA(A) =
⊕r

k=1Ker fmk

k (A),

(2) there are πk ∈ K[x] such that πk(A) : V → Ker fmk

k (A) are the associated projectors.

Furthermore, by the kernel intersection lemma and its proof (homework):

(3) m ≥ mk ⇒ Ker fmk (A) = Ker fmk

k (A).

(4) q(A) is invertible and there is a polynomial φ with q(A) = φ(A)−1 iff fk 6 |q for any k.

Cayley-Hamilton theorem: Let χA(x) := det(x I −A) be the characteristic

polynomial of A ∈ Kn×n. Then χA(A) = 0. Thus, µA|χA.



Digression: Proof of the Cayley-Hamilton Theorem

Let A = [aik] = [a1, . . . , an] ∈ Kn×n. Let ej ∈ Kn be the jth canonical basis vector. Then
∑

j

det(a1, . . . , ai−1, ej, ai+1, . . . , an)
︸ ︷︷ ︸

=:a♯ij

ajk = det(a1, . . . , ai−1,
∑

j

ej ajk, ai+1, . . . , an)

= det(a1, . . . , ai−1, ak, ai+1, . . . , an)

= det(A) δik.

In matrix notation: A♯A = det(A) I, where A♯ = [a♯ij] (matrix of cofactors).

Replacing A by x I −A with x ∈ K, we have

(x I −A)♯ (x I −A) = det(x I −A) I =
(∑

pj x
j
)

I. (∗)

The entries of (x I −A)♯ are polynomials of degree n− 1. Thus, (x I −A)♯ =
∑n−1

j=1Bj x
j.

Equating coefficients of xj in (∗) we obtain

−B0A = p0 I, Bj−1 −Bj A = pj I for j = 1, . . . , n− 1, Bn−1 = pn I.

Multiplying the jth equation with Aj gives

−B0A = p0 I, Bj−1A
j−Bj A

j+1 = pj A
j for j = 1, . . . , n−1, Bn−1A

n = pnA
n, .

Summing up these equations we obtain

0 = −B0A+ (B0A−B1A
2) + . . .+ (Bn−2A

n−1 −Bn−1A
n) + Bn−1A

n =
∑

pj A
j.



2 Methods to compute the spectral projectors πk(A). Let

µA =

r∏

k=1

fmk

k , fk irreducible over K, ℓk =
µA

fmk

k

=

r∏

j=1,j 6=k
f
mj

j , k = 1,2, . . . , r.

Method 1 (already discussed). Incomplete partial fraction expansion:

1

µA
=

r∑

k=1

αk

ℓk
⇒ πk(A) = αk(A) ℓk(A).

Method 2. Let σ(x) =
∑r

k=1 ℓk(x). Then σ(A)−1 exists and is a polynomial of A. We have

πk(A) = σ(A)−1 ℓk(A) (∗)

Proof. The sum σ is not divisible by any fj since fj|ℓk for j 6= k and fj 6 |ℓj.
Hence µA and σ have no common factor, and there exist polynomials α, β with

ασ+ β µA = 1 ⇒ α(A)σ(A) = I ⇒ α(A) = σ(A)−1.

The matrices πk(A) of (∗) satisfy
∑
πk(A) = I, πk(A)πj(A) = δjk I, f

mk

k (A)πk(A) = 0.

This yields a second proof of the kernel decomposition theorem.



Linear operators and polynomials

The spectral decomposition theorem

Let A ∈ L(V,V), where V is a vector space over C. Suppose

p(A) = 0, where p(X) =

r∏

k=1

(x− λk)
mk, λk distinct.

Let Pk := πk(A) : V → Ker (A− λk I)
mk, k = 1, . . . , r be the projectors for the decomp.

V =

r⊕

k=1

Ker (A− λk I)
mk.

Furthermore, let Nk := (A− λk I)Pk. Then

A =
∑r

k=1(λk Pk +Nk), and Nmk

k = 0.

i.e. Nk is nilpotent. All these operators commute with each other:
PjPk = PkPj = δjkPk, NjPk = PkNj = δjkNj, NjNk = NkNj.

Proof. From I =
∑r

k=1 πk(A) =
∑r

k=1Pk it follows that

A =

r∑

k=1

APk =

r∑

k=1

λk Pk + (A− λk I)Pk
︸ ︷︷ ︸

Nk

.

All operators commute because they are polynomials of A. We have
Nmk

k = (A− λk I)
mkPmk

k = (A− λk I)
mkPk = 0, since Pk is a projector onto Ker (A− λk I)

mk.



The spectral decomposition and the matrix exponential

Let A ∈ Cn×n have the spectral decomposition

A =

r∑

k=1

(λk Pk +Nk), Nmk−1
k 6= 0, Nmk

k = 0

Then

eAt =

r∑

k=1

eλk t
(

Pk +Nk t+
(Nk t)

2

2
+

(Nk t)
3

3!
+ . . .+

(Nk t)
mk−1

(mk − 1)!

)

(∗)

Proof. Let Y denote the right hand side of (∗). Using the relations

PjPk = PkPj = δjkPk, NjPk = PkNj = δjkNj, NjNk = NkNj

it is easily verified that Ẏ = AY . Furthermore, Y (0) = I.

Corollary. All components of eAt are Bohl functions.



Spectral decomposition and block diagonalization

Let V = [V1, V2, . . . , Vr] where Vk is a matrix whose columns form a basis

of Ker (A− λk I)
mk. Then there are nilpotent matrices N̂k such that

AVk = Vk (λk I + N̂k).

Thus,

A = V







λ1 I + N̂1

λ2 I + N̂2
. . .

λr I + N̂r






V −1

=

r∑

k=1

Vk (λk I + N̂k)W
⊤
k =

r∑

k=1

λk VkW
⊤
k︸ ︷︷ ︸

Pk

+ Vk N̂kW
⊤
k︸ ︷︷ ︸

Nk

, where







W⊤
1

W⊤
2
...

W⊤
r






= V −1.

Furthermore,

eAt = V







e(λ1 I+N̂1) t

e(λ2 I+N̂2) t

. . .

e(λr I+N̂r) t






V −1, e(λk I+N̂k) t = eλk t

mk−1∑

j=0

tj

j!
N̂ j
k .



The spectral decomposition and the resolvent (x I − A)−1

Let A ∈ Cn×n have the spectral decomposition

A =

r∑

k=1

(λk Pk +Nk), Nmk−1
k 6= 0, Nmk

k = 0.

Then, as already mentioned,

eAt =

r∑

k=1

eλk t
(

Pk +Nk t+
(Nk t)

2

2
+

(Nk t)
3

3!
+ . . .+

(Nk t)
mk−1

(mk − 1)!

)

.

Using the properties of the spectral factors it can be shown that for any x ∈ C,

(x I − A)−1 =

r∑

k=1

(
Pk

x− λk
+

Nk

(x− λk)2
+

N2
k

(x− λk)3
+ . . .+

Nmk−1
k

(x− λk)mk

)

,

(this is a partial fraction expansion).

Note, that (x I − A)−1 is the Laplace transformation of eAt,

L{eAt}(x) =

∫ ∞

t=0

e−x t eAt dt = (x I −A)−1, ℜ(x) > max
k

ℜ(λk).



The spectral decomposition and matrix functions

From the spectral decomposition

A =

r∑

k=1

(λk Pk +Nk), Nmk−1
k 6= 0, Nmk

k = 0.

it follows that for any polynomial p,

p(A) =

r∑

k=1

(

p(λk)Pk +Nk p
′(λk) +

N2
k p

′′(λk)

2
+
N3
k p

(3)(λk)

3!
+ . . .+

Nmk−1
k p(mk−1)(λk)

(mk − 1)!

)

.

Taking limits, it follows that for any analytic function defined on

neighborhood of the spectrum of A,

f(A) =

r∑

k=1

(

f(λk)Pk +Nk f
′(λk) +

N2
k f

′′(λk)

2
+
N3
k f

(3)(λk)

3!
+ . . .+

Nmk−1
k f (mk−1)(λk)

(mk − 1)!

)

.



The spectral decomposition theorem and stability

Definition: A ∈ Cn×n is said to be (Hurwitz) stable if limt→∞ eAt = 0.

From

eAt =

r∑

k=1

eλk t
(

Pk +Nk t+
(Nk t)

2

2
+

(Nk t)
3

3!
+ . . .+

(Nk t)
mk−1

(mk − 1)!

)

it follows that A is stable iff all of its eigenvalues have negative real part.

Reason: for any polynomial p and λ ∈ C,

lim
t→∞

|eλ tp(t)| = lim
t→∞

eℜ(λ) t |p(t)| =







∞ ℜ(λ) > 0 or (ℜ(λ) = 0 and degree(p) > 0),

|p| ℜ(λ) = 0 and degree(p) ≤ 0,

0 ℜ(λ) < 0.

.

Corollary. If β > max{ℜ(λk) | k = 1, . . . , r } (spectral abscissa) then

to any norm ‖ · ‖ there is a constant M ≥ 1 such that

‖eAt‖ ≤M eβ t for t ≥ 0. ( (M,β)-stability)

Proof. A− β I is stable. Thus ‖e(A−β I)t‖ ≤M for some M and all t ≥ 0.



Examples: transient behaviour of stable matrices

The picture below shows the function t 7→ ‖eAt‖2 for the stable matrix

A =

[

−0.6 c
0 −1

]

.

and several values of c ∈ R.
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Examples: transient behaviour of stable matrices

The picture below shows the function t 7→ ‖eAt‖2 for the stable matrix

A =












−1 −100 0 −150 0 200 −1000
1 −1 1 −10 25 11 −200
0 0 −1 400 −30 0 250
0 0 −1 −1 5 5 200
0 0 0 0 −1 −2 30
0 0 0 0 0 −1 −625
0 0 0 0 0 1 −1












.

The eigenvalues of A are −1,−1± 10i,−1± 20i,−1± 25i.
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Growth bounds for ‖eAt‖ (More growth bounds on the next slide collection).

Let ‖ · ‖ be a submultiplicative norm with ‖I‖ = 1. Especially,

‖A‖1 =
n

max
k=1

n∑

i=1

|aik|, ‖A‖2 =
√

λmax(A
∗A), ‖A‖∞ =

n
max
i=1

n∑

k=1

|aik|.

Then we have for t ≥ 0:

(1) ‖eA t‖ ≤ e‖A‖ t.

(2) β̂ := min{ β > 0 | ‖eA t‖ ≤ eβ t, t ≥ 0 } ⇒ β̂ = lim
tց0

‖I +A t‖ − 1

t
.

(3) β̂1 = maxk

(

ℜ(akk) +
∑

i 6=k |aik|
)

, β̂2 = λmax

(
A+A∗

2

)
, β̂∞ = maxi

(

ℜ(aii) +
∑

k 6=i |aik|
)

(4) Suppose A = V diag(λ1, . . . , λn)V −1. Let α = max{ℜ(λ1), . . . ,ℜ(λn)}. Then

‖eA t‖ ≤ ‖V ‖ ‖V −1‖ eα t

(‖V ‖ ‖V −1‖ = condition number of V , α = spectral abscissa).

Proof. (1) and (4) are trivial. For (2) and (3) see

Hinrichsen, Pritchard: Mathematical Systems Theory 1.



Stability and bounded inputs

Let A ∈ Cn×n be stable such that

‖eA t‖ ≤M eβ t β < 0,

where ‖ · ‖ satisfies ‖Xv‖ ≤ ‖X‖ ‖v‖ for matrices X and vectors v. Then the solution of

ẋ = Ax, x(0) = 0

satisfies

‖x(t)‖ =

∥
∥
∥
∥

∫ t

0

eA (t−s) f(s) ds

∥
∥
∥
∥

≤







M
|β| sups∈[0,t] ‖f(s)‖,

M
(

1
q |β|

)1/q (∫ t

0
‖f(s)‖p ds

)1/p
, p, q ≥ 1, p−1 + q−1 = 1.

Proof. We have for q ≥ 1,

∫ t

0

‖eA(t−s)‖q ds =
∫ t

0

‖eAs‖q ds ≤M q

∫ t

0

e−q |β| s ds =M q 1− e−q |β| t

q |β| ≤ M q

q |β|.

Now, using Hölder inequality,

∥
∥
∥
∥

∫ t

0

eA (t−s) f(s) ds

∥
∥
∥
∥
≤

∫ t

0

‖eA (t−s)‖ ‖f(s)‖ ds ≤
(∫ t

0

‖eA (t−s)‖q ds
)1/q (∫ t

0

‖f(s)‖p ds
)1/p

.



Stability and periodic inputs

Let A ∈ Cn×n be stable, and let f : [0,∞) → Cn be T -periodic,

i.e. f(t+ T) = f(t) for some T > 0.

Then any solution of ẋ = Ax+ f converges for t→ ∞ to the T -periodic function

x̂(t) =

∫ ∞

0

eAsf(t− s) ds

In particular, for any ω ∈ R and any vector v the solutions of

ẋ = Ax+ ei ω t v .

converge to

x̂(t) = eiω t vω where vω = (i ω I − A)−1v.

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4

Proof. We have

x(t) = eA t x(0) +

∫ t

0

eA(t−s) f(s) ds = eA t x(0)
︸ ︷︷ ︸

→0

+

∫ t

0

eA t f(t− s) ds →
∫ ∞

0

eAt f(t− s) ds,

and for f(t) = eiω t v,

∫ ∞

0

eAseiω (t−s) v = ei ω t
∫ ∞

0

e(A−iω I) s v ds = ei ω t(A−iω I)−1

∫ ∞

0

(A− iω I)e(A−iω I) s
︸ ︷︷ ︸

= d

ds
e(A−iω I) s

v ds = x̂(t).



Stability and small nonlinear feedback

Theorem. Let A ∈ Cn×n be stable. Let

r =
1

maxω∈R ‖(iω I − A)−1‖2
= min

ω∈R
σmin(iω I −A) (stability radius)

Let f be differentiable and such that

‖f(t, x)‖2 < r ‖x‖2.
Then the solutions of

ẋ(t) = Ax(t) + f(t, x(t))

satisfy

lim
t→∞

x(t) = 0.

Proof. This follows from the KYP-Lemma. A more general result will be given later.



Relationship between stability radius and frequency response
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imaginary axis (frequencies ω)

spectral norm of (i ω I−A)−1

maximum amplification
=1/(stability radius)

Recall: for stable A the solutions of

ẋ = Ax+ ei ω t v .

converge to

x̂(t) = eiω t (i ω I −A)−1v.

Signal amplification: a =
‖(i ω I−A)−1v‖2

‖v‖2
, in worst case a = ‖(i ω I −A)−1‖2.

Stability radius:

r =
1

maxω∈R ‖(iω I −A)−1‖2
=

1

maximum amplification factor
.



Jordan canonical form

The Jordan chains

A finite sequence v1, v2, . . . , vℓ ∈ V \ {0} is said to be a Jordan chain

of A ∈ L(V,V) to the eigenvalue λ ∈ K if

Av1 = λ v1 ⇔ (A− λ I)v1 = 0
Av2 = λ v2 + v1 ⇔ (A− λ I)v2 = v1
...

...
Avℓ = λ vℓ + vℓ−1 ⇔ (A− λ I)vℓ = vℓ−1

For a Jordan chain we have

A [v1 v2 . . . vℓ] = [v1 v2 . . . vℓ]








λ 1
λ 1

.. . . . .
1
λ








︸ ︷︷ ︸

Jℓ(λ), Jordan block of size ℓ

and

vk = (A− λ I)ℓ−kvℓ, (A− λ I)ℓvℓ = (A− λ I)v1 = 0,

Thus

vk ∈ Ker (A− λ I)k ⊆ Ker (A− λ I)ℓ.

It is easily verified that the vectors of a Jordan chain are linearly independent

and span an A-invariant subspace.



Jordan canonical form

The Jordan canonical form theorem

Let A ∈ Cn×n with minimal polynomial µA(x) =
∏r
k=1(x− λk)

mk.

Then Cn has a basis V = [v1, v2, . . . vn] consisting of Jordan chains, i.e.

V −1AV = diag(J1, . . . ,Jr), Jk = diag(Jpk1(λk), . . . ,Jpki(λk), . . .)

The λk are the eigenvalues of A.

The sizes of the Jordan blocks are unique (up to ordering).

The maximum size of a Jordan block to the eigenvalue λk

equals the multiplicity mk of λk in µA.

Proof. omitted.



Jordan canonical form

Jordan canonical form and matrix exponential

Fact 1: Let v1, . . . , vℓ be a Jordan chain for A to the eigenvalue λ such that

Av1 = λ v1, Avk = λ vk + vk−1, k = 2, . . . , ℓ.

Then the functions

x1(t) = eλk tv1,

x2(t) = eλk t(v2 + t v1),

x3(t) = eλk t(v3 + t v2 +
t2

2
v1),

...

xℓ(t) = eλk t(vℓ + t vℓ−1 +
t2

2
vℓ−2 + . . .+

tℓ−1

(ℓ− 1)!
v1)

fulfill the homogeneous ODE

ẋj(t) = Axj(t).

Proof. direct computation.

Fact 2: All solutions of ẋ = Ax are linear combinations of the above.



Jordan canonical form

Jordan canonical form and matrix exponential

Fact 3. Exponential of Jordan block:

J =








λ 1
λ 1

.. . . . .
1
λ








⇒ eJt = eλ t











1 t t2

2
. . . tℓ−1

(ℓ−1)!

1 t
. . .

. . . . . . t2

2
1 t

1











.

Proof. The matrix on the right fulfills Ẏ = J Y , Y (0) = I.

Fact 4. For all powers k = 1,2, . . .,

A = V diag(A1, . . . , Ar)V
−1 ⇒ Ak = V diag(Ak1, . . . , A

k
r)V

−1.

By summation it follows that

A = V diag(A1, . . . , Ar)V
−1 ⇒ eAt = V diag(eA1 t, . . . , eAr t)V −1.

This in particular holds if the matrices Aj are Jordan blocks.



Jordan form and realization

Basic question of realization theory:

For a prescribed function of the form (Bohl function)

G(t) =

r∑

k=1

eλk t
mk−1∑

j=0

Gkj
tj

j!
, Gkj ∈ C

p,q

find matrices A,B,C such that the output y of the linear system

ẋ = Ax+Bu, y = Cx, x(0) = 0 (∗)
is given by

y(t) =

∫ t

0

G(t− s)u(s) ds =

∫ t

0

CeA(t−s)B u(s) ds.

This can always be achieved by a matrix A consisting of Jordan blocks

(though this might not be the optimal way).

An example is given on the following page.

Note that the Laplace transform of (∗) is

ŷ(z) = Ĝ(z) û(z), Ĝ(z) =

r∑

k=1

mk−1∑

j=0

Gkj

(z − λk)j+1

Ĝ is called the transfer function of the system (∗).



Jordan form and realization

Realization example. Suppose

G(t) = eλ1 tG1 + eλ2 t

(

G20 +G21 t+G22
t2

2

)

, Gkj ∈ C
p,q.

Let

A =







λ1 I

λ2 I I

λ2 I I

λ2 I






, B =






I
0
0
I




 , C =

[
G1 G20 G21 G22

]
.

Then

eA tB =








eλ1 t I

eλ2 t I eλ2 t t I eλ2 t t
2

2
I

eλ2 t I eλ2 t t I

eλ2 t I















I

0

0

I







=








eλ1 t I

eλ2 t t
2

2
I

eλ2 t t I

eλ2 t I








and

C eAtB =
[
G1 G20 G21 G22

]








eλ1 t I

eλ2 t t
2

2
I

eλ2 t t I

eλ2 t I








= G(t).



Perturbation of matrix exponential

For A,E ∈ Cn×n, t ∈ R,

e(A+E) t = eAt +

∫ t

0

eA(t−s)Ee(A+E) s ds = eA t +

∫ t

0

eA(t−s)EeAs ds+O(‖E‖2).

Proof. Let X(t) = e(A+E) t. Then

X(0) = I, Ẋ(t) = (A+E)X(t) = AX(t) + F (t), F (t) = E e(A+E) t.

Thus,

e(A+E) t = X(t) = eA t I +

∫ t

0

eA (t−s)F (s) ds

= eA t +

∫ t

0

eA (t−s)E e(A+E) s
︸ ︷︷ ︸

G(s)

ds.

By the same formula with t replaced with s,

G(s) = e(A+E) s = eAs +

∫ s

0

eA (s−τ)E e(A+E) τ dτ.

Thus,

e(A+E) t = eA t +

∫ t

0

eA(t−s)EeAs ds+

∫ t

0

eA (t−s)E

∫ s

0

eA (s−τ)E e(A+E) τ dτ ds.

︸ ︷︷ ︸

O(‖E‖2)



Numerical computation of the matrix exponential

Method, implemented as MATLAB function expm(A):

Pade approximation combined with scaling and squaring.

Pade approximation (rational approximation) of scalar exponential:

ex ≈ rm(x) =
pm(x)

pm(−x)
, where pm(x) =

m∑

j=0

(2m− j)! m!

(m− j)! (2m)! j!
xj (good for |x| small)

For any integer m, eAt = (eAt/m)m. Thus (scaling and squaring):

eA = (eA/2
s
)2

s
= Bs, where B1 = eA/2

s
, Bk+1 = B2

k , k = 1, . . . , s−1.

MATLAB:

eA ≈ r6(A/2
s)2

s
, ‖A/2s‖∞ ≤ 1/2.

For more sophisticated methods see book and talks (WWW) by N. Higham.



Final comments:

Literature on numerical computation of matrix exponential:

1) Cleve Moler, Charles Van Loan.
Paper: Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Year Later. SIAM review, 45, No 1, (2003)

2) N. J. Higham.
Book: Functions of Matrices: Theory and Computation. SIAM (2008)

3) N. J. Higham.
Slides: How and How Not to Compute the Exponential of a Matrix
http://www.maths.manchester.ac.uk/~higham/talks/exp10.pdf

Matrix exponential in MATLAB: expm(A)

Examples of ‖eAt‖ are from Hinrichsen, Pritchard: Mathematical Systems Theory 1

’Ansatz’ (german) in math. context: preparation, basic approach

Piers Bohl (1865 1921) was a Latvian mathematician


