MA 20205 Probability and Statistics

Hints/Solutions to Assignment No. 5

1. The range of $Y=y$ is interval $[1,4)$. For $0<y<1$, there are two inverse images; $x=\sqrt{ } y$ and $x=-\sqrt{ } y$. So for $0<y \leq 1$,

$$
f_{Y}(y)=\frac{2(\sqrt{y}+1)}{9} \frac{1}{2 \sqrt{y}}+\frac{2(-\sqrt{y}+1)}{9} \frac{1}{2 \sqrt{y}}=\frac{2}{9 \sqrt{y}} .
$$

For $1<y<4$, there is only one inverse image $x=\sqrt{ } y$ So for $1<y<4$,

$$
f_{Y}(y)=\frac{2(\sqrt{y}+1)}{9} \frac{1}{2 \sqrt{y}}=\frac{1}{9}\left(1+\frac{1}{\sqrt{y}}\right) .
$$

2. The range of $Y=y$ is interval $\left[0, \frac{9}{4}\right)$. There are two inverse images; $x=\frac{3}{2}+\sqrt{y}$ and $x=\frac{3}{2}-\sqrt{y}$. So for $0<y \leq \frac{1}{4}$, we get

$$
f_{Y}(y)=\frac{1}{2} \frac{1}{2 \sqrt{y}}+\frac{1}{2} \frac{1}{2 \sqrt{y}}=\frac{1}{2 \sqrt{y}}
$$

For $\frac{1}{4}<y<\frac{9}{4}$, we get

$$
f_{Y}(y)=\frac{1}{2} \frac{1}{2 \sqrt{y}}\left(\frac{3}{2}-\sqrt{y}\right)+\frac{1}{2} \frac{1}{2 \sqrt{y}}\left(3-\frac{3}{2}-\sqrt{y}\right)
$$

So we have

$$
f_{Y}(y)=\left\{\begin{array}{ccc}
\frac{1}{2 \sqrt{y}} & \text { if } & 0 \leq y \leq \frac{1}{4} \\
\frac{3}{4 \sqrt{y}}-\frac{1}{2} & \text { if } & \frac{1}{4}<y<\frac{9}{4} \\
0 & & \text { elsewhere }
\end{array}\right.
$$

3. The range of $Y=y$ is interval $(0,1]$. There are two inverse images; $x=\sin ^{-1} y$ and $x=\pi-\sin ^{-1} y$.
So we get

$$
f_{Y}(y)=\frac{2}{\pi^{2}}\left(\frac{\sin ^{-1} y}{\sqrt{ }\left(1-y^{2}\right)}+\frac{\pi-\sin ^{-1} y}{\sqrt{\left(1-y^{2}\right)}}\right)=\frac{2}{\pi \sqrt{ }\left(1-y^{2}\right)}, 0<y \leq 1 .
$$

4. Apply direct pmf approach.
5. Apply pdf approach.
6. Apply pdf approach.
7. The range of $Y=y$ is $(0, \infty)$. For $y>0$, there are two inverse images

$$
\begin{aligned}
x=\sqrt{\frac{2 y}{m}} \text { and } x & =-\sqrt{\frac{2 y}{m}} \text {. So we have } \\
f_{Y}(y) & =c \frac{2 y}{m} e^{-\frac{2 b y}{m}} \frac{1}{\sqrt{2 m y}}+c \frac{2 y}{m} e^{-\frac{2 b y}{m}} \frac{1}{\sqrt{2 m y}}
\end{aligned}
$$

After simplification

$$
f_{Y}(y)=\frac{2 c}{m} \cdot \sqrt{\frac{2 y}{m}} e^{-\frac{2 b y}{m}}, \quad y>0
$$

8. The range of $Y=y$ is interval $[0,3)$. For $0<y \leq 1$, there are two inverse images; $x=y$ and $x=-y$. So for $0<y \leq 1$,

$$
f_{Y}(y)=\frac{1+y}{4}+\frac{1-y}{4}=\frac{1}{2}
$$

For $1<y<3$, there is only one inverse image $x=y$
So for $1<y<3$,

$$
f_{Y}(y)=\frac{3-y}{4} .
$$

9. The range of $Y=y$ is $(-\infty, \infty)$. For $y>0, x=4 y^{2}$ and for $y<0, x=-y^{2}$. So the pdf of Y is

$$
f_{Y}(y)=\left\{\begin{array}{ll}
-\frac{2 y}{\sqrt{2 \pi}} e^{-\frac{y^{4}}{2}}, & y<0 \\
\frac{8 y}{\sqrt{2 \pi}} e^{-8 y^{4}}, & y \geq 0
\end{array} .\right.
$$

10. Apply direct pmf approach.
11. The range of $Y=y$ is $(0,1)$. For $0<y<1$, we have $x=y^{4}$.

The pdf of X is $f_{X}(x)=\left\{\begin{array}{cl}\frac{3}{2} \sqrt{x} & 0<x<1 \\ 0 & \text { otherwise }\end{array}\right.$.
So the pdf of Y is $f_{Y}(y)=\left\{\begin{array}{cc}6 y^{5} & 0<y<1 \\ 0 & \text { otherwise }\end{array}\right.$
12. Apply pdf approach.

