MA 20205 Probability and Statistics

Hints/Solutions to Assignment No. 2

1. $c=\frac{2}{3}$.

$$
F(x)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
\frac{x^{3}}{3}, & 0<x \leq 1 . \\
1-\frac{2}{3 x}, & x>1
\end{array}\right.
$$

$E(X)$ and $\operatorname{Var}(X)$ do not exist.
$\operatorname{Med}(X)=\frac{4}{3}, P(0.5<X<2)=\frac{5}{8}, P(X>3)=\frac{2}{9}$.
2. $P\left(\frac{1}{2}<X<\frac{5}{2}\right)=F\left(\frac{5}{2}-\right)-F\left(\frac{1}{2}\right)=\frac{11}{12}-\frac{1}{8}=\frac{19}{24}$.
$P(1<X<3)=F(3-)-F(1)=\frac{11}{12}-\frac{1}{2}=\frac{5}{12}$.
The random variable X is continuous in the intervals $(0,1)$ and $(1,2)$ with the uniform density $f(x)=\frac{1}{4}$, and discrete at points 1,2 and 3 with probabilities $1 / 4,1 / 6$ and $1 / 12$ respectively. So
$E(X)=\int_{0}^{1} \frac{x}{4} d x+\int_{1}^{2} \frac{x}{4} d x+1 \cdot \frac{1}{4}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{12}=\frac{4}{3}$.
$E\left(X^{2}\right)=\int_{0}^{1} \frac{x^{2}}{4} d x+\int_{1}^{2} \frac{x^{2}}{4} d x+1^{2} \cdot \frac{1}{4}+2^{2} \cdot \frac{1}{6}+3^{2} \cdot \frac{1}{12}=\frac{7}{3}$.
$V(X)=\frac{5}{9}$, Median $(X)=1$.
3. Let S denote a survival and D denote a death of a guinea pig during the trial, then the sample space for this experiment can be described by
$\Omega=\{S S, S D S, S D D, D S S, D S D, D D S S, D D S D, D D D S, D D D D\}$
and the probabilities associated with these sample points are given by $4 / 9,4 / 27$, $2 / 27,4 / 27,2 / 27,4 / 81,2 / 81,2 / 81,1 / 81$ respectively.

Let $X=$ the number of survivors, $Y=$ number of deaths.

Then the pmf of X is

$$
\begin{aligned}
& P(X=2)=P(\{S S, S D S, D S S, D D S S\})=64 / 81 \\
& P(X=1)=P(\{S D D, D S D, D D S D, D D D S\})=16 / 81, \\
& P(X=0)=P(\{D D\})=1 / 81
\end{aligned}
$$

The pmf of Y is

$$
\begin{aligned}
& P(Y=0)=P(\{S S\})=4 / 9, P(Y=1)=P(\{S D S, D S S\})=8 / 27 \\
& P(Y=2)=P(\{S D D, D S D, D D S S\})=16 / 81, \\
& P(Y=3)=P(\{D D S D, D D D S\})=4 / 81, P(Y=4)=P(\{D D D D\})=1 / 81 .
\end{aligned}
$$

4. Let $X=$ the number of second generation particles,

Let $Y=$ the number of third generation particles,
Then $X \rightarrow 1,2,3 ; Y \rightarrow 1,2, \ldots, 9$.

$$
\begin{aligned}
& P(Y=1)=1 / 9, P(Y=2)=4 / 27, P(Y=3)=16 / 81, \\
& P(Y=4)=4 / 27=P(Y=5), \\
& P(Y=6)=10 / 81, P(Y=7)=2 / 27, \\
& P(Y=8)=1 / 27, P(Y=9)=1 / 81 .
\end{aligned}
$$

5. Let X denote the scores on IQ test.

$$
P(X<52 \text { or } X>148)=P(|X-100|>48) \leq \frac{V(X)}{(48)^{2}}=\frac{1}{9} .
$$

6. The cdf is given by

$$
\begin{aligned}
& F(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{x^{2}}{4}, & 0 \leq x \leq 1 \\
\frac{2 x-1}{4}, & 1<x \leq 2 . \\
\frac{6 x-x^{2}-5}{4}, & 2<x \leq 3 \\
1, & x \geq 3
\end{array}\right. \\
& E(X)=3 / 2, \text { Median }(X)=3 / 2, \operatorname{Var}(X)=5 / 12 .
\end{aligned}
$$

7. Note that $\int_{-\infty}^{\infty} f(x) d x=1$ for all $k \in \mathfrak{R}$. To have $f(x) \geq 0 \quad \forall x \in \mathfrak{R}$, we must have $0 \leq k \leq 1$. The cdf is given by

$$
F(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{k x}{4}, & 0 \leq x \leq 1 \\
\frac{k+x^{2}-1}{4}, & 1<x \leq 2 . \\
\frac{(3 k+1)+(1-k) x}{4}, & 2<x<3 \\
1, & x \geq 3
\end{array}\right.
$$

In order to determine the median we note that the maximum value of $F(x)$ for $0 \leq x \leq 1$ is $\frac{k}{4}$ and will be less than $\frac{1}{2}$. In the range $1<x \leq 2$, it will be between $\frac{k}{4}$ and $\frac{k+3}{4}$ and so median will lie in this range. Equating $\frac{k+M^{2}-1}{4}$ to $\frac{1}{2}$ we get $M=\sqrt{3-k}$ and so $\sqrt{2} \leq M \leq \sqrt{3}$.
8. Let X be the number of tests required. Then X is either 1 or 11 .

$$
\begin{aligned}
& P(X=1)=P(\text { none has the disease })=(0.99)^{10} \\
& P(X=11)=P(\text { at least one has disease })=1-(0.99)^{10} \\
& E(X)=11-10(0.99)^{10} .
\end{aligned}
$$

9. $\quad P(X=i)=\frac{n_{i}}{m}, \quad i=1, \ldots, r, \quad E(X)=\sum_{i=1}^{r} \frac{i n_{i}}{m}$.

$$
P(Y=i)=\frac{i n_{i}}{\sum_{i=1}^{r} i n_{i}}, i=1, \ldots r, \quad E(Y)=\frac{\sum_{i=1}^{r} i^{2} n_{i}}{\sum_{i=1}^{r} i n_{i}} .
$$

The proof of $E(Y) \geq E(X)$ follows by noticing $E\left(U^{2}\right) \geq\{E(U)\}^{2}$.
10. $0 \leq p_{X}(i) \leq 1, \quad i=1, \cdots, 4$ yields $-\frac{1}{3} \leq d \leq \frac{1}{4}$.

$$
E(X)=\frac{10-9 d}{4}, E\left(X^{2}\right)=\frac{30-47 d}{4}, V(X)=\frac{20-8 d-81 d^{2}}{16} .
$$

$V(X)$ is minimized at $d=\frac{1}{4}$.
11. $\sum_{x=0}^{\infty} p_{X}(x)=k$, so $\mathrm{k}=1$.

$$
\begin{aligned}
& F(x)=0, \quad \text { if } x<0, \\
& \quad=1 / 2, \quad \text { if } 0 \leq x<1, \\
& \quad=2 / 3, \quad \text { if } 1 \leq x<2, \\
& \quad \vdots \\
& \quad=n /(n+1), \quad \text { if } n-1 \leq x<n, \\
& \quad \vdots
\end{aligned}
$$

$E(X)$ does not exist. Any M between 0 and 1 is a median.
12. $P(40<X<60)=P(|X-\mu|<10) \geq 1-\frac{\sigma^{2}}{100}=0.75$.
13. $\quad X \sim \operatorname{Bin}(4,0.4)$. So $E(X)=1.6, V(X)=\frac{24}{25}, P(X \leq 1)=\frac{297}{625}$.

As $p<0.5$, the distribution is positively skewed.
14. In order to have two consecutive heads ending on $n^{\text {th }}$ trial we must have sequence of the typeHTHT $\underset{n-1}{\operatorname{H}}{ }_{n}{ }_{n}$. The probability of this is $\left(\frac{1}{2}\right)^{n}$. Similarly in order to have two consecutive tails ending on $n^{\text {th }}$ trial we must have sequence of the typeTHTH $\underset{n-1 n}{T} T$. The probability of this is also $\left(\frac{1}{2}\right)^{n}$.
So $P(X=n)=\frac{1}{2^{n-1}}, n=2,3,4, \ldots$
P (even number of tosses is required to end the experiment)
$=\sum_{m=1}^{\infty} P(X=2 m)=\sum_{m=1}^{\infty}\left(\frac{1}{2}\right)^{2 m-1}=\left(\frac{2}{3}\right)$.
$P(X=6 \mid X=$ even $)=\frac{P(X=6)}{P(X=\text { even })}=\frac{3}{16}$.
15. Let $U=$ upper face on dice of player A and $V=$ upper face on dice of player B.

Then $P(U=i)=\frac{i}{21}, i=1,2, \ldots, 6$ and $P(V=j)=\frac{j^{2}}{91}, j=1,2, \ldots, 6$.
$X=|U-V|$. So X can take values $0,1, \ldots, 5$.
$P(X=0)=\sum_{i=1}^{6} P(U=i, V=i)=\frac{441}{1911}$.
$P(X=1)=\sum_{i=1}^{5} P(U=i, V=i+1)+\sum_{i=1}^{5} P(U=i+1, V=i)=\frac{630}{1911}$.
$P(X=2)=\sum_{i=1}^{4} P(U=i, V=i+2)+\sum_{i=1}^{4} P(U=i+2, V=i)=\frac{420}{1911}$.
$P(X=3)=\sum_{i=1}^{3} P(U=i, V=i+3)+\sum_{i=1}^{3} P(U=i+3, V=i)=\frac{252}{1911}$.
$P(X=4)=\sum_{i=1}^{2} P(U=i, V=i+4)+\sum_{i=1}^{2} P(U=i+4, V=i)=\frac{126}{1911}$.
$P(X=5)=P(U=1, V=6)+P(U=6, V=1)=\frac{42}{1911}$.

