MA20205 Probability and Statistics

Hints/Solutions to Assignment No. 1

1. One empty cell can be selected in 7 ways. Now one cell will have two balls. That cell can be selected in 6 ways from the remaining 6 cells. Two balls can be selected out of 7 in $\binom{7}{2}$ ways. Remaining 5 balls can be placed in 5 cells (one in each cell) in 5 ! ways.

Hence
Required probability $=\frac{7 \times 6 \times\binom{ 7}{2} \times 5!}{7^{7}}=\frac{2160}{16807}=0.1285$.
2. It is given that

$$
\begin{align*}
& P(E \cap F)=P(E) P(F) \tag{1}\\
& P(E \cap(F \cap G))=P(E) P(F \cap G) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
P(E \cap(F \cup G))=P(E) P(F \cup G) \tag{3}
\end{equation*}
$$

Using distributive property of union and intersection in the left hand term of (3), we get

$$
P(E \cap F) \cup(E \cap G))=P(E) P(F \cap G)
$$

Now applying the addition rule on both the sides and using equations (1) and (2) we get

$$
P(E \cap G)=P(E) P(G)
$$

3. Let $A \rightarrow 4$ appears, $B \rightarrow$ odd sum appears.

Then $A=\{(1,3),(3,1),(2,2)\}$ has three elements.
Also B will have 18 elements. So
$\mathrm{P}(4$ appears first $)=\frac{1}{12}+\frac{15}{36} \cdot \frac{1}{12}+\left(\frac{15}{36}\right)^{2} \cdot \frac{1}{12}+\ldots .=\frac{1}{7}$.
4. Let $E \rightarrow$ owns a desktop and $F \rightarrow$ owns a laptop

Given $\mathrm{P}(\mathrm{E})=0.5, \mathrm{P}(\mathrm{F})=0.25, \mathrm{P}(\mathrm{E} \cap \mathrm{F})=0.1$.
The required probability $=P\left(E \cap F^{C}\right)+P\left(E^{C} \cap F\right)$
$=P(E)-P(E \cap F)+P(F)-P(E \cap F)=0.55$.
5. Let $\mathrm{A} \rightarrow$ person is smoker, $\mathrm{D} \rightarrow$ death due to lung cancer.

Given $\mathrm{P}(\mathrm{A})=0.2, \mathrm{P}(\mathrm{D})=0.006$. Let $P\left(D \mid A^{C}\right)=\alpha$. Then $P(D \mid A)=10 \alpha$.
Using the theorem of total probability
$P(D)=P(D \mid A) P(A)+P\left(D \mid A^{C}\right) P\left(A^{C}\right)$.
This implies that $0.006=10 \alpha \times 0.2+\alpha \times 0.8$.
This gives $10 \alpha=\frac{3}{140}=0.0214$.
6. If the first number is between 2 and $n-1$, then the second number can be chosen in two ways for the two to be consecutive. If the first number is either 1 or n, then the second number can be chosen in one way only. So the total number of favourable cases $=(n-2) \times 2+2 \times 1=2(n-1)$.

Hence the required probability is $\frac{2(n-1)}{n^{2}}$.
7. $P(A \mid B)=1 \Rightarrow P(B)=P(A \cap B)$. Now by the Theorem of Total Probability $P(B)=P(A \cap B)+P\left(A^{C} \cap B\right)$ and so $P\left(A^{C} \cap B\right)=0$. Once again by the Theorem of Total Probability $P\left(A^{C}\right)=P\left(A^{C} \cap B\right)+P\left(A^{C} \cap B^{C}\right)$. Hence $P\left(A^{C}\right)=P\left(A^{C} \cap B^{C}\right)$. This gives $P\left(B^{C} \mid A^{C}\right)=1$.
8. $\quad P\left(B \mid A \cup B^{c}\right)=\frac{P\left(B \cap\left(A \bigcup B^{c}\right)\right)}{P\left(A \bigcup B^{c}\right)}=\frac{P\left((B \cap A) \cup\left(B \cap B^{C}\right)\right)}{P(A)+P\left(B^{C}\right)-P\left(A \cap B^{C}\right)}=\frac{P(A \cap B)}{(0.7+0.6-0.5)}$.

Also $P(A)=P(A \cap B)+P\left(A \cap B^{C}\right)$ gives $P(A \cap B)=0.2$.
So the required probability $=0.25$.
9. (i) Use Bayes theorem, Reqd prob. $=\frac{2(1-\alpha)}{2(1-\alpha)+2 \beta+3 \gamma}$.
(ii) Use theorem of total probability. Reqd prob. $=(\alpha+2 \beta+3 \gamma) / 6$.
(iii) Use theorem of total probability,
$P($ digit 1 was received $)=(2-2 \alpha+2 \beta+3 \gamma) / 12$,
$\mathrm{P}($ digit 2 was received $)=(\alpha+4-4 \beta+3 \gamma) / 12$,
$\mathrm{P}($ digit 3 was received $)=(\alpha+2 \beta+6-6 \gamma) / 12$.
10. Apply laws of probability to get
(i) False (ii) True (iii) False (iv) False
11. $\binom{13}{4} /\binom{52}{4}=\frac{11}{4165} \cong 0.0026$.
12. $\mathrm{P}($ getting at least ' A ' in one semester in all subjects $)=\frac{1}{2^{5}}=\frac{1}{32}$.

So the reqd. prob. $=1-\left(\frac{31}{32}\right)^{4}=0.1193$..
13. Use definition of the conditional probability to prove the result.
14. $P(X=i)=\binom{n}{i} / 2^{n}, i=0,1, \ldots, n . P(A \subset B \mid X=i)=2^{i-n}$.

$$
\mathrm{P}(\mathrm{~A} \subset \mathrm{~B})=\left(\frac{3}{4}\right)^{\mathrm{n}} .
$$

Also $\mathrm{P}(\mathrm{A} \cap \mathrm{B}=\phi)=\mathrm{P}\left(\mathrm{A} \subset \mathrm{B}^{\mathrm{C}}\right)$.
15. We consider the possible cases as follows for scoring at least 8 marks:

$$
\begin{aligned}
& P(\text { student scores at least } 8 \text { marks }) \\
& =P(\text { scores } 8 \text { marks })+P(\text { scores } 9 \text { marks })+P(\text { scores } 10 \text { marks }) . \\
& P(\text { scores } 8 \text { marks })=\left(\frac{1}{2}\right)^{6}\binom{4}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}+\binom{6}{1}\left(\frac{1}{2}\right)^{6}\binom{4}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right) \\
& +\binom{6}{2}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{4}\right)^{4} .
\end{aligned}
$$

$P($ scores 9 marks $)=\left(\frac{1}{2}\right)^{6}\binom{4}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)+\binom{6}{1}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{4}\right)^{4}$. $P($ scores 10 marks $)=\left(\frac{1}{2}\right)^{6}\left(\frac{1}{4}\right)^{4}$.

Using these we get the required probability $\frac{5}{512} \square 0.0098$.
16. Let $\mathrm{X} \rightarrow$ number of girls qualifying, $\mathrm{Y} \rightarrow$ number of boys qualifying.

$$
\begin{aligned}
& \mathrm{p}=\mathrm{P}(\mathrm{X}>\mathrm{Y})=\mathrm{P}(\mathrm{X}=\mathrm{n}+1)+\mathrm{P}(\mathrm{X}=\mathrm{n}+2)+\ldots+\mathrm{P}(\mathrm{X}=2 \mathrm{n}) \\
&=\left(\frac{1}{2}\right)^{2 \mathrm{n}}\left[\binom{2 \mathrm{n}}{\mathrm{n}+1}+\ldots+\binom{2 \mathrm{n}}{2 \mathrm{n}}\right]=\left(\frac{1}{2}\right)^{2 \mathrm{n}}\left[\binom{2 \mathrm{n}}{0}+\ldots+\binom{2 \mathrm{n}}{\mathrm{n}-1}\right] \\
&=\mathrm{P}(\mathrm{Y}>\mathrm{X}) \\
& \mathrm{r}=\mathrm{P}(\mathrm{X}=\mathrm{Y})=\binom{2 \mathrm{n}}{\mathrm{n}}\left(\frac{1}{2}\right)^{2 \mathrm{n}} . \\
& \text { As } 2 \mathrm{p}+\mathrm{r}=1, \text { we get } \mathrm{p}=\frac{1}{2}\left\{1-\left(\frac{1}{2}\right)^{2 n}\binom{2 \mathrm{n}}{\mathrm{n}}\right\} .
\end{aligned}
$$

17. Define, $A_{i}=i^{\text {th }}$ person gets back his own hat. So we need to find $P($ No one gets back his own hat $)$
$=P\left(\bigcap_{i=1}^{n} A_{i}^{C}\right)=1-P\left(\bigcup_{i=1}^{n} A_{i}\right)=1-\sum_{i=1}^{n}(-1)^{i-1} S_{i}$,
where $S_{i}=\binom{n}{i} \frac{(\mathrm{n}-i)!}{n!}=$ Prob. that i persons will get back their own hats.
Expanding, we get the required probability as
$1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}$.
Taking limit as $n \rightarrow \infty$, the probability converges to $e^{-1} \square 0.3679$.
$P($ At least one gets back his own hat $)=1-\left(1-\frac{1}{1!}+\frac{1}{2!}-\cdots+(-1)^{n} \frac{1}{n!}\right)$.
Taking limit as $n \rightarrow \infty$, the probability converges to $1-e^{-1}=0.6321$.
18. We can mark the boxes as

1	2	$\cdots \cdots$	r	$\mathrm{r}+1$	$\cdots \cdots$	R

Now a ball will be placed randomly in first r boxes out of total R boxes with probability $\frac{r}{R}$ and will be placed in one of the remaining $R-r$ boxes with probability $1-\frac{r}{R}$. So the required probability is $\binom{\mathrm{n}}{\mathrm{k}}\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{\mathrm{k}}\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)^{\mathrm{n}-\mathrm{k}}$.
19. $\frac{\binom{26}{3}\binom{26}{10}}{\binom{52}{13}}=0.0217$.
20. $\frac{\binom{13}{3}\binom{13}{4}\binom{13}{4}\binom{13}{2}}{\binom{52}{13}}=0.018$.
21. Define $Q_{i}=$ Queen of the ith suit drawn $\mathrm{i}=\mathrm{c}, \mathrm{h}, \mathrm{d}, \mathrm{s}$.

Define $K_{i}=$ King of the i th suit drawn $\mathrm{i}=\mathrm{c}, \mathrm{h}, \mathrm{d}, \mathrm{s}$.
(a) $\frac{1}{52^{4}}(4!)=\frac{4}{52} \frac{3}{52} \frac{2}{52} \frac{1}{52}$
(b) $\left(\frac{4}{52}\right)^{4}$
22. $1^{\text {st }}$ box will contain no ball. So we remove the first box.

From the remaining, one box must contain 2 balls in $\binom{n-1}{1}\binom{n}{2}$ ways.
Left ($\mathrm{n}-2$) ball can be distributed in ($\mathrm{n}-2$) boxes in ($\mathrm{n}-2$)! ways. So the probability of interest is

$$
\frac{\binom{n-1}{1}\binom{n}{2}(n-2)!}{n^{n}}
$$

23. (a) $\frac{n(\mathrm{n}-1)^{r-1}}{n^{r}}$
(b) Choose r people from n people and spread the rumour in any order. So the probability of interest is $\frac{n_{C_{r}}}{n^{r}} . n_{P_{r}}$.
