Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 9 September 12, 2022

Bibhas Adhikari (Autumn 2022-23, IIT Khara

• • = • • = • Lecture 9 September 12, 2022 1/101

э

Exponential random variable The pdf of the exponential random variable X is

$$f(x) = \begin{cases} \lambda e^{-\lambda x} \text{ if } x \ge 0\\ 0, \text{ otherwise} \end{cases}$$

where $\lambda > 0$, a parameter.

Exponential random variable The pdf of the exponential random variable X is

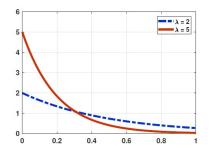
$$f(x) = \begin{cases} \lambda e^{-\lambda x} \text{ if } x \ge 0\\ 0, \text{ otherwise} \end{cases}$$

where $\lambda > 0$, a parameter. We write $X \sim \text{Exponential}(\lambda)$.

Exponential random variable The pdf of the exponential random variable X is

$$f(x) = egin{cases} \lambda e^{-\lambda x} ext{ if } x \geq 0 \ 0, ext{ otherwise} \end{cases}$$

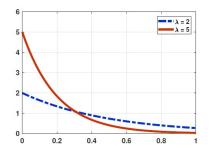
where $\lambda > 0$, a parameter. We write $X \sim \text{Exponential}(\lambda)$. pdf looks like



Exponential random variable The pdf of the exponential random variable X is

$$f(x) = egin{cases} \lambda e^{-\lambda x} ext{ if } x \geq 0 \ 0, ext{ otherwise} \end{cases}$$

where $\lambda > 0$, a parameter. We write $X \sim \text{Exponential}(\lambda)$. pdf looks like



Note Exponential distribution is a special case of Gamma distribution, when $\alpha = 1$

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Connection to Poisson distribution From Poisson distribution, note that

$$P(X=0)=e^{-\lambda}$$

which means that the probability of the amount of time until the event occurs which further means during the waiting period, not a single event has happened is $e^{-\lambda}$.

Connection to Poisson distribution From Poisson distribution, note that

 $P(X=0)=e^{-\lambda}$

which means that the probability of the amount of time until the event occurs which further means during the waiting period, not a single event has happened is $e^{-\lambda}$.

Define a random variable T for the waiting time until the first event

Connection to Poisson distribution From Poisson distribution, note that

 $P(X=0)=e^{-\lambda}$

which means that the probability of the amount of time until the event occurs which further means during the waiting period, not a single event has happened is $e^{-\lambda}$.

Define a random variable T for the waiting time until the first event Then

P(Nothing happens during t time units)

= $P(X = 0 \text{ in the first time unit}) \cdot P(X = 0 \text{ in the second time unit}) \cdot \dots$ $\dots \cdot P(X = 0 \text{ in the } t\text{-th time unit})$ = $e^{-\lambda t} = P(T > t)$

where X follows Poisson distribution.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Then

$$P(T \leq t) = 1 - P(T > t) = 1 - e^{-\lambda t}$$

which is the CDF of the random variable T.

э

Then

$$P(T \leq t) = 1 - P(T > t) = 1 - e^{-\lambda t}$$

which is the CDF of the random variable T. Then the pdf of T is given by

$$f(t) = \frac{d}{dt}F(t) = \lambda e^{-\lambda t}$$

which is the pdf of the exponential distribution.

Then

$$P(T \leq t) = 1 - P(T > t) = 1 - e^{-\lambda t}$$

which is the CDF of the random variable T. Then the pdf of T is given by

$$f(t) = \frac{d}{dt}F(t) = \lambda e^{-\lambda t}$$

which is the pdf of the exponential distribution. Memoryless property of exponential distribution: Note that

$$P(T > m+n|T > m) = \frac{P(T > m+n)}{P(T > m)} = \frac{e^{-\lambda(m+n)}}{e^{-\lambda m}} = e^{-\lambda n} = P(T > n).$$

Bibhas Adhikari (Autumn 2022-23, IIT Khara

 →
 →
 ≥
 →
 ≥
 √
 ○
 ○

 Lecture 9 September 12, 2022
 85 / 101

Let us introduce another random variable T for wait time until the *k*-th event, where arrival of events is modeled by the Poisson process with rate λ .

Let us introduce another random variable T for wait time until the *k*-th event, where arrival of events is modeled by the Poisson process with rate λ .

Consider two parameters:

 k (the first parameter of the Gamma distribution) is the number of events for which you are waiting

Let us introduce another random variable T for wait time until the *k*-th event, where arrival of events is modeled by the Poisson process with rate λ .

Consider two parameters:

- k (the first parameter of the Gamma distribution) is the number of events for which you are waiting
- $\textcircled{\ }\lambda \ (\text{the second parameter of Gamma distribution}) \ \text{is the rate of events} \\ \text{happening which follows the Poisson process} \end{aligned}$

Let us introduce another random variable T for wait time until the *k*-th event, where arrival of events is modeled by the Poisson process with rate λ .

Consider two parameters:

- k (the first parameter of the Gamma distribution) is the number of events for which you are waiting
- $\textcircled{\ }\lambda \ (\text{the second parameter of Gamma distribution}) \ \text{is the rate of events} \\ \text{happening which follows the Poisson process} \end{aligned}$

Then P(T > t) is the probability that the waiting time until the k-th event is greater than t time units

Let us introduce another random variable T for wait time until the *k*-th event, where arrival of events is modeled by the Poisson process with rate λ .

Consider two parameters:

- k (the first parameter of the Gamma distribution) is the number of events for which you are waiting
- $\textcircled{\ }\lambda \ (\text{the second parameter of Gamma distribution}) \ \text{is the rate of events} \\ \text{happening which follows the Poisson process} \end{aligned}$

Then P(T > t) is the probability that the waiting time until the *k*-th event is greater than *t* time units Therefore

$$F(t) = P(T \le t) = 1 - P(T > t)$$

= 1 - P(0, 1, 2, k - 1 events in [0, t])
= 1 - $\sum_{x=0}^{k-1} \frac{(\lambda t)^x e^{-\lambda t}}{x!}$

From the CDF F(t), the pdf of T is given by

$$f(t) = \frac{d}{dt}F(t)$$

= $\lambda e^{-\lambda t} - \frac{d}{dt}\left(\sum_{x=0}^{k-1}\frac{(\lambda t)^{x}e^{-\lambda t}}{x!}\right)$

3

(日)

From the CDF F(t), the pdf of T is given by

$$f(t) = \frac{d}{dt}F(t)$$
$$= \lambda e^{-\lambda t} - \frac{d}{dt}\left(\sum_{x=0}^{k-1} \frac{(\lambda t)^{x}e^{-\lambda t}}{x!}\right)$$

Performing term by term derivatives, we obtian

$$f(t) = \frac{\lambda e^{-\lambda t} (\lambda t)^{k-1}}{(k-1)!}$$

Bibhas Adhikari (Autumn 2022-23, IIT Khara

3

From the CDF F(t), the pdf of T is given by

$$f(t) = \frac{d}{dt}F(t)$$

= $\lambda e^{-\lambda t} - \frac{d}{dt}\left(\sum_{x=0}^{k-1} \frac{(\lambda t)^x e^{-\lambda t}}{x!}\right)$

Performing term by term derivatives, we obtian

$$f(t) = \frac{\lambda e^{-\lambda t} (\lambda t)^{k-1}}{(k-1)!}$$

Conclusion: If arrivals of events follow the Poisson process with rate λ , the wait time until $k = \alpha$ arrivals follows Gamma $(k = \alpha, \lambda = \beta)$.

Chi-square random variable A random variable X is said to have chi-square distribution with r degrees of freedom if the pdf is given by

$$f(x) = \begin{cases} \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

where r > 0, a parameter.

Chi-square random variable A random variable X is said to have chi-square distribution with r degrees of freedom if the pdf is given by

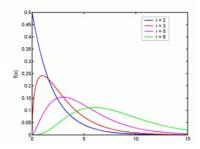
$$f(x) = \begin{cases} \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

where r > 0, a parameter. We write $X \sim \chi^2(r)$

Chi-square random variable A random variable X is said to have chi-square distribution with r degrees of freedom if the pdf is given by

$$f(x) = \begin{cases} \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

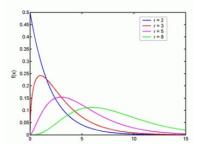
where r > 0, a parameter. We write $X \sim \chi^2(r)$ pdf looks like



Chi-square random variable A random variable X is said to have chi-square distribution with r degrees of freedom if the pdf is given by

$$f(x) = \begin{cases} \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} x^{\frac{r}{2}-1} e^{-\frac{x}{2}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

where r > 0, a parameter. We write $X \sim \chi^2(r)$ pdf looks like



Note chi-square distribution is a special case of Gamma distribution, when $\alpha = \frac{\alpha}{2}, \beta = \frac{1}{2}$. If $r \to \infty$ then chi-square tends to normal distribution and the square tends to normal distribution.

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Proability and Statistics

Lecture 9 September 12, 2022 88 / 101

Weibull random variable A random variable X is said to have Weibull distribution if the pdf is given by

$$f(x) = \begin{cases} \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

where r > 0, a parameter.

Weibull random variable A random variable X is said to have Weibull distribution if the pdf is given by

$$f(x) = \begin{cases} \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}} \text{ if } 0 < x < \infty \\ 0, \text{ otherwise} \end{cases}$$

where r > 0, a parameter. We write $X \sim \text{Weibull}(\alpha, \beta)$

Weibull random variable A random variable X is said to have Weibull distribution if the pdf is given by

$$f(x) = egin{cases} lphaeta x^{lpha-1}e^{-eta x^{lpha}} ext{ if } 0 < x < \infty \ 0, ext{ otherwise} \end{cases}$$

where r > 0, a parameter. We write $X \sim \text{Weibull}(\alpha, \beta)$ Homework Draw the pdf of Weibull and decide which one is the shape parameter and which one is the scale parameter

Weibull random variable A random variable X is said to have Weibull distribution if the pdf is given by

$$f(x) = egin{cases} lphaeta x^{lpha-1}e^{-eta x^{lpha}} ext{ if } 0 < x < \infty \ 0, ext{ otherwise} \end{cases}$$

where r > 0, a parameter. We write $X \sim \text{Weibull}(\alpha, \beta)$ Homework Draw the pdf of Weibull and decide which one is the shape parameter and which one is the scale parameter Note Setting $\alpha = 1$ it reduces to the exponential distribution

Properties of Weibull(α, β)

(a) $E(X) = \left(\frac{1}{\beta}\right)^{\frac{1}{\alpha}} \left(1 + \frac{1}{\alpha}\right)$ (b) $Var(X) = \left(\frac{1}{\beta}\right)^{\frac{2}{\alpha}} \left\{\Gamma\left(1 + \frac{2}{\alpha}\right) - \left(1 + \frac{1}{\alpha}\right)^{2}\right\}$

Recall: Beta function Let $\alpha > 0$ and $\beta > 0$. Then

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1}(1-x)^{\beta-1} dx$$

is called the beta function.

Recall: Beta function Let $\alpha > 0$ and $\beta > 0$. Then

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

is called the beta function. Beta in terms of gamma:

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

Recall: Beta function Let $\alpha > 0$ and $\beta > 0$. Then

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx$$

is called the beta function. Beta in terms of gamma:

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

Properties of beta function

(a) $B(\alpha, \beta) = B(\beta, \alpha)$ (b) if α, β are positive integers then

$$B(\alpha,\beta)=rac{(lpha-1)(eta-1)}{(lpha+eta-1)(lpha+eta-2)}B(lpha-1,eta-1)$$

Beta distribution: A random variable is said to have beta distribution if the pdf is of the form

$$f(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \text{ if } 0 < x < 1\\ 0, \text{ otherwise} \end{cases}$$

Beta distribution: A random variable is said to have beta distribution if the pdf is of the form

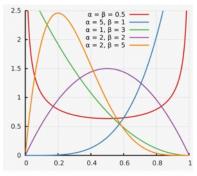
$$f(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \text{ if } 0 < x < 1\\ 0, \text{ otherwise} \end{cases}$$

We write $X \sim \mathsf{Beta}(\alpha, \beta)$

Beta distribution: A random variable is said to have beta distribution if the pdf is of the form

$$f(x) = \begin{cases} \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \text{ if } 0 < x < 1\\ 0, \text{ otherwise} \end{cases}$$

We write $X \sim \text{Beta}(\alpha, \beta)$ The pdf looks like



• 一司

Properties of beta distribution:

- (a) Shapes
 - $\blacktriangleright \text{ symmetric if } \alpha = \beta$

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - if $\alpha = 1\&\beta > 1$ or $\beta = 1\&>1$ then J shaped

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - ▶ if $\alpha = 1\&\beta > 1$ or $\beta = 1\& > 1$ then J shaped
 - if $\alpha < \beta$ then positive skew

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - ▶ if $\alpha = 1\&\beta > 1$ or $\beta = 1\& > 1$ then J shaped
 - if $\alpha < \beta$ then positive skew
 - if $\alpha > \beta$ the negative skew

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - ▶ if $\alpha = 1\&\beta > 1$ or $\beta = 1\& > 1$ then J shaped
 - if $\alpha < \beta$ then positive skew
 - \blacktriangleright if $\alpha > \beta$ the negative skew

(b) $E(X) = \frac{\alpha}{\alpha+\beta}$

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - ▶ if $\alpha = 1\&\beta > 1$ or $\beta = 1\& > 1$ then J shaped
 - \blacktriangleright if $\alpha < \beta$ then positive skew
 - \blacktriangleright if $\alpha > \beta$ the negative skew

(b)
$$E(X) = \frac{\alpha}{\alpha+\beta}$$

(c) $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Properties of beta distribution:

- (a) Shapes
 - symmetric if $\alpha = \beta$
 - ▶ if $\alpha = 1\&\beta > 1$ or $\beta = 1\& > 1$ then J shaped
 - \blacktriangleright if $\alpha < \beta$ then positive skew
 - \blacktriangleright if $\alpha > \beta$ the negative skew

(b)
$$E(X) = \frac{\alpha}{\alpha+\beta}$$

(c) $Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Note Beta reduces to Uniform distribution over (0, 1) if $\alpha = \beta = 1$

Gaussian random variable (normal random variable): A random variable X is said to have Gaussian distribution if the pdf is given by

$$f(x) = rac{1}{\sqrt{2\pi\sigma}} \exp\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}, -\infty < x < \infty$$

where $\mu, \sigma \in \mathbb{R}$.

Gaussian random variable (normal random variable): A random variable X is said to have Gaussian distribution if the pdf is given by

$$f(x) = rac{1}{\sqrt{2\pi\sigma}} \exp\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}, -\infty < x < \infty$$

where $\mu, \sigma \in \mathbb{R}$. We write $X \sim \mathcal{N}(\mu, \sigma^2)$

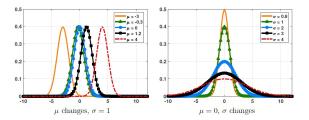
Gaussian random variable (normal random variable): A random variable X is said to have Gaussian distribution if the pdf is given by

$$f(x) = rac{1}{\sqrt{2\pi\sigma}} \exp\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}, -\infty < x < \infty$$

where $\mu, \sigma \in \mathbb{R}$. We write $X \sim \mathcal{N}(\mu, \sigma^2)$ Observation

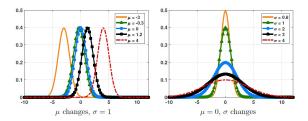
- (a) A Gaussian random variable is symmetric about μ
- (b) If $\mu = 0$, then f(x) is an even function.
- (c) If σ is very small, it is possible to have f(x) > 1, however integration over \mathbb{R} is 1

The pdf looks like:



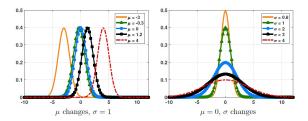
A (10) N (10)

The pdf looks like:



Properties of $\mathcal{N}(\mu, \sigma^2)$ (a) $E(X) = \mu$

The pdf looks like:

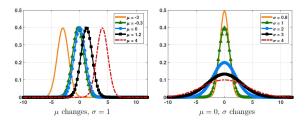


Properties of $\mathcal{N}(\mu, \sigma^2)$ (a) $E(X) = \mu$ (b) $Var(X) = \sigma^2$

э

• • = • • = •

The pdf looks like:



Properties of $\mathcal{N}(\mu, \sigma^2)$

(a) $E(X) = \mu$ (b) $Var(X) = \sigma^2$ (c) $M(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

э

• • = • • = •

Standard normal distribution A normal random variable X is said to have standard Gaussian/normal distribution is given by

$$\Phi(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

Standard normal distribution A normal random variable X is said to have standard Gaussian/normal distribution is given by

$$\Phi(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

Note that $X \sim \mathcal{N}(0, 1)$

Standard normal distribution A normal random variable X is said to have standard Gaussian/normal distribution is given by

$$\Phi(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

Note that
$$X \sim \mathcal{N}(0, 1)$$

Theorems Let $X = \mathcal{N}(\mu, \sigma^2)$.
(a) Then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$

Standard normal distribution A normal random variable X is said to have standard Gaussian/normal distribution is given by

$$\Phi(x) = f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

Note that
$$X \sim \mathcal{N}(0, 1)$$

Theorems Let $X = \mathcal{N}(\mu, \sigma^2)$.
(a) Then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$
(b) $\left(\frac{X - \mu}{\sigma}\right)^2 \sim \chi^2(1)$

$$F(z) = P(Z \le z)$$

= $P\left(\frac{X-\mu}{\sigma} \le z\right)$
= $P(X \le \sigma z + \mu)$
= $\int_{-\infty}^{\sigma z+\mu} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx$
= $\int_{-\infty}^{z} \frac{1}{\sigma\sqrt{2\pi}} \sigma e^{-\frac{1}{2}w^2}, w = \frac{x-\mu}{\sigma}.$

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Lecture 9 September 12, 2022 97 / 101

э

< □ > < □ > < □ > < □ > < □ > < □ >

$$F(z) = P(Z \le z)$$

= $P\left(\frac{X-\mu}{\sigma} \le z\right)$
= $P(X \le \sigma z + \mu)$
= $\int_{-\infty}^{\sigma z+\mu} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}} dx$
= $\int_{-\infty}^{z} \frac{1}{\sigma\sqrt{2\pi}} \sigma e^{-\frac{1}{2}w^2}, w = \frac{x-\mu}{\sigma}.$

$$f(z) = F'(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

12

(日)