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Special distributions

Review of last week

pdf and cdf for continuous random variables

▶ percentile, median, mode

moments of random variables
▶ expectation
▶ variance
▶ skewness, Kurtosis

Markov’s and Chebyshev’s inequality

moment generating function

special discrete distributions
▶ Bernoulli and Binomial
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Special discrete distributions
Binomial distribution

f (k) =

(
n

k

)
pk(1− p)n−k , k = 0, 1, 2, . . . , n

Relating Binomials with Bernoulli: Let X ∼ Bin(n, p). Then

X = Ber(p) + Ber(p) + . . .+ Ber(p)︸ ︷︷ ︸
ntimes

(a) Exp(Bin(n, p)) = np

(b) Var(X + Y ) = Var(X ) + Var(Y ) if X ,Y are independent. Hence

Var(Bin(n, p)) = np(1− p)

Problems..
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Special discrete distributions

Geometric random variable A random variable X follows geometric
distribution if the pmf is given by

P(X = k) = (1− p)k−1p, k = 1, 2, 3, . . .

where 0 < p < 1.

Then we write X ∼ Geometric(p)
The pmf of Geometric(p) looks like:
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Special discrete distributions

Observation Geometric(p) explains the phenomena of a binary experiment
(Bernoulli trials) until the success is reached (the trial number on which
the first success occurs)

P(X = k) = (1− p)k−1︸ ︷︷ ︸
(k−1) failures

p︸︷︷︸
success

, k = 1, 2, 3, . . .

where probability of success is p

Properties of Geo(p)

(a) E (X ) =
1

p
, E (X 2) =

2

p2
− 1

p

(b) Var(X ) =
1− p

p2

(c) M(t) =
pet

1− (1− p)et

Problems...
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Special discrete distributions

Observation Geometric random variable has memoryless property:

P(X > m + n|X > n) = P(X > m)

for any positive integers m, n

Although the Bin(n, p) and Geo(p) are based on sequence of Bernoulli
trials, the fundamental difference is: the number of trials in Bin(n, p) is
predetermined whereas it is the random variable in the case of Geo(p)
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Special discrete distributions
Negative Binomial Distribution A random variable follows negative
binomial if the pmf is

f (k) =

(
k − 1

r − 1

)
pr (1− p)k−r , k = r , r + 1, . . .

where 0 < p < 1 and r is a positive integer

We denote X ∼ NBIN(r , p)
The pmf of NBIN(20, p) looks like:
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Special discrete distributions
Observation Negative Binomial(r , p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1− p

Note that the pmf can also be written as

f (k) =

(
k + r − 1

r − 1

)
pr (1− p)k , k = 0, 1, . . .

Note: rth success to occur in kth trial means there must be (r − 1)
successes on the first k − 1 trials
Properties of NBIN(n, p)

(a) E (X ) =
r

p

(b) Var(X ) =
r(1− p)

p2

(d) M(t) =

(
pet

1− (1− p)et

)r

if t < − ln(1− p)
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Special discrete distributions

Question Why is it called ‘negative’ binomial distribution?

Note that values of f (k) are successive terms in the binomial expansion of(
1

p
− 1− p

p

)
NBIN is called Pascal distributions or binomial waiting-time distributions
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Special discrete distributions

Hypergeometric random variable A random variable X is said to have a
Hypergeometric distribution if the pmf is of the form

P(X = k) =

(r
k

)(N−r
n−k

)(N
n

) , k = 0, 1, . . . , n

where k ≤ r , n − k ≤ N − r , N < r , n are positive integers

Then we write X ∼ HYP(N, r , n)The pmf looks like:
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena

1 Suppose a box contains N objects of which r are defective and N − r
are not defective

2 Then select n objects from the box without replacement

Then the probability that k of them are defective is given by P(X = k).
Properties of HYP(N, r , n)

(a) E (X ) =
rn

N

(b) Var(X ) =
r(N − r)

n

N

(
1− n

N

)
N − 1

Problems...
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rn

N

(b) Var(X ) =
r(N − r)

n

N

(
1− n

N

)
N − 1

Problems...
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Special discrete distributions
Poisson random variable A random variable follows Poisson distribution if
the pmf is given by

P(X = k) =
λk

k!
e−λ k = 0, 1, 2, 3, . . .

where λ > 0 is called the Poisson rate

Then we write X ∼ Poisson(λ)
The pmf of Poisson(λ) looks like:
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Special discrete distributions

Observation Possion(λ) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user
in an e-commerce website. Here λ determines the rate of arrival.

Properties of Pois(λ)

(a) E (X ) = λ

(b) E (X 2) = λ+ λ2

(c) Var(X ) = λ

(d) M(t) = eλ(e
t−1)

Problems...
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