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Special distributions

Review of last week
@ pdf and cdf for continuous random variables
» percentile, median, mode

moments of random variables
> expectation
» variance
» skewness, Kurtosis

Markov’'s and Chebyshev's inequality

moment generating function
special discrete distributions
» Bernoulli and Binomial
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Special discrete distributions
Binomial distribution

f(k) N (Z)pk(l - p)n—k’ k=0,1,2,....n
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Binomial distribution
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Relating Binomials with Bernoulli: Let X ~ Bin(n, p). Then

X = ?er(p) + Ber(p) + ... + Ber(p)
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Binomial distribution

f(k) N (Z)pk(]‘ - p)n—k’ k=0,1,2,....n

Relating Binomials with Bernoulli: Let X ~ Bin(n, p). Then

X = ?er(p) + Ber(p) + ... + Ber(p)

ntimes

(a) Exp(Bin(n,p)) = np
(b) Var(X + Y) = Var(X) + Var(Y) if X, Y are independent.
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ntimes

(a) Exp(Bin(n,p)) = np
(b) Var(X + Y) = Var(X) + Var(Y) if X, Y are independent. Hence
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Special discrete distributions

Binomial distribution

f(k) N (Z) pk(l - p)n—k’ k=0,1,2,....n

Relating Binomials with Bernoulli: Let X ~ Bin(n, p). Then

X = ?er(p) + Ber(p) + ... + Ber(p)

ntimes

(a) Exp(Bin(n,p)) = np
(b) Var(X + Y) = Var(X) + Var(Y) if X, Y are independent. Hence

Var(Bin(n, p)) = np(1 — p)

Problems..
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Special discrete distributions

Geometric random variable A random variable X follows geometric
distribution if the pmf is given by

P(X=k)=(1-p)lp k=1,2,3,...

where 0 < p < 1.
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P(X=k)=(1-p)lp k=1,2,3,...

where 0 < p < 1.
Then we write X ~ Geometric(p)
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Special discrete distributions

Geometric random variable A random variable X follows geometric
distribution if the pmf is given by

P(X=k)=(1-p)lp k=1,2,3,...

where 0 < p < 1.
Then we write X ~ Geometric(p)
The pmf of Geometric(p) looks like:

1

Bibhas Adhikari (Autumn 2022-23, IIT Khara Proability and Statistics

Lecture 7 September 5, 2022 57 /71



Special discrete distributions

Observation Geometric(p) explains the phenomena of a binary experiment
(Bernoulli trials) until the success is reached (the trial number on which
the first success occurs)

P(X =k)= (1—p)<?! L k=1,2,3,...
( )= (1-p) P

(k—1) failures SUCCESS

where probability of success is p
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P(X =k)= (1—p)<?! L k=1,2,3,...
( )= (1-p) P

(k—1) failures SUCCESS

where probability of success is p
Properties of Geo(p)

(2) E(X) = }, E(X?) = p3
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Special discrete distributions

Observation Geometric(p) explains the phenomena of a binary experiment
(Bernoulli trials) until the success is reached (the trial number on which
the first success occurs)

P(X =k)= (1—p)<?! L k=1,2,3,...
( )= (1-p) P

(k—1) failures SUCCESS

where probability of success is p
Properties of Geo(p)

1 2

a) EX)= =, E(X?) = =

(2) E(X) =, E(XF) = 3

o=

(b) Var(X) = 1;2”
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Special discrete distributions

Observation Geometric(p) explains the phenomena of a binary experiment

(Bernoulli trials) until the success is reached (the trial number on which
the first success occurs)

p ,k=123,...
—~—
(k—1) failures SUCCess

where probability of success is p
Properties of Geo(p)

(6) B0 = 5, E0) =

o=

(b) Var(X) = 1;2”
(c) M(t) = ﬁ
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Special discrete distributions

Observation Geometric(p) explains the phenomena of a binary experiment

(Bernoulli trials) until the success is reached (the trial number on which
the first success occurs)

p ,k=123,...
N
(k—1) failures SUCCESS

where probability of success is p
Properties of Geo(p)

(6) ECO = 3, EX) =

p2

p
(b) Var(X) = 1;2'3
(c) M(t) = 1_([1)e_tp)et

Problems...
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Special discrete distributions

Observation Geometric random variable has memoryless property:

P(X > m+n|X >n)=P(X > m)

for any positive integers m, n
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Special discrete distributions

Observation Geometric random variable has memoryless property:
P(X > m+n|X >n)=P(X > m)
for any positive integers m, n

Although the Bin(n, p) and Geo(p) are based on sequence of Bernoulli
trials, the fundamental difference is: the number of trials in Bin(n, p) is
predetermined whereas it is the random variable in the case of Geo(p)
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Special discrete distributions

Negative Binomial Distribution A random variable follows negative
binomial if the pmf is

k—1
f(k) = (r_l)Pr(l—p)k_’,k:r,r+1,...

where 0 < p < 1 and r is a positive integer
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Special discrete distributions

Negative Binomial Distribution A random variable follows negative
binomial if the pmf is

k—1
f(k) = (r_l)Pr(l—p)k_’,k:r,r+1,...

where 0 < p < 1 and r is a positive integer
We denote X ~ NBIN(r, p)
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Special discrete distributions
Negative Binomial Distribution A random variable follows negative

binomial if the pmf is

k—1
f(k) = (r_l)Pr(l—p)k_’,k:r,r+1,...

where 0 < p < 1 and r is a positive integer
We denote X ~ NBIN(r, p)
The pmf of NBIN(20, p) looks like:

°

Probability

°

0 50
Random Variable
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p

Note that the pmf can also be written as

k+r—1
f(k):( 1 >pr(1—p)k,k:0,1,...
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p

Note that the pmf can also be written as

k+r—1\ ,
f(k)=< b1 >p(1—p)k,k=0,1,---

Note: rth success to occur in kth trial means there must be (r — 1)
successes on the first k — 1 trials
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p

Note that the pmf can also be written as

k+r—1\ ,
f(k)=< b1 >p(1—p)k,k=0,1,---

Note: rth success to occur in kth trial means there must be (r — 1)
successes on the first k — 1 trials
Properties of NBIN(n, p)

(a) E(X) = g
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p

Note that the pmf can also be written as

k+r—1\ ,
f(k)=< b1 >p(1—p)k,k=0,1,---

Note: rth success to occur in kth trial means there must be (r — 1)
successes on the first k — 1 trials
Properties of NBIN(n, p)

(a) E(X) = g
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Special discrete distributions

Observation Negative Binomial(r, p) explains the trial number on which
rth head (success) occurs in a sequence of coin tosses (Bernoulli trials),
when the probability of getting head is p whereas the tail is 1 — p

Note that the pmf can also be written as

<k+r—1

f(k) = L >pr(1—p)k,k:0,1,...

Note: rth success to occur in kth trial means there must be (r — 1)
successes on the first k — 1 trials
Properties of NBIN(n, p)

(@) EC) =
(b) Var(X) = r(lp;p)
(d) M(t)= (1_(’1’e_tp)et> if t < —1In(1—p)
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Special discrete distributions

Question Why is it called ‘negative’ binomial distribution?
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Special discrete distributions

Question Why is it called ‘negative’ binomial distribution?
Note that values of f(k) are successive terms in the binomial expansion of

6-57)
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Special discrete distributions

Question Why is it called ‘negative’ binomial distribution?
Note that values of f(k) are successive terms in the binomial expansion of

(o 57)

NBIN is called Pascal distributions or binomial waiting-time distributions
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Special discrete distributions

Hypergeometric random variable A random variable X is said to have a
Hypergeometric distribution if the pmf is of the form

%ﬁel):’:),kzo,l,...,n

where k <r,n—k <N —r, N < r,n are positive integers

P(X = k) =
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Special discrete distributions

Hypergeometric random variable A random variable X is said to have a
Hypergeometric distribution if the pmf is of the form

r\ (N—r
(W (k) |
T,k—O,l,...,n
n
where k <r,n—k <N —r, N < r,n are positive integers
Then we write X ~ HYP(N, r, n)

P(X = k) =
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Special discrete distributions

Hypergeometric random variable A random variable X is said to have a
Hypergeometric distribution if the pmf is of the form

r\ (N—r
(W (k) |
T,k—O,l,...,n
n
where k <r,n—k <N —r, N < r,n are positive integers
Then we write X ~ HYP(N, r,n)The pmf looks like:

P(X = k) =

0:2 _ N=500, r=50, n=50
_ N=500, r=50, n=100
__ N=500, r=50, n=250

N=500, r=50, =400
| N=500, r=50, n=450

Probability
o

0 10 20 30
Random Variable
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena
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Special discrete distributions

Observation The hypergeometric distribution explains the following
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© Suppose a box contains N objects of which r are defective and N — r
are not defective
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena

© Suppose a box contains N objects of which r are defective and N — r
are not defective

@ Then select n objects from the box without replacement
Then the probability that k of them are defective is given by P(X = k).
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena

© Suppose a box contains N objects of which r are defective and N — r
are not defective

@ Then select n objects from the box without replacement

Then the probability that k of them are defective is given by P(X = k).
Properties of HYP(N, r, n)
m
E(X)=—
(@) EC) =7
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena

@ Suppose a box contains N objects of which r are defective and N — r
are not defective

@ Then select n objects from the box without replacement

Then the probability that k of them are defective is given by P(X = k).
Properties of HYP(N, r, n)
m
E(X)=—
(@) EC) =7

(5) Var(X) = )’V_(l )
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Special discrete distributions

Observation The hypergeometric distribution explains the following
phenomena

@ Suppose a box contains N objects of which r are defective and N — r
are not defective

@ Then select n objects from the box without replacement

Then the probability that k of them are defective is given by P(X = k).
Properties of HYP(N, r, n)
m
E(X)=—
(@) EC) =7

(5) Var(X) = )’V_(l )

Problems...
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Special discrete distributions
Poisson random variable A random variable follows Poisson distribution if
the pmf is given by

)\k

P(X:k):Fe_’\kzo,l,2,3,...

where A > 0 is called the Poisson rate
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Special discrete distributions

Poisson random variable A random variable follows Poisson distribution if
the pmf is given by

)\k
P(X = k) = Fe"\k:0,1,2,3,...
where A > 0 is called the Poisson rate

Then we write X ~ Poisson(\)
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Special discrete distributions

Poisson random variable A random variable follows Poisson distribution if
the pmf is given by
)\k
P(X = k) = Fe"\k:0,1,2,3,...
where A > 0 is called the Poisson rate
Then we write X ~ Poisson(\)
The pmf of Poisson(\) looks like:

0.4‘.

—® =1
-8 =4
o —® x=10| |
0.2
0.1

20
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Special discrete distributions

Observation Possion(A) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user
in an e-commerce website. Here A\ determines the rate of arrival.
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Special discrete distributions

Observation Possion(A) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user
in an e-commerce website. Here A\ determines the rate of arrival.
Properties of Pois(\)

(a) E(X)=A
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Special discrete distributions

Observation Possion(A) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user
in an e-commerce website. Here A\ determines the rate of arrival.
Properties of Pois(\)

(a) E(X) = A
(b) E(X2) = A+ A2
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Special discrete distributions

Observation Possion(A) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user

in an e-commerce website. Here \ determines the rate of arrival.
Properties of Pois(\)

(a) E(X) =)
(b) E(X?) =X+ )2
(c) Var(X) = A
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Special discrete distributions

Observation Possion(A) explains arrivals of events e.g. arrival of mobile
calls, number of conversations per user, number of transactions of a user

in an e-commerce website. Here \ determines the rate of arrival.
Properties of Pois(\)

(a) E(X) =\

(b) E(X2) =X+ 2
(c) Var(X) = A

(d) M(t) = ee—1)

Problems...

Bibhas Adhikari (Autumn 2022-23, IIT Khara Proability and Statistics Lecture 7 September 5, 2022 66 /71





