Proability and Statistics
 MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 7
September 5, 2022

Special distributions

Review of last week
 - pdf and cdf for continuous random variables

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation
- variance

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation
- variance
- skewness, Kurtosis

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation
- variance
- skewness, Kurtosis
- Markov's and Chebyshev's inequality

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation
- variance
- skewness, Kurtosis
- Markov's and Chebyshev's inequality
- moment generating function

Special distributions

Review of last week

- pdf and cdf for continuous random variables
- percentile, median, mode
- moments of random variables
- expectation
- variance
- skewness, Kurtosis
- Markov's and Chebyshev's inequality
- moment generating function
- special discrete distributions
- Bernoulli and Binomial

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
X=\underbrace{\operatorname{Ber}(p)+\operatorname{Ber}(p)+\ldots+\operatorname{Ber}(p)}_{n \text { times }}
$$

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
X=\underbrace{\operatorname{Ber}(p)+\operatorname{Ber}(p)+\ldots+\operatorname{Ber}(p)}_{n \text { times }}
$$

(a) $\operatorname{Exp}(\operatorname{Bin}(n, p))=n p$

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
X=\underbrace{\operatorname{Ber}(p)+\operatorname{Ber}(p)+\ldots+\operatorname{Ber}(p)}_{n \text { times }}
$$

(a) $\operatorname{Exp}(\operatorname{Bin}(n, p))=n p$
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if X, Y are independent.

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
X=\underbrace{\operatorname{Ber}(p)+\operatorname{Ber}(p)+\ldots+\operatorname{Ber}(p)}_{n \text { times }}
$$

(a) $\operatorname{Exp}(\operatorname{Bin}(n, p))=n p$
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if X, Y are independent. Hence

$$
\operatorname{Var}(\operatorname{Bin}(n, p))=n p(1-p)
$$

Special discrete distributions

Binomial distribution

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

Relating Binomials with Bernoulli: Let $X \sim \operatorname{Bin}(n, p)$. Then

$$
X=\underbrace{\operatorname{Ber}(p)+\operatorname{Ber}(p)+\ldots+\operatorname{Ber}(p)}_{n \text { times }}
$$

(a) $\operatorname{Exp}(\operatorname{Bin}(n, p))=n p$
(b) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$ if X, Y are independent. Hence

$$
\operatorname{Var}(\operatorname{Bin}(n, p))=n p(1-p)
$$

Problems..

Special discrete distributions

Geometric random variable A random variable X follows geometric distribution if the pmf is given by

$$
P(X=k)=(1-p)^{k-1} p, k=1,2,3, \ldots
$$

where $0<p<1$.

Special discrete distributions

Geometric random variable A random variable X follows geometric distribution if the pmf is given by

$$
P(X=k)=(1-p)^{k-1} p, k=1,2,3, \ldots
$$

where $0<p<1$.
Then we write $X \sim \operatorname{Geometric}(p)$

Special discrete distributions

Geometric random variable A random variable X follows geometric distribution if the pmf is given by

$$
P(X=k)=(1-p)^{k-1} p, k=1,2,3, \ldots
$$

where $0<p<1$.
Then we write $X \sim \operatorname{Geometric}(p)$
The pmf of Geometric (p) looks like:

Special discrete distributions

Observation Geometric (p) explains the phenomena of a binary experiment (Bernoulli trials) until the success is reached (the trial number on which the first success occurs)

$$
P(X=k)=\underbrace{(1-p)^{k-1}}_{(k-1) \text { failures }} \underbrace{p}_{\text {success }}, k=1,2,3, \ldots
$$

where probability of success is p

Special discrete distributions

Observation Geometric (p) explains the phenomena of a binary experiment (Bernoulli trials) until the success is reached (the trial number on which the first success occurs)

$$
P(X=k)=\underbrace{(1-p)^{k-1}}_{(k-1) \text { failures }} \underbrace{p}_{\text {success }}, k=1,2,3, \ldots
$$

where probability of success is p
Properties of $\mathrm{Geo}(p)$
(a) $E(X)=\frac{1}{p}, E\left(X^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$

Special discrete distributions

Observation Geometric (p) explains the phenomena of a binary experiment (Bernoulli trials) until the success is reached (the trial number on which the first success occurs)

$$
P(X=k)=\underbrace{(1-p)^{k-1}}_{(k-1) \text { failures }} \underbrace{p}_{\text {success }}, k=1,2,3, \ldots
$$

where probability of success is p
Properties of $\mathrm{Geo}(p)$
(a) $E(X)=\frac{1}{p}, E\left(X^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$
(b) $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Special discrete distributions

Observation Geometric (p) explains the phenomena of a binary experiment (Bernoulli trials) until the success is reached (the trial number on which the first success occurs)

$$
P(X=k)=\underbrace{(1-p)^{k-1}}_{(k-1) \text { failures }} \underbrace{p}_{\text {success }}, k=1,2,3, \ldots
$$

where probability of success is p
Properties of $\mathrm{Geo}(p)$
(a) $E(X)=\frac{1}{p}, E\left(X^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$
(b) $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$
(c) $M(t)=\frac{p e^{t}}{1-(1-p) e^{t}}$

Special discrete distributions

Observation Geometric (p) explains the phenomena of a binary experiment (Bernoulli trials) until the success is reached (the trial number on which the first success occurs)

$$
P(X=k)=\underbrace{(1-p)^{k-1}}_{(k-1) \text { failures }} \underbrace{p}_{\text {success }}, k=1,2,3, \ldots
$$

where probability of success is p
Properties of $\mathrm{Geo}(p)$
(a) $E(X)=\frac{1}{p}, E\left(X^{2}\right)=\frac{2}{p^{2}}-\frac{1}{p}$
(b) $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$
(c) $M(t)=\frac{p e^{t}}{1-(1-p) e^{t}}$

Problems...

Special discrete distributions

Observation Geometric random variable has memoryless property:

$$
P(X>m+n \mid X>n)=P(X>m)
$$

for any positive integers m, n

Special discrete distributions

Observation Geometric random variable has memoryless property:

$$
P(X>m+n \mid X>n)=P(X>m)
$$

for any positive integers m, n
Although the $\operatorname{Bin}(n, p)$ and $\operatorname{Geo}(p)$ are based on sequence of Bernoulli trials, the fundamental difference is: the number of trials in $\operatorname{Bin}(n, p)$ is predetermined whereas it is the random variable in the case of $\mathrm{Geo}(p)$

Special discrete distributions

Negative Binomial Distribution A random variable follows negative binomial if the pmf is

$$
f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, k=r, r+1, \ldots
$$

where $0<p<1$ and r is a positive integer

Special discrete distributions

Negative Binomial Distribution A random variable follows negative binomial if the pmf is

$$
f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, k=r, r+1, \ldots
$$

where $0<p<1$ and r is a positive integer
We denote $X \sim \operatorname{NBIN}(r, p)$

Special discrete distributions

Negative Binomial Distribution A random variable follows negative binomial if the pmf is

$$
f(k)=\binom{k-1}{r-1} p^{r}(1-p)^{k-r}, k=r, r+1, \ldots
$$

where $0<p<1$ and r is a positive integer
We denote $X \sim \operatorname{NBIN}(r, p)$
The pmf of $\operatorname{NBIN}(20, p)$ looks like:

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$ Note that the pmf can also be written as

$$
f(k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, k=0,1, \ldots
$$

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$ Note that the pmf can also be written as

$$
f(k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, k=0,1, \ldots
$$

Note: r th success to occur in k th trial means there must be $(r-1)$ successes on the first $k-1$ trials

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$ Note that the pmf can also be written as

$$
f(k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, k=0,1, \ldots
$$

Note: r th success to occur in k th trial means there must be $(r-1)$
successes on the first $k-1$ trials
Properties of $\operatorname{NBIN}(n, p)$
(a) $E(X)=\frac{r}{p}$

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$ Note that the pmf can also be written as

$$
f(k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, k=0,1, \ldots
$$

Note: r th success to occur in k th trial means there must be $(r-1)$
successes on the first $k-1$ trials
Properties of $\operatorname{NBIN}(n, p)$
(a) $E(X)=\frac{r}{p}$
(b) $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$

Special discrete distributions

Observation Negative Binomial (r, p) explains the trial number on which r th head (success) occurs in a sequence of coin tosses (Bernoulli trials), when the probability of getting head is p whereas the tail is $1-p$ Note that the pmf can also be written as

$$
f(k)=\binom{k+r-1}{r-1} p^{r}(1-p)^{k}, k=0,1, \ldots
$$

Note: r th success to occur in k th trial means there must be $(r-1)$
successes on the first $k-1$ trials
Properties of $\operatorname{NBIN}(n, p)$
(a) $E(X)=\frac{r}{p}$
(b) $\operatorname{Var}(X)=\frac{r(1-p)}{p^{2}}$
(d) $M(t)=\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r}$ if $t<-\ln (1-p)$

Special discrete distributions

Question Why is it called 'negative' binomial distribution?

Special discrete distributions

Question Why is it called 'negative' binomial distribution? Note that values of $f(k)$ are successive terms in the binomial expansion of $\left(\frac{1}{p}-\frac{1-p}{p}\right)$

Special discrete distributions

Question Why is it called 'negative' binomial distribution? Note that values of $f(k)$ are successive terms in the binomial expansion of $\left(\frac{1}{p}-\frac{1-p}{p}\right)$
NBIN is called Pascal distributions or binomial waiting-time distributions

Special discrete distributions

Hypergeometric random variable A random variable X is said to have a Hypergeometric distribution if the pmf is of the form

$$
P(X=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, n
$$

where $k \leq r, n-k \leq N-r, N<r, n$ are positive integers

Special discrete distributions

Hypergeometric random variable A random variable X is said to have a Hypergeometric distribution if the pmf is of the form

$$
P(X=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, n
$$

where $k \leq r, n-k \leq N-r, N<r, n$ are positive integers Then we write $X \sim \operatorname{HYP}(N, r, n)$

Special discrete distributions

Hypergeometric random variable A random variable X is said to have a Hypergeometric distribution if the pmf is of the form

$$
P(X=k)=\frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}}, k=0,1, \ldots, n
$$

where $k \leq r, n-k \leq N-r, N<r, n$ are positive integers Then we write $X \sim \operatorname{HYP}(N, r, n)$ The pmf looks like:

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective
(2) Then select n objects from the box without replacement

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective
(2) Then select n objects from the box without replacement Then the probability that k of them are defective is given by $P(X=k)$.

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective
(2) Then select n objects from the box without replacement Then the probability that k of them are defective is given by $P(X=k)$. Properties of $\operatorname{HYP}(N, r, n)$
(a) $E(X)=\frac{r n}{N}$

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective
(2) Then select n objects from the box without replacement

Then the probability that k of them are defective is given by $P(X=k)$. Properties of $\operatorname{HYP}(N, r, n)$
(a) $E(X)=\frac{r n}{N}$
(b) $\operatorname{Var}(X)=\frac{r(N-r) \frac{n}{N}\left(1-\frac{n}{N}\right)}{N-1}$

Special discrete distributions

Observation The hypergeometric distribution explains the following phenomena
(1) Suppose a box contains N objects of which r are defective and $N-r$ are not defective
(2) Then select n objects from the box without replacement

Then the probability that k of them are defective is given by $P(X=k)$. Properties of $\operatorname{HYP}(N, r, n)$
(a) $E(X)=\frac{r n}{N}$
(b) $\operatorname{Var}(X)=\frac{r(N-r) \frac{n}{N}\left(1-\frac{n}{N}\right)}{N-1}$

Problems...

Special discrete distributions

Poisson random variable A random variable follows Poisson distribution if the pmf is given by

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} k=0,1,2,3, \ldots
$$

where $\lambda>0$ is called the Poisson rate

Special discrete distributions

Poisson random variable A random variable follows Poisson distribution if the pmf is given by

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} k=0,1,2,3, \ldots
$$

where $\lambda>0$ is called the Poisson rate
Then we write $X \sim \operatorname{Poisson}(\lambda)$

Special discrete distributions

Poisson random variable A random variable follows Poisson distribution if the pmf is given by

$$
P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} k=0,1,2,3, \ldots
$$

where $\lambda>0$ is called the Poisson rate
Then we write $X \sim \operatorname{Poisson}(\lambda)$
The pmf of Poisson (λ) looks like:

Special discrete distributions

Observation Possion (λ) explains arrivals of events e.g. arrival of mobile calls, number of conversations per user, number of transactions of a user in an e-commerce website. Here λ determines the rate of arrival.

Special discrete distributions

Observation Possion (λ) explains arrivals of events e.g. arrival of mobile calls, number of conversations per user, number of transactions of a user in an e-commerce website. Here λ determines the rate of arrival.
Properties of $\operatorname{Pois}(\lambda)$
(a) $E(X)=\lambda$

Special discrete distributions

Observation Possion (λ) explains arrivals of events e.g. arrival of mobile calls, number of conversations per user, number of transactions of a user in an e-commerce website. Here λ determines the rate of arrival.
Properties of $\operatorname{Pois}(\lambda)$
(a) $E(X)=\lambda$
(b) $E\left(X^{2}\right)=\lambda+\lambda^{2}$

Special discrete distributions

Observation Possion (λ) explains arrivals of events e.g. arrival of mobile calls, number of conversations per user, number of transactions of a user in an e-commerce website. Here λ determines the rate of arrival.
Properties of $\operatorname{Pois}(\lambda)$
(a) $E(X)=\lambda$
(b) $E\left(X^{2}\right)=\lambda+\lambda^{2}$
(c) $\operatorname{Var}(X)=\lambda$

Special discrete distributions

Observation Possion (λ) explains arrivals of events e.g. arrival of mobile calls, number of conversations per user, number of transactions of a user in an e-commerce website. Here λ determines the rate of arrival.
Properties of $\operatorname{Pois}(\lambda)$
(a) $E(X)=\lambda$
(b) $E\left(X^{2}\right)=\lambda+\lambda^{2}$
(c) $\operatorname{Var}(X)=\lambda$
(d) $M(t)=e^{\lambda\left(e^{t}-1\right)}$

Problems...

