Proability and Statistics
 MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 6
August 30, 2022

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.
Proof is obvious.

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.
Proof is obvious.
Problems...

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

$$
M_{X+a}(t)=E\left(e^{t(X+a)}\right)=E\left(e^{t X} e^{t a}\right)=e^{t a} E\left(e^{t X}\right)=e^{t a} M_{X}(t)
$$

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

$$
M_{X+a}(t)=E\left(e^{t(X+a)}\right)=E\left(e^{t X} e^{t a}\right)=e^{t a} E\left(e^{t X}\right)=e^{t a} M_{X}(t)
$$

(b) $M_{b X}(t)=M_{X}(b t)$

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

$$
M_{X+a}(t)=E\left(e^{t(X+a)}\right)=E\left(e^{t X} e^{t a}\right)=e^{t a} E\left(e^{t X}\right)=e^{t a} M_{X}(t)
$$

(b) $M_{b X}(t)=M_{X}(b t)$

$$
M_{b X}(t)=E^{(t b) X}=M_{X}(t b)
$$

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

$$
M_{X+a}(t)=E\left(e^{t(X+a)}\right)=E\left(e^{t X} e^{t a}\right)=e^{t a} E\left(e^{t X}\right)=e^{t a} M_{X}(t)
$$

(b) $M_{b X}(t)=M_{X}(b t)$

$$
M_{b X}(t)=E^{(t b) X}=M_{X}(t b)
$$

(c) $M_{\frac{X+a}{b}}=e^{\frac{a}{b} t} M_{X}\left(\frac{t}{b}\right)$

Key parameters for analyzing random variables

Theorem. Let $M_{X}(t)$ denote the $m g f$ of a random variable X. Suppose $a, b \in \mathbb{R}$. Then
(a) $M_{X+a}=e^{a t} M_{X}(t)$

$$
M_{X+a}(t)=E\left(e^{t(X+a)}\right)=E\left(e^{t X} e^{t a}\right)=e^{t a} E\left(e^{t X}\right)=e^{t a} M_{X}(t)
$$

(b) $M_{b X}(t)=M_{X}(b t)$

$$
M_{b X}(t)=E^{(t b) X}=M_{X}(t b)
$$

(c) $M_{\frac{X+a}{b}}=e^{\frac{a}{b} t} M_{X}\left(\frac{t}{b}\right)$

Proof follows from applying the above

Key parameters for analyzing random variables

Skewness: measures the asymmetry of the distribution

$$
\gamma=E\left(\left(\frac{X-\mu}{\sigma}\right)^{3}\right)
$$

Key parameters for analyzing random variables

Skewness: measures the asymmetry of the distribution

$$
\gamma=E\left(\left(\frac{X-\mu}{\sigma}\right)^{3}\right)
$$

Key parameters for analyzing random variables

Kurtosis: measures how heavey-tailed the distribution is

$$
\kappa=E\left(\left(\frac{X-\mu}{\sigma}\right)^{4}\right)
$$

Key parameters for analyzing random variables

Kurtosis: measures how heavey-tailed the distribution is

$$
\kappa=E\left(\left(\frac{X-\mu}{\sigma}\right)^{4}\right)
$$

Positive and negative kurtosis is defined based on the kurtosis of Gaussian random variable

Special discrete distributions

Bernoulli random variable Let X be a random variable with range space $R_{X}=\{0,1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$
f(0)=1-p \text { and } f(1)=p
$$

for some $0<p<1$.

Special discrete distributions

Bernoulli random variable Let X be a random variable with range space $R_{X}=\{0,1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$
f(0)=1-p \text { and } f(1)=p
$$

for some $0<p<1$.

Special discrete distributions

Bernoulli random variable Let X be a random variable with range space $R_{X}=\{0,1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$
f(0)=1-p \text { and } f(1)=p
$$

for some $0<p<1$.

Then we denote $X \sim \operatorname{Bernoulli}(p)$

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$
(b) $E\left(X^{2}\right)=p$

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$
(b) $E\left(X^{2}\right)=p$
(c) $\operatorname{Var}(X)=p(1-p)$

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$
(b) $E\left(X^{2}\right)=p$
(c) $\operatorname{Var}(X)=p(1-p)$
(d) $M(t)=(1-p)+p e^{t}$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$
(b) $E\left(X^{2}\right)=p$
(c) $\operatorname{Var}(X)=p(1-p)$
(d) $M(t)=(1-p)+p e^{t}$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable Question For what values of p the $\operatorname{Var}(X)$ attains the maximum value?

Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc.
Properties of $\operatorname{Ber}(p)$:
(a) $E(X)=p$
(b) $E\left(X^{2}\right)=p$
(c) $\operatorname{Var}(X)=p(1-p)$
(d) $M(t)=(1-p)+p e^{t}$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable Question For what values of p the $\operatorname{Var}(X)$ attains the maximum value?

Special discrete distributions

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

where $0<p<1$ and n is the total number of states.

Special discrete distributions

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

where $0<p<1$ and n is the total number of states.
Then we write $X \sim \operatorname{Binomial}(n, p)$

Special discrete distributions

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, k=0,1,2, \ldots, n
$$

where $0<p<1$ and n is the total number of states.
Then we write $X \sim \operatorname{Binomial}(n, p)$
The pmf of $\operatorname{Binomial}(n, p)$ looks like:

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

p^{3}

$(1-p)^{3}$

Properties of $\operatorname{Bin}(n, p)$
(a) $E(X)=n p$

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

Properties of $\operatorname{Bin}(n, p)$
(a) $E(X)=n p$
(b) $E\left(X^{2}\right)=n p(n p+(1-p))$

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

Properties of $\operatorname{Bin}(n, p)$
(a) $E(X)=n p$
(b) $E\left(X^{2}\right)=n p(n p+(1-p))$
(c) $\operatorname{Var}(X)=n p(1-p)$

Special discrete distributions

Observation Binomial (n, p) explains the phenomena of $X=k$ number of heads in n coin toss, when the probability of getting head is p whereas the tail is $1-p$

Properties of $\operatorname{Bin}(n, p)$
(a) $E(X)=n p$
(b) $E\left(X^{2}\right)=n p(n p+(1-p))$
(c) $\operatorname{Var}(X)=n p(1-p)$
(d) $M(t)=\left[(1-p)+p e^{t}\right]^{n}$

