Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 6 August 30, 2022

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Proability and Statistics

Lecture 6 August 30, 2022 1 / 70

3

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

3

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^2}{dt^2}M(t) = E\left(X^2e^{tX}\right)$$

3

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^{2}}{dt^{2}}M(t) = E\left(X^{2}e^{tX}\right)$$
 Similarly
(3)
$$\frac{d^{n}}{dt^{n}}M(t) = E\left(X^{n}e^{tX}\right)$$

3

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^2}{dt^2}M(t) = E\left(X^2e^{tX}\right)$$
 Similarly
(3)
$$\frac{d^n}{dt^n}M(t) = E\left(X^ne^{tX}\right)$$

Setting $t = 0$,

$$\frac{d^n}{dt^n}M(t)\mid_{t=0} = E\left(X^n e^{tX}\right)\mid_{t=0} = E(X^n)$$

Bibhas Adhikari (Autumn 2022-23, IIT Khara

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^2}{dt^2}M(t) = E\left(X^2e^{tX}\right)$$
 Similarly
(3)
$$\frac{d^n}{dt^n}M(t) = E\left(X^ne^{tX}\right)$$

Setting $t = 0$,

$$\frac{d^n}{dt^n}M(t)\mid_{t=0} = E\left(X^n e^{tX}\right)\mid_{t=0} = E(X^n)$$

Theorem If $M(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n + \ldots$ is the Taylor expansion of M(t) then $E(X^n) = n!a_n$ for all n.

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^2}{dt^2}M(t) = E\left(X^2e^{tX}\right)$$
 Similarly
(3)
$$\frac{d^n}{dt^n}M(t) = E\left(X^ne^{tX}\right)$$

Setting $t = 0$

$$\frac{d^n}{dt^n}M(t)\mid_{t=0} = E\left(X^n e^{tX}\right)\mid_{t=0} = E(X^n)$$

Theorem If $M(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n + \ldots$ is the Taylor expansion of M(t) then $E(X^n) = n!a_n$ for all n. Proof is obvious.

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Observation

(1)
$$\frac{d}{dt}M(t) = \frac{d}{dt}E(e^{tx}) = E\left(\frac{d}{dt}e^{tX}\right) = E\left(Xe^{tX}\right)$$

(2)
$$\frac{d^2}{dt^2}M(t) = E\left(X^2e^{tX}\right)$$
 Similarly
(3)
$$\frac{d^n}{dt^n}M(t) = E\left(X^ne^{tX}\right)$$

Setting $t = 0$

$$\frac{d^n}{dt^n}M(t)\mid_{t=0} = E\left(X^n e^{tX}\right)\mid_{t=0} = E(X^n)$$

Theorem If $M(t) = a_0 + a_1t + a_2t^2 + \ldots + a_nt^n + \ldots$ is the Taylor expansion of M(t) then $E(X^n) = n!a_n$ for all n. Proof is obvious. Problems...

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a) $M_{X+a} = e^{at}M_X(t)$

- 3

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a)
$$M_{X+a} = e^{at} M_X(t)$$

$$M_{X+a}(t) = E\left(e^{t(X+a)}\right) = E(e^{tX}e^{ta}) = e^{ta}E(e^{tX}) = e^{ta}M_X(t)$$

3

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a)
$$M_{X+a} = e^{at} M_X(t)$$

$$M_{X+a}(t) = E\left(e^{t(X+a)}\right) = E(e^{tX}e^{ta}) = e^{ta}E(e^{tX}) = e^{ta}M_X(t)$$

(b)
$$M_{bX}(t) = M_X(bt)$$

3

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a)
$$M_{X+a} = e^{at} M_X(t)$$

$$M_{X+a}(t) = E\left(e^{t(X+a)}\right) = E(e^{tX}e^{ta}) = e^{ta}E(e^{tX}) = e^{ta}M_X(t)$$

(b)
$$M_{bX}(t) = M_X(bt)$$

$$M_{bX}(t) = E^{(tb)X} = M_X(tb)$$

3

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a)
$$M_{X+a} = e^{at}M_X(t)$$

$$M_{X+a}(t) = E\left(e^{t(X+a)}\right) = E(e^{tX}e^{ta}) = e^{ta}E(e^{tX}) = e^{ta}M_X(t)$$

(b)
$$M_{bX}(t) = M_X(bt)$$

$$M_{bX}(t) = E^{(tb)X} = M_X(tb)$$

(c)
$$M_{\frac{X+a}{b}} = e^{\frac{a}{b}t} M_X\left(\frac{t}{b}\right)$$

3

A B b A B b

Theorem. Let $M_X(t)$ denote the mgf of a random variable X. Suppose $a, b \in \mathbb{R}$. Then

(a)
$$M_{X+a} = e^{at}M_X(t)$$

$$M_{X+a}(t) = E\left(e^{t(X+a)}\right) = E(e^{tX}e^{ta}) = e^{ta}E(e^{tX}) = e^{ta}M_X(t)$$

(b)
$$M_{bX}(t) = M_X(bt)$$

$$M_{bX}(t) = E^{(tb)X} = M_X(tb)$$

(c)
$$M_{\frac{X+a}{b}} = e^{\frac{a}{b}t} M_X(\frac{t}{b})$$

Proof follows from applying the above

Skewness: measures the asymmetry of the distribution

$$\gamma = E\left(\left(\frac{X-\mu}{\sigma}\right)^3\right)$$

E 6 4

Skewness: measures the asymmetry of the distribution

$$\gamma = E\left(\left(\frac{X-\mu}{\sigma}\right)^3\right)$$

Kurtosis: measures how heavey-tailed the distribution is

$$\kappa = E\left(\left(\frac{X-\mu}{\sigma}\right)^4\right)$$

э

국 동 김 국

Kurtosis: measures how heavey-tailed the distribution is

$$\kappa = E\left(\left(\frac{X-\mu}{\sigma}\right)^4\right)$$

Positive and negative kurtosis is defined based on the kurtosis of Gaussian random variable

Bibhas Adhikari (Autumn 2022-23, IIT Khara

Bernoulli random variable Let X be a random variable with range space $R_X = \{0, 1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$f(0) = 1 - p$$
 and $f(1) = p$

for some 0 .

< 注入 < 注入

Bernoulli random variable Let X be a random variable with range space $R_X = \{0, 1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$f(0) = 1 - p$$
 and $f(1) = p$

for some 0 .

Bernoulli random variable Let X be a random variable with range space $R_X = \{0, 1\}$. Then we say X to have Bernoulli distribution if the pmf of X is

$$f(0) = 1 - p$$
 and $f(1) = p$

for some 0 .

Then we denote $X \sim \text{Bernoulli}(p)$

Observation The Bernoulli(*p*) models the phenomena of coin toss/true-false/yes-no etc.

3

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(p) :

(a)
$$E(X) = p$$

3

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(p):

(a)
$$E(X) = p$$

(b) $E(X^2) = p$

3

• • = • • = •

Observation The Bernoulli(*p*) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(*p*) :

(a)
$$E(X) = p$$

(b) $E(X^2) = p$
(c) $Var(X) = p(1 - p)$

∃ ► < ∃ ►

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(p) :

(a)
$$E(X) = p$$

(b)
$$E(X^2) = p$$

(c)
$$Var(X) = p(1-p)$$

(d)
$$M(t) = (1 - p) + pe^{t}$$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(p) :

(a)
$$E(X) = p$$

(b)
$$E(X^2) = p$$

(c)
$$Var(X) = p(1-p)$$

(d)
$$M(t) = (1 - p) + pe^{t}$$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable Question For what values of p the Var(X) attains the maximum value?

Observation The Bernoulli(p) models the phenomena of coin toss/true-false/yes-no etc. Properties of Ber(p) :

(a)
$$E(X) = p$$

(b)
$$E(X^2) = p$$

(c)
$$Var(X) = p(1-p)$$

(d)
$$M(t) = (1 - p) + pe^{t}$$

Application Social network modelling, the existence of a link can be modelled as the Bernoulli random variable Question For what values of p the Var(X) attains the maximum value?

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$f(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, k = 0, 1, 2, \dots, n$$

where 0 and*n*is the total number of states.

A B b A B b

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$f(k) = \binom{n}{k} p^{k} (1-p)^{n-k}, k = 0, 1, 2, \dots, n$$

where 0 and*n*is the total number of states. $Then we write <math>X \sim \text{Binomial}(n, p)$

Binomial random variable A random variable X is said to have binomial distribution if the pmf of X is

$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n$$

where 0 and*n*is the total number of states. $Then we write <math>X \sim \text{Binomial}(n, p)$ The pmf of Binomial(n, p) looks like:

Observation Binomial(n, p) explains the phenomena of X = k number of heads in *n* coin toss, when the probability of getting head is *p* whereas the tail is 1 - p

3

Observation Binomial(n, p) explains the phenomena of X = k number of heads in *n* coin toss, when the probability of getting head is *p* whereas the tail is 1 - p

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Observation Binomial(n, p) explains the phenomena of X = k number of heads in n coin toss, when the probability of getting head is p whereas the tail is 1 - p

Properties of Bin(n, p)(a) E(X) = np

Observation Binomial(n, p) explains the phenomena of X = k number of heads in n coin toss, when the probability of getting head is p whereas the tail is 1 - p

Properties of Bin(n, p)

Observation Binomial(n, p) explains the phenomena of X = k number of heads in n coin toss, when the probability of getting head is p whereas the tail is 1 - p

Properties of Bin(n, p)

Observation Binomial(n, p) explains the phenomena of X = k number of heads in n coin toss, when the probability of getting head is p whereas the tail is 1 - p

Properties of Bin(n, p)

(a)
$$E(X) = np$$

(b) $E(X^2) = np(np + (1 - p))$
(c) $Var(X) = np(1 - p)$
(d) $M(t) = [(1 - p) + pe^t]^n$