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Key parameters for analyzing random variables

Observation

(1)
d

dt
M(t) =

d

dt
E (etx) = E

(
d

dt
etX
)

= E
(
XetX

)

(2)
d2

dt2
M(t) = E

(
X 2etX

)
Similarly

(3)
dn

dtn
M(t) = E

(
X netX

)
Setting t = 0,

dn

dtn
M(t) |t=0 = E

(
X netX

)
|t=0 = E (X n)

Theorem If M(t) = a0 + a1t + a2t
2 + . . .+ ant

n + . . . is the Taylor
expansion of M(t) then E (X n) = n!an for all n.
Proof is obvious.
Problems...
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Key parameters for analyzing random variables

Theorem. Let MX (t) denote the mgf of a random variable X . Suppose
a, b ∈ R. Then
(a) MX+a = eatMX (t)

MX+a(t) = E
(
et(X+a)

)
= E (etX eta) = etaE (etX ) = etaMX (t)

(b) MbX (t) = MX (bt)

MbX (t) = E (tb)X = MX (tb)

(c) MX+a
b

= e
a
b
tMX

(
t
b

)
Proof follows from applying the above
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Key parameters for analyzing random variables

Skewness: measures the asymmetry of the distribution

γ = E

((
X − µ

σ

)3
)
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Key parameters for analyzing random variables

Kurtosis: measures how heavey-tailed the distribution is

κ = E

((
X − µ

σ

)4
)

Positive and negative kurtosis is defined based on the kurtosis of Gaussian
random variable
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Special discrete distributions

Bernoulli random variable Let X be a random variable with range space
RX = {0, 1}. Then we say X to have Bernoulli distribution if the pmf of X
is

f (0) = 1− p and f (1) = p

for some 0 < p < 1.

Then we denote X ∼ Bernoulli(p)
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Special discrete distributions

Observation The Bernoulli(p) models the phenomena of coin
toss/true-false/yes-no etc.

Properties of Ber(p) :

(a) E (X ) = p

(b) E (X 2) = p

(c) Var(X ) = p(1− p)

(d) M(t) = (1− p) + pet

Application Social network modelling, the existence of a link can be
modelled as the Bernoulli random variable
Question For what values of p the Var(X ) attains the maximum value?
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Special discrete distributions

Binomial random variable A random variable X is said to have binomial
distribution if the pmf of X is

f (k) =

(
n

k

)
pk(1− p)n−k , k = 0, 1, 2, . . . , n

where 0 < p < 1 and n is the total number of states.

Then we write X ∼ Binomial(n, p)
The pmf of Binomial(n, p) looks like:
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Special discrete distributions

Observation Binomial(n, p) explains the phenomena of X = k number of
heads in n coin toss, when the probability of getting head is p whereas the
tail is 1− p

Properties of Bin(n, p)

(a) E (X ) = np

(b) E (X 2) = np(np + (1− p))

(c) Var(X ) = np(1− p)

(d) M(t) = [(1− p) + pet ]n
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