Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 5
August 29, 2022

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$
- Describing events through random variables:

$$
a \leq X \leq b=\{s \in S: a \leq X(s) \leq b\}
$$

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$
- Describing events through random variables:

$$
a \leq X \leq b=\{s \in S: a \leq X(s) \leq b\}
$$

- Discrete and continuous random variables

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$
- Describing events through random variables:

$$
a \leq X \leq b=\{s \in S: a \leq X(s) \leq b\}
$$

- Discrete and continuous random variables
- Discrete random variables:

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$
- Describing events through random variables:

$$
a \leq X \leq b=\{s \in S: a \leq X(s) \leq b\}
$$

- Discrete and continuous random variables
- Discrete random variables:
- probability mass/density function (pmf/pdf):

$$
f(x)=P(X=x), x \in \mathbb{R}
$$

Discrete random variables

Review of last week

- Random variables: $X: S \rightarrow \mathbb{R}$
- Describing events through random variables:

$$
a \leq X \leq b=\{s \in S: a \leq X(s) \leq b\}
$$

- Discrete and continuous random variables
- Discrete random variables:
- probability mass/density function (pmf/pdf):

$$
f(x)=P(X=x), x \in \mathbb{R}
$$

- cumulative density/distribution function (cdf):

$$
F(x)=P(X \leq x), x \in \mathbb{R}
$$

Discrete random variables

Cumulative distribution function
Let X be a discrete random variable with range space $R_{X}=\left\{x_{1}, x_{2}, \ldots\right\}$. Then

$$
F\left(x_{k}\right)=P\left(X \leq x_{k}\right)=\sum_{l=1}^{k} p\left(x_{l}\right)
$$

Discrete random variables

Cumulative distribution function

Let X be a discrete random variable with range space $R_{X}=\left\{x_{1}, x_{2}, \ldots\right\}$. Then

$$
F\left(x_{k}\right)=P\left(X \leq x_{k}\right)=\sum_{l=1}^{k} p\left(x_{l}\right)
$$

Example: Let X be a random variable with pdf $p(0)=\frac{1}{4}, p(1)=\frac{1}{2}$,
$p(4)=\frac{1}{4}$. Then

Discrete random variables

Cumulative distribution function
Let X be a discrete random variable with range space $R_{X}=\left\{x_{1}, x_{2}, \ldots\right\}$. Then

$$
F\left(x_{k}\right)=P\left(X \leq x_{k}\right)=\sum_{l=1}^{k} p\left(x_{l}\right)
$$

Example: Let X be a random variable with pdf $p(0)=\frac{1}{4}, p(1)=\frac{1}{2}$, $p(4)=\frac{1}{4}$. Then

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =F\left(x_{1}\right) \\
f\left(x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \vdots \\
f\left(x_{k}\right) & =F\left(x_{k}\right)-F\left(x_{k-1}\right)
\end{aligned}
$$

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =F\left(x_{1}\right) \\
f\left(x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \vdots \\
f\left(x_{k}\right) & =F\left(x_{k}\right)-F\left(x_{k-1}\right)
\end{aligned}
$$

Thus cdf $F(x)$ characterizes X

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =F\left(x_{1}\right) \\
f\left(x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \vdots \\
f\left(x_{k}\right) & =F\left(x_{k}\right)-F\left(x_{k-1}\right)
\end{aligned}
$$

Thus cdf $F(x)$ characterizes X

Properties of cdf

(a) $F(-\infty)=$

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =F\left(x_{1}\right) \\
f\left(x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \vdots \\
f\left(x_{k}\right) & =F\left(x_{k}\right)-F\left(x_{k-1}\right)
\end{aligned}
$$

Thus cdf $F(x)$ characterizes X

Properties of cdf

(a) $F(-\infty)=0$
(b) $F(\infty)=$

Discrete random variables

Let $F(x)$ be the cdf of a random variable X with $R_{X}=\left\{x_{1}, \ldots, x_{k}\right\}$ such that $x_{1}<x_{2}<\ldots<x_{k}$. Then

$$
\begin{aligned}
f\left(x_{1}\right) & =F\left(x_{1}\right) \\
f\left(x_{2}\right) & =F\left(x_{2}\right)-F\left(x_{1}\right) \\
& \vdots \\
f\left(x_{k}\right) & =F\left(x_{k}\right)-F\left(x_{k-1}\right)
\end{aligned}
$$

Thus cdf $F(x)$ characterizes X

Properties of cdf

(a) $F(-\infty)=0$
(b) $F(\infty)=1$
(c) $F(x)$ is an increasing function: if $x<y$ then $F(x)<F(y)$

Continuous random variables

examples:
(1) Suppose we are concerned with the possibility that an accident will occur on a highway that is 1000 kilometers long and that we are interested in the probability that it will occur at a given location, or perhaps on a given stretch of the road. Then the sample space is the (continuous) interval [0, 1000]

Continuous random variables

examples:
(1) Suppose we are concerned with the possibility that an accident will occur on a highway that is 1000 kilometers long and that we are interested in the probability that it will occur at a given location, or perhaps on a given stretch of the road. Then the sample space is the (continuous) interval [0, 1000]

(2) Throwing a dart

Continuous random variables

Properties of probability density function (pdf)
If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ represents a pdf of a continuous random variable X then

- $f(x) \geq 0$ for $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$

Continuous random variables

Properties of probability density function (pdf)

If a function $f: \mathbb{R} \rightarrow \mathbb{R}$ represents a pdf of a continuous random variable X then

- $f(x) \geq 0$ for $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
pdf
If f is the pdf of a r.v. X then for an event $A=[a, b]$:

Continuous random variables

Question: What is $P(X=x)$ for any continuous r.v. X ?

Continuous random variables

Question: What is $P(X=x)$ for any continuous r.v. X ? pmf and pdf

Continuous random variables

Question: What is $P(X=x)$ for any continuous r.v. X ? pmf and pdf

Example: Let X denote the phase angle of a voltage signal. Assume that X has an equal probability for any value between 0 to 2π. Then find the pdf of X and compute $P(0 \leq X \leq \pi / 2)$.

Continuous random variables

Question: What is $P(X=x)$ for any continuous r.v. X ? pmf and pdf

Example: Let X denote the phase angle of a voltage signal. Assume that X has an equal probability for any value between 0 to 2π. Then find the pdf of X and compute $P(0 \leq X \leq \pi / 2)$.

$$
f(x)=\frac{1}{2 \pi}, 0 \leq x \leq 2 \pi, P(0 \leq X \leq \pi / 2)=\frac{1}{4}
$$

Continuous random variables

Question: What is $P(X=x)$ for any continuous r.v. X ? pmf and pdf

Example: Let X denote the phase angle of a voltage signal. Assume that X has an equal probability for any value between 0 to 2π. Then find the pdf of X and compute $P(0 \leq X \leq \pi / 2)$.

$$
f(x)=\frac{1}{2 \pi}, 0 \leq x \leq 2 \pi, P(0 \leq X \leq \pi / 2)=\frac{1}{4}
$$

Problems..

Continuous random variables

cdf

Let $f(x)$ be a pdf of a continuous r.v. X. Then the cdf of X is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x, x \in \mathbb{R}
$$

Continuous random variables

cdf

Let $f(x)$ be a pdf of a continuous r.v. X. Then the cdf of X is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x, x \in \mathbb{R}
$$

Continuous random variables

cdf

Let $f(x)$ be a pdf of a continuous r.v. X. Then the cdf of X is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x, x \in \mathbb{R}
$$

properties
(1) non-decreasing
(2) $F(\infty)=1$ and $F(-\infty)=0$

Continuous random variables

Proposition:
(1) $P(X<x)=F(x)$

Continuous random variables

Proposition:
(1) $P(X<x)=F(x)$
(2) $P(X>x)=1-F(x)$

Continuous random variables

Proposition:
(1) $P(X<x)=F(x)$
(2) $P(X>x)=1-F(x)$
(3) $P(a \leq X \leq b)=F(b)-F(a)$

Question How to obtain pdf from cdf?

Continuous random variables

Proposition:
(1) $P(X<x)=F(x)$
(2) $P(X>x)=1-F(x)$
(3) $P(a \leq X \leq b)=F(b)-F(a)$

Question How to obtain pdf from cdf?

$$
\frac{d}{d x} F(x)=f(x)
$$

Continuous random variables

Proposition:
(1) $P(X<x)=F(x)$
(2) $P(X>x)=1-F(x)$
(3) $P(a \leq X \leq b)=F(b)-F(a)$

Question How to obtain pdf from cdf?

$$
\frac{d}{d x} F(x)=f(x)
$$

The proof follows from fundamental theorem of calculus:

$$
\frac{d}{d x} F(x)=\frac{d}{d x}\left(\int_{-\infty}^{x} f(t) d t\right)=f(x) \frac{d x}{d x}=f(x)
$$

Key parameters for analyzing continuous random variables

Percentile

Let p be a number between 0 to 1 . Then $100 p$-th percentile of a continuous r, v, is a real number q such that

$$
P(X \leq q) \leq p \text { and } P(X>q) \leq 1-p
$$

Key parameters for analyzing continuous random variables

Percentile

Let p be a number between 0 to 1 . Then $100 p$-th percentile of a continuous r, v, is a real number q such that

$$
P(X \leq q) \leq p \text { and } P(X>q) \leq 1-p
$$

Question What does the number q measure?

Key parameters for analyzing continuous random variables

Percentile

Let p be a number between 0 to 1 . Then $100 p$-th percentile of a continuous r, v, is a real number q such that

$$
P(X \leq q) \leq p \text { and } P(X>q) \leq 1-p
$$

Question What does the number q measure?

Key parameters for analyzing continuous random variables

Percentile

Let p be a number between 0 to 1 . Then $100 p$-th percentile of a continuous r, v, is a real number q such that

$$
P(X \leq q) \leq p \text { and } P(X>q) \leq 1-p
$$

Question What does the number q measure?

Problems...

Key parameters for analyzing continuous random variables

Definition

The 25 -th and 75 -th percentiles are called first and third quartiles respectively. The 50 -th percentile is called the median of the random variable.

Key parameters for analyzing continuous random variables

Definition

The 25 -th and 75 -th percentiles are called first and third quartiles respectively. The 50 -th percentile is called the median of the random variable.

Key parameters for analyzing continuous random variables

Definition

A mode of a continuous random variable X is the value of x such that the pdf $f(x)$ attains a relative/local maximum.

Key parameters for analyzing continuous random variables

Definition

A mode of a continuous random variable X is the value of x such that the pdf $f(x)$ attains a relative/local maximum.

Key parameters for analyzing random variables

Moments

The nth moment about the origin of a random variable X is defined by

$$
E\left(X^{n}\right)=\left\{\begin{array}{l}
\sum_{x \in R_{x}} x^{n} f(x) \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x^{n} f(x) d x \text { if } X \text { is continuous }
\end{array}\right.
$$

Key parameters for analyzing random variables

Moments

The nth moment about the origin of a random variable X is defined by

$$
E\left(X^{n}\right)=\left\{\begin{array}{l}
\sum_{x \in R_{x}} x^{n} f(x) \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x^{n} f(x) d x \text { if } X \text { is continuous }
\end{array}\right.
$$

If $n=1$ then $E(X)$ (sometimes denoted as $E[X]$ or μ) is called the expectation or mean of X.

Key parameters for analyzing random variables

Moments

The nth moment about the origin of a random variable X is defined by

$$
E\left(X^{n}\right)=\left\{\begin{array}{l}
\sum_{x \in R_{x}} x^{n} f(x) \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x^{n} f(x) d x \text { if } X \text { is continuous }
\end{array}\right.
$$

If $n=1$ then $E(X)$ (sometimes denoted as $E[X]$ or μ) is called the expectation or mean of X.

Key parameters for analyzing random variables

Moments

The nth moment about the origin of a random variable X is defined by

$$
E\left(X^{n}\right)=\left\{\begin{array}{l}
\sum_{x \in R_{x}} x^{n} f(x) \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} x^{n} f(x) d x \text { if } X \text { is continuous }
\end{array}\right.
$$

If $n=1$ then $E(X)$ (sometimes denoted as $E[X]$ or μ) is called the expectation or mean of X.

Question Why are they called moments?

Key parameters for analyzing random variables

Observation Expectation is weighted average of the values that X can take

Key parameters for analyzing random variables

Observation Expectation is weighted average of the values that X can take Existence of expectation: Consider a pmf

$$
f(k)=\frac{6}{\pi^{2} k^{2}}, k=1,2, \ldots
$$

Key parameters for analyzing random variables

Observation Expectation is weighted average of the values that X can take Existence of expectation: Consider a pmf

$$
f(k)=\frac{6}{\pi^{2} k^{2}}, k=1,2, \ldots
$$

Note that $\sum_{k} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$. Then

$$
\begin{aligned}
E(X) & =\sum_{k} k \frac{6}{\pi^{2} k^{2}} \\
& =\frac{6}{\pi^{2}} \sum_{k} \frac{1}{k} \rightarrow \infty
\end{aligned}
$$

Thus $E(X)$ does not exist.

Key parameters for analyzing random variables

Properties of expectation: Let X be a randomvariable with pmf/pdf $f(x)$. Then
(1) Function: $E(g(X))=\sum_{x \in R_{X}} g(x) f(x)$

Key parameters for analyzing random variables

Properties of expectation: Let X be a randomvariable with $\mathrm{pmf} / \mathrm{pdf} f(x)$. Then
(1) Function: $E(g(X))=\sum_{x \in R_{X}} g(x) f(x)$
(2) Linearity: $E(g(X)+h(X))=E(g(X))+E(h(X))$. In particular,

$$
E(a X+b)=a E(X)+b
$$

Key parameters for analyzing random variables

Properties of expectation: Let X be a randomvariable with pmf/pdf $f(x)$. Then
(1) Function: $E(g(X))=\sum_{x \in R_{X}} g(x) f(x)$
(2) Linearity: $E(g(X)+h(X))=E(g(X))+E(h(X))$. In particular, $E(a X+b)=a E(X)+b$
(3) Scaling: $E(c X)=c E(X)$

Key parameters for analyzing random variables

Spread of the distribution

The variance of a random variable X is defined as

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2} .
$$

The square root of variance, denoted as σ is called the standard deviation of X.

Key parameters for analyzing random variables

Spread of the distribution

The variance of a random variable X is defined as

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2} .
$$

The square root of variance, denoted as σ is called the standard deviation of X.

Properties of variance:
(1) $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$

Key parameters for analyzing random variables

Spread of the distribution

The variance of a random variable X is defined as

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}
$$

The square root of variance, denoted as σ is called the standard deviation of X.

Properties of variance:
(1) $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
(2) $\operatorname{Var}(X+c)=\operatorname{Var}(X)$

Thus $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

Key parameters for analyzing random variables

Spread of the distribution

The variance of a random variable X is defined as

$$
\sigma^{2}=\operatorname{Var}(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}
$$

The square root of variance, denoted as σ is called the standard deviation of X.

Properties of variance:
(1) $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$
(2) $\operatorname{Var}(X+c)=\operatorname{Var}(X)$

Thus $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
Problems...

Random variables

Observation:
(1) σ^{2} is the weighted average of the square of distances from mean to the values that X can take :

Random variables

Observation:
(1) σ^{2} is the weighted average of the square of distances from mean to the values that X can take : σ^{2} or σ measures the spread of the distribution of X

Random variables

Observation:
(1) σ^{2} is the weighted average of the square of distances from mean to the values that X can take : σ^{2} or σ measures the spread of the distribution of X
(2) The spread can also be measured by the area between two values

Random variables

Observation:
(1) σ^{2} is the weighted average of the square of distances from mean to the values that X can take : σ^{2} or σ measures the spread of the distribution of X
(2) The spread can also be measured by the area between two values
(3) Conclusion: σ controls the area between two values

Key parameters for analyzing random variables
Markov inequality: Let X be a non-negative random variable. Then

$$
P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
$$

for any $\epsilon>0$.

Key parameters for analyzing random variables
Markov inequality: Let X be a non-negative random variable. Then

$$
P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
$$

for any $\epsilon>0$.

Key parameters for analyzing random variables
Markov inequality: Let X be a non-negative random variable. Then

$$
P(X \geq \epsilon) \leq \frac{E(X)}{\epsilon}
$$

for any $\epsilon>0$.

The proof:

$$
\epsilon P(X \geq \epsilon)=\int_{\epsilon}^{\infty} \epsilon f(x) d x \leq \int_{\epsilon}^{\infty} x f(x) d x \leq \int_{0}^{\infty} x f(x) d x=E(X)
$$

Key parameters for analyzing random variables

Chebyshev's inequality: Let X be a random variable with mean μ. Then for any $\epsilon>0$,

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

Key parameters for analyzing random variables

Chebyshev's inequality: Let X be a random variable with mean μ. Then for any $\epsilon>0$,

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

Key parameters for analyzing random variables

Chebyshev's inequality: Let X be a random variable with mean μ. Then for any $\epsilon>0$,

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{Var}(X)}{\epsilon^{2}}
$$

Proof: $P(|X-\mu| \geq \epsilon)=P\left(|X-\mu|^{2} \geq \epsilon^{2}\right) \leq \frac{E\left((X-\mu)^{2}\right)}{\epsilon^{2}}=\frac{\operatorname{Var}(X)}{\epsilon^{2}}$

Key parameters for analyzing random variables

Alternative: Setting $\epsilon=k \sigma$,

$$
P(|X-\mu| \geq k \sigma) \leq \frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}
$$

for any positive constant k

Key parameters for analyzing random variables

Alternative: Setting $\epsilon=k \sigma$,

$$
P(|X-\mu| \geq k \sigma) \leq \frac{\sigma^{2}}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}
$$

for any positive constant k
Alternative: Setting $\epsilon=k \sigma$,

$$
P(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}
$$

Key parameters for analyzing random variables

Moment generating function (mgf): generating moments of a random variable

Key parameters for analyzing random variables

Moment generating function (mgf): generating moments of a random variable

mgf

Let X be a random variable with pdf $f(x)$. Then the function $M: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
M(t)=E\left(e^{t X}\right)
$$

is called mgf of X if the expectation exists in some interval $[-h, h], h>0$.
Thus

$$
M(t)=\left\{\begin{array}{l}
\sum_{x \in R_{X}} e^{t x} f(x) \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} e^{t x} f(x) d x \text { if } X \text { is continuous }
\end{array}\right.
$$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.
Proof is obvious.

Key parameters for analyzing random variables

Observation
(1) $\frac{d}{d t} M(t)=\frac{d}{d t} E\left(e^{t x}\right)=E\left(\frac{d}{d t} e^{t X}\right)=E\left(X e^{t X}\right)$
(2) $\frac{d^{2}}{d t^{2}} M(t)=E\left(X^{2} e^{t X}\right)$ Similarly
(3) $\frac{d^{n}}{d t^{n}} M(t)=E\left(X^{n} e^{t X}\right)$

Setting $t=0$,

$$
\left.\frac{d^{n}}{d t^{n}} M(t)\right|_{t=0}=\left.E\left(X^{n} e^{t X}\right)\right|_{t=0}=E\left(X^{n}\right)
$$

Theorem If $M(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+\ldots$ is the Taylor expansion of $M(t)$ then $E\left(X^{n}\right)=n!a_{n}$ for all n.
Proof is obvious.
Problems...

