Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur
Lecture 4
August 23, 2022

Random Variables

Types of random variables: Let X be a random variable \rightarrow Discrete

Random Variables

Types of random variables: Let X be a random variable \rightarrow Discrete: if R_{X} is countable
\rightarrow Continuous:

Random Variables

Types of random variables: Let X be a random variable \rightarrow Discrete: if R_{X} is countable
\rightarrow Continuous: if R_{X} is an interval or union of intervals (uncountable)

Random Variables

Types of random variables: Let X be a random variable \rightarrow Discrete: if R_{X} is countable
\rightarrow Continuous: if R_{X} is an interval or union of intervals (uncountable)
\rightarrow Mixed

Discrete random variables

Example: rolling a pair of six-faced dice, a green and a red one

Let X denote the sum of outcomes in a roll. Then

$$
\begin{aligned}
X=9 & \equiv\{(6,3),(4,5),(5,4),(3,6)\} \\
2 \leq X<4 & \equiv\{(1,1),(1,2),(2,1)\}
\end{aligned}
$$

Discrete random variables

Then

x	$P(X=x)$
2	$\frac{1}{36}$
3	$\frac{2}{36}$
4	$\frac{3}{36}$
5	$\frac{4}{36}$
6	$\frac{5}{36}$
7	$\frac{6}{36}$
8	$\frac{5}{36}$
9	$\frac{4}{36}$
10	$\frac{3}{36}$
11	$\frac{2}{36}$
12	$\frac{1}{36}$

Discrete random variables

Then

x	$P(X=x)$
2	$\frac{1}{36}$
3	$\frac{2}{36}$
4	$\frac{3}{36}$
5	$\frac{4}{36}$
6	$\frac{5}{36}$
7	$\frac{6}{36}$
8	$\frac{5}{36}$
9	$\frac{4}{36}$
10	$\frac{3}{36}$
11	$\frac{2}{36}$
12	$\frac{1}{36}$

Thus the function $f: \mathbb{R} \rightarrow[0,1]$ given by

$$
f(x)=P(X=x)=\left\{\begin{array}{l}
\frac{6-|x-7|}{36} \text { if } x=2,3, \ldots, 12 \\
0 \text { otherwise }
\end{array}\right.
$$

capture the 'information' about probability of events

Probability mass/density function (pmf/pdf)

Let X be a discrete random variable. Then the function $f: R_{X} \rightarrow \mathbb{R}$ defined by

$$
f(x)=P(X=x)
$$

is called the the pmf associated with X

Probability mass/density function (pmf/pdf)

Let X be a discrete random variable. Then the function $f: R_{X} \rightarrow \mathbb{R}$ defined by

$$
f(x)=P(X=x)
$$

is called the the pmf associated with X
Example: Let a box contains 3 white balls and 2 black balls. Suppose balls are drawn from the box without replacement. A random variable X defines the number of draws untill the last black ball is drawn. Then what is the pmf $f(x)$?

Probability mass/density function (pmf/pdf)

Let X be a discrete random variable. Then the function $f: R_{X} \rightarrow \mathbb{R}$ defined by

$$
f(x)=P(X=x)
$$

is called the the pmf associated with X
Example: Let a box contains 3 white balls and 2 black balls. Suppose balls are drawn from the box without replacement. A random variable X defines the number of draws untill the last black ball is drawn. Then what is the pmf $f(x)$?

Probability mass/density function (pmf/pdf)

Let X be a discrete random variable. Then the function $f: R_{X} \rightarrow \mathbb{R}$ defined by

$$
f(x)=P(X=x)
$$

is called the the pmf associated with X
Example: Let a box contains 3 white balls and 2 black balls. Suppose balls are drawn from the box without replacement. A random variable X defines the number of draws untill the last black ball is drawn. Then what is the pmf $f(x)$?

$$
f(x)=\frac{x-1}{10}, x=2,3,4,5
$$

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.
Questions Does any function represent a pmf/pdf of a random variable?

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.
Questions Does any function represent a pmf/pdf of a random variable?
Properties of the pmf/pdf
If a function $f: R_{X} \rightarrow \mathbb{R}$ represents pmf/pdf of a random variable X then
(a) $f(x) \geq 0$ for any $x \in R_{X}$
(b) $\sum_{x \in R_{X}} f(x)=1$

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.
Questions Does any function represent a pmf/pdf of a random variable?

Properties of the pmf/pdf

If a function $f: R_{X} \rightarrow \mathbb{R}$ represents pmf/pdf of a random variable X then
(a) $f(x) \geq 0$ for any $x \in R_{X}$
(b) $\sum_{x \in R_{X}} f(x)=1$

Observation: If R_{X} is finite with k elements then $f(x)$ can be represented by a vector, known as the probability vector in \mathbb{R}^{k} such that each entry of the vector is nonnegative and sum of the entries is 1

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.
Questions Does any function represent a pmf/pdf of a random variable?

Properties of the pmf/pdf

If a function $f: R_{X} \rightarrow \mathbb{R}$ represents pmf/pdf of a random variable X then
(a) $f(x) \geq 0$ for any $x \in R_{X}$
(b) $\sum_{x \in R_{X}} f(x)=1$

Observation: If R_{X} is finite with k elements then $f(x)$ can be represented by a vector, known as the probability vector in \mathbb{R}^{k} such that each entry of the vector is nonnegative and sum of the entries is 1 Question Draw possible probability vectors in \mathbb{R}^{2} and \mathbb{R}^{3}

Discrete random variables

$\mathrm{pmf} / \mathrm{pdf}$ characterizes the associated random variable.
Questions Does any function represent a pmf/pdf of a random variable?

Properties of the pmf/pdf

If a function $f: R_{X} \rightarrow \mathbb{R}$ represents pmf/pdf of a random variable X then
(a) $f(x) \geq 0$ for any $x \in R_{X}$
(b) $\sum_{x \in R_{X}} f(x)=1$

Observation: If R_{X} is finite with k elements then $f(x)$ can be represented by a vector, known as the probability vector in \mathbb{R}^{k} such that each entry of the vector is nonnegative and sum of the entries is 1 Question Draw possible probability vectors in \mathbb{R}^{2} and \mathbb{R}^{3} Problems..

Discrete random variables

pdf diagrams

Probability histogram and bar chart

Discrete random variables

pdf diagrams
Probability histogram and bar chart

Question What is the difference between histogram and bar chart?

Discrete random variables

Cumulative distribution function (cdf)
Let X be a random variable. Then the function $F: R_{X} \rightarrow[0,1]$ defined by

$$
F(x)=P(X \leq x)
$$

is called the cdf of X

Discrete random variables

Cumulative distribution function (cdf)
Let X be a random variable. Then the function $F: R_{X} \rightarrow[0,1]$ defined by

$$
F(x)=P(X \leq x)
$$

is called the cdf of X

Discrete random variables

Cumulative distribution function (cdf)
Let X be a random variable. Then the function $F: R_{X} \rightarrow[0,1]$ defined by

$$
F(x)=P(X \leq x)
$$

is called the cdf of X

Question Can the pdf be obtained from cdf?

