Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 3
August 23, 2022

Review of Lecture 1 and 2

- Random experiment

Review of Lecture 1 and 2

- Random experiment
- Sample space

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events
- σ-field

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events
- σ-field
- Probability measure

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events
- σ-field
- Probability measure

The above notions develop the notion of probability space:

$$
(S, \mathcal{F}, P)
$$

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events
- σ-field
- Probability measure

The above notions develop the notion of probability space:

$$
(S, \mathcal{F}, P)
$$

- Properties of probability measure

Review of Lecture 1 and 2

- Random experiment
- Sample space
- Events
- σ-field
- Probability measure

The above notions develop the notion of probability space:

$$
(S, \mathcal{F}, P)
$$

- Properties of probability measure
- Conditional probability

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided $P(B)>0$

Probability

Sequential trials: Let A and B are disjoints events for a sample space. Then
Question: What is $P(A$ before $B)$?

Probability

Sequential trials: Let A and B are disjoints events for a sample space.
Then
Question: What is $P(A$ before $B)$?

$$
\begin{aligned}
P(A \text { before } B) & =P(A)+r P(A)+r^{2} P(A)+\ldots \\
& =P(A)\left(1+r+r^{2}+\ldots\right)
\end{aligned}
$$

Probability

Sequential trials: Let A and B are disjoints events for a sample space.
Then
Question: What is $P(A$ before $B)$?

$$
\begin{aligned}
P(A \text { before } B) & =P(A)+r P(A)+r^{2} P(A)+\ldots \\
& =P(A)\left(1+r+r^{2}+\ldots\right) \\
& =P(A) \frac{1}{1-r}=\frac{P(A)}{P(A)+P(B)}
\end{aligned}
$$

Probability

Conditional probability interpretation of sequential trial:

$$
P(A \text { before } B)=P(A \mid A \cup B)
$$

Problem.....

Probability

Conditional probability interpretation of sequential trial:

$$
P(A \text { before } B)=P(A \mid A \cup B)
$$

Problem.....

Sampling with/without replacement

The phenomena of an object is selected and then replaced before the next object is selected is called sampling with replacement. Otherwise it is called sampling without replacement.

Problem....

Probability

Probability

Independent events
Two events A and B are called independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Question: What is the meaning of 'independence' here?

Probability

Independent events
Two events A and B are called independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Question: What is the meaning of 'independence' here?

$$
P(A \mid B)=P(A)
$$

Probability

Independent events

Two events A and B are called independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Question: What is the meaning of 'independence' here?

$$
P(A \mid B)=P(A)
$$

Observation: If A and B are independent events then

- A^{c} and B are independent
- A and B^{c} are independent

Probability

Partition of a set
Let $A_{1}, A_{2} \ldots, A_{k}$ be a collection of subsets of a set S such that

- $\cup_{i=1}^{k} A_{i}=S$
- $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Then the collection of sets is called a partition of S.

Probability

Partition of a set

Let $A_{1}, A_{2} \ldots, A_{k}$ be a collection of subsets of a set S such that

- $\cup_{i=1}^{k} A_{i}=S$
- $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Then the collection of sets is called a partition of S.

Probability

Theorem: (law of total probability) Let $B_{1}, B_{2}, \ldots, B_{k}$ form a partition of a sample space S with $P\left(B_{i}\right) \neq 0, i=1, \ldots, k$. Then for any event A of S :

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

Probability

Theorem: (law of total probability) Let $B_{1}, B_{2}, \ldots, B_{k}$ form a partition of a sample space S with $P\left(B_{i}\right) \neq 0, i=1, \ldots, k$. Then for any event A of S :

$$
P(A)=\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

The proof follows from the fact (draw the Venn diagram) that

$$
A=\cup_{i=1}^{k} A \cap B_{i} .
$$

Probability

Bayes Theorem: Let B_{1}, \ldots, B_{k} be a partition of a sample space S with $P\left(B_{i}\right) \neq 0$. Then for any event A of S with $P(A) \neq 0$:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

Probability

Bayes Theorem: Let B_{1}, \ldots, B_{k} be a partition of a sample space S with $P\left(B_{i}\right) \neq 0$. Then for any event A of S with $P(A) \neq 0$:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

The proof follows from

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i} \cap A\right)}{P(A)}
$$

and the multiplication rule

Probability

Bayes Theorem: Let B_{1}, \ldots, B_{k} be a partition of a sample space S with $P\left(B_{i}\right) \neq 0$. Then for any event A of S with $P(A) \neq 0$:

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{i=1}^{k} P\left(B_{i}\right) P\left(A \mid B_{i}\right)}
$$

The proof follows from

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i} \cap A\right)}{P(A)}
$$

and the multiplication rule

- $P\left(B_{i}\right)$ is called prior probability
- $P\left(B_{i} \mid A\right)$ is called posterior probability Problem...

Random Variables

Random variable: mathematizing sample space
A random variable associates sample points to real numbers:

$$
X: S \rightarrow \mathbb{R}
$$

such that for any interval $I \subset \mathbb{R},\{s \in S: X(s) \in I\}$ is an event

Random Variables

Random variable: mathematizing sample space
A random variable associates sample points to real numbers:

$$
X: S \rightarrow \mathbb{R}
$$

such that for any interval $I \subset \mathbb{R},\{s \in S: X(s) \in I\}$ is an event
Question: why do we need the notion of random variable?

Random Variables

Random variable: mathematizing sample space
A random variable associates sample points to real numbers:

$$
X: S \rightarrow \mathbb{R}
$$

such that for any interval $I \subset \mathbb{R},\{s \in S: X(s) \in I\}$ is an event
Question: why do we need the notion of random variable? Consider $S=\{H, T\}$, sample space of the coin toss. Are

$$
X_{1}:\left\{\begin{array}{l}
X_{1}(H)=1 \\
X_{1}(T)=0
\end{array} \quad X_{2}:\left\{\begin{array}{l}
X_{2}(H)=1 \\
X_{2}(T)=2
\end{array}\right.\right.
$$

random variables?

Random Variables

Random variable: mathematizing sample space
A random variable associates sample points to real numbers:

$$
X: S \rightarrow \mathbb{R}
$$

such that for any interval $I \subset \mathbb{R},\{s \in S: X(s) \in I\}$ is an event
Question: why do we need the notion of random variable? Consider $S=\{H, T\}$, sample space of the coin toss. Are

$$
X_{1}:\left\{\begin{array}{l}
X_{1}(H)=1 \\
X_{1}(T)=0
\end{array} \quad X_{2}:\left\{\begin{array}{l}
X_{2}(H)=1 \\
X_{2}(T)=2
\end{array}\right.\right.
$$

random variables?
How do they differ (representation)?

Random Variables

Things not to forget: A random variable is neither 'random' nor a 'variable'

Random Variables

Things not to forget: A random variable is neither 'random' nor a 'variable'

Range space of a random variable

$$
R_{X}=\{X(s): s \in S\}
$$

Random Variables

Defining events through random variable

Random Variables

Defining events through random variable Important notations

$$
a \leq X \leq b \equiv\{s \in S: a \leq X(s) \leq b\}, a, b \in \mathbb{R}
$$

Random Variables

Defining events through random variable Important notations

$$
a \leq X \leq b \equiv\{s \in S: a \leq X(s) \leq b\}, a, b \in \mathbb{R}
$$

Random Variables

Defining events through random variable Important notations

$$
a \leq X \leq b \equiv\{s \in S: a \leq X(s) \leq b\}, a, b \in \mathbb{R}
$$

Probability of events of type $X=x$ Example: Suppose an unbiased coin is tossed four times. Let X denote the number of heads in these tosses. Then

$$
P(X=3)=
$$

Random Variables

Defining events through random variable Important notations

$$
a \leq X \leq b \equiv\{s \in S: a \leq X(s) \leq b\}, a, b \in \mathbb{R}
$$

Probability of events of type $X=x$ Example: Suppose an unbiased coin is tossed four times. Let X denote the number of heads in these tosses. Then

$$
P(X=3)=\frac{4}{16}
$$

