Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 2
August 16, 2022

Probability

\square Probability theory - Kolmogorov
\square Probability theory \mapsto Mathematical statistics

Probability

\square Probability theory - Kolmogorov
\square Probability theory \mapsto Mathematical statistics

Sample space

Discrete sample space - countable sample points
Continuous sample space - uncountable sample points
\square Example: roll a pair of dice:

Probability

\square Probability theory - Kolmogorov
\square Probability theory \mapsto Mathematical statistics

Sample space

Discrete sample space - countable sample points
Continuous sample space - uncountable sample points
\square Example: roll a pair of dice:

$$
S=\{(x, y): 1 \leq x \leq 6,1 \leq y \leq 6\}
$$

- Events: sum of the outcomes is equal to 8

Probability

σ-field
A set $A \subseteq S$ is an event if $A \in \mathcal{F} \subset \mathcal{P}(S)$, power set of S such that

- $S \in \mathcal{F}$
- if $A \in \mathcal{F}$ then $A^{c} \in \mathcal{F}$
- if $A_{j} \in \mathcal{F}, j \geq 1$ then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$

Question: Why do we need the notion of σ-field?

Probability

Question: Probability of what?

Probability

Question: Probability of what?

- Frequentist Interpretation of Probability and classical definition

$$
P(A)=\frac{n(A)}{n(S)}=\frac{\# A}{\# S}
$$

Probability

Question: Probability of what?

- Frequentist Interpretation of Probability and classical definition

$$
P(A)=\frac{n(A)}{n(S)}=\frac{\# A}{\# S}
$$

Probability measure (axiomatic definition)

Probability is function $P: \mathcal{F} \rightarrow[01]$ - it assigns nonnegative numbers to events such that

- $P(S)=1$
- (addition rule)

$$
P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)
$$

if $A_{1}, A_{2}, \ldots, A_{k}, \ldots$ are disjoint events of S

Probability

Properties of probability

- $P(\emptyset)=0$
- For any finite collection of mutually exclusive events: $\left\{A_{1}, A_{1}, \ldots, A_{n}\right\}$ with $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$ then

$$
P\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} P\left(A_{k}\right)
$$

- For a discrete sample space $S=\left\{s_{1}, s_{2}, \ldots\right\}$,

$$
P(S)=\sum_{k=1}^{\infty} P\left(\left\{s_{k}\right\}\right)
$$

Probability

Properties of probability

- $P(\emptyset)=0$
- For any finite collection of mutually exclusive events: $\left\{A_{1}, A_{1}, \ldots, A_{n}\right\}$ with $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$ then

$$
P\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} P\left(A_{k}\right)
$$

- For a discrete sample space $S=\left\{s_{1}, s_{2}, \ldots\right\}$,

$$
P(S)=\sum_{k=1}^{\infty} P\left(\left\{s_{k}\right\}\right)
$$

Question: Does $P(A)=1$ imply $A=S$?

Probability

Question: Is the axiomatic definition a more general definition than the classical one?

Probability

Question: Is the axiomatic definition a more general definition than the classical one?
Derive: for equally likely sample points,

$$
P(A)=\frac{\# A}{\# S}
$$

Probability

Some more properties of probability measure (use Venn diagram)

- $P\left(A^{c}\right)=1-P(A)$
- if $A \subseteq B \subseteq S$ then $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Let $A_{1} \subseteq A_{2}$. Then

$$
P\left(A_{2} \backslash A_{1}\right)=P\left(A_{2}\right)-P\left(A_{1}\right)
$$

Problems:

Probability

Question: For a finite sample space, how do we define probability of A given that B has happened?

Probability

Question: For a finite sample space, how do we define probability of A given that B has happened?

$$
P(A \text { given } B)=\frac{\text { number of elements of } A \cap B}{\text { number of elements of } B}
$$

Probability

Conditional probability

For both discrete and continuous sample space:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided $P(B)>0$.

Probability

Conditional probability

For both discrete and continuous sample space:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided $P(B)>0$.
Conditional probability measure:

- $P(A \mid B) \geq 0$ for all event A
- $P(B \mid B)=1$
- (addition rule)

$$
P\left(\bigcup_{k=1}^{\infty} A_{k} \mid B\right)=\sum_{k=1}^{\infty} P\left(A_{k} \mid B\right)
$$

for mutually exclusive events $A_{1}, A_{2}, \ldots, A_{k}, \ldots$
Problems...

