Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur
Lecture 17
November 1, 2022

Sampling distributions

Statistic If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population then a statistic is a function of $X_{i} \mathrm{~s}$.

Sampling distributions

Statistic If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population then a statistic is a function of $X_{i} \mathrm{~s}$.

Sampling distribution If the distribution of the population is known then often it is possible to find the probability distribution of the statistics associated with the population. If T is such a statistic then the distribution of T is called the sampling distribution of T.

Sampling distributions

Student's t-distribution This distribution was discovered by W. S. Gosset (1876-1936) who published his work under the pseudonym of student. Thus it is known as Student's t-distribution. This distribution is a generalization of Cauchy distribution and normal distribution.

Sampling distributions

Student's t-distribution This distribution was discovered by W. S. Gosset (1876-1936) who published his work under the pseudonym of student. Thus it is known as Student's t-distribution. This distribution is a generalization of Cauchy distribution and normal distribution.

A continuous random variable X is said to have a t-distribution with ν degrees of freedom if the pdf is of the form

$$
f(x ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu} \Gamma\left(\frac{\nu}{2}\right)\left(1+\frac{x^{2}}{\nu}\right)^{\left(\frac{\nu+1}{2}\right)}},-\infty<x<\infty
$$

where $\nu>0$.

Sampling distributions

Student's t-distribution This distribution was discovered by W. S. Gosset (1876-1936) who published his work under the pseudonym of student. Thus it is known as Student's t-distribution. This distribution is a generalization of Cauchy distribution and normal distribution.

A continuous random variable X is said to have a t-distribution with ν degrees of freedom if the pdf is of the form

$$
f(x ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi \nu} \Gamma\left(\frac{\nu}{2}\right)\left(1+\frac{x^{2}}{\nu}\right)^{\left(\frac{\nu+1}{2}\right)}},-\infty<x<\infty
$$

where $\nu>0$.
If X has t-distribution then we write $X \sim t(\nu)$

Sampling distributions

Setting $\nu=1$, the pdf of t-distribution becomes

$$
f(x ; 1)=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty
$$

which is the pdf of Cauchy distribution.

Sampling distributions

Setting $\nu=1$, the pdf of t-distribution becomes

$$
f(x ; 1)=\frac{1}{\pi\left(1+x^{2}\right)},-\infty<x<\infty
$$

which is the pdf of Cauchy distribution.

Setting $\nu \rightarrow \infty$ then

$$
\lim _{\nu \rightarrow \infty} f(x ; \nu)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}},-\infty<x<\infty
$$

which is the pdf of standard normal distribution.

Sampling distributions

Sampling distributions

Properties of t-distribution If $X \sim t(\nu)$ then

$$
E(X)=\left\{\begin{array}{l}
0, \text { if } \nu \geq 2 \\
\text { DNE, if } \nu=1
\end{array}\right.
$$

and

$$
\operatorname{Var}(X)= \begin{cases}\frac{\nu}{\nu-2}, & \text { if } \nu \geq 3 \\ \mathrm{DNE}, & \text { if } \nu=1,2\end{cases}
$$

where DNE means does not exist.

Sampling distributions

Properties of t-distribution If $X \sim t(\nu)$ then

$$
E(X)=\left\{\begin{array}{l}
0, \text { if } \nu \geq 2 \\
\text { DNE, if } \nu=1
\end{array}\right.
$$

and

$$
\operatorname{Var}(X)=\left\{\begin{array}{l}
\frac{\nu}{\nu-2}, \text { if } \nu \geq 3 \\
\mathrm{DNE}, \text { if } \nu=1,2
\end{array}\right.
$$

where DNE means does not exist.
If $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^{2}(\nu)$ and in addition, Z and U are independent, then the random variable W defined by

$$
W=\frac{Z}{\frac{U}{\nu}}
$$

has a t-distribution with ν degrees of freedom.

Sampling distributions

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population X, then

$$
\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)
$$

Sampling distributions

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population X, then

$$
\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)
$$

Proof Since $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. Thus $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$.

Sampling distributions

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population X, then

$$
\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)
$$

Proof Since $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. Thus $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$.
Further we know

$$
\frac{(n-1)}{\sigma^{2}} S^{2} \sim \chi^{2}(n-1)
$$

Sampling distributions

If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the population X, then

$$
\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}} \sim t(n-1)
$$

Proof Since $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. Thus $\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim \mathcal{N}(0,1)$.
Further we know

$$
\frac{(n-1)}{\sigma^{2}} S^{2} \sim \chi^{2}(n-1)
$$

Hence

$$
\frac{\bar{X}-\mu}{\frac{S}{\sqrt{n}}}=\frac{\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{(n-1) S^{2}}{(n-1) \sigma^{2}}}} \sim t(n-1) \text { (by previous result) }
$$

Sampling distributions

(Snedecor's) F-distribution The F-distribution was named in the honr of Ronald Fisher by george Snedecor.

Sampling distributions

(Snedecor's) F-distribution The F-distribution was named in the honr of Ronald Fisher by george Snedecor.

A continuous random variable X is said to have a F-distribution with degrees of freedom ν_{1} and ν_{2} if its pdf is of the form

$$
f\left(x ; \nu_{1}, \nu_{2}\right)=\left\{\begin{array}{l}
\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} x^{\frac{\nu_{1}}{2}-1}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)\left(1+\frac{\nu_{1}}{\nu_{2}} x\right)^{\left(\frac{\nu_{1}+\nu_{2}}{2}\right)},}, \text { if } 0 \leq x<\infty \\
0, \text { otherwise }
\end{array}\right.
$$

where $\nu_{1}, \nu_{2}>0$.

Sampling distributions

(Snedecor's) F-distribution The F-distribution was named in the honr of Ronald Fisher by george Snedecor.

A continuous random variable X is said to have a F-distribution with degrees of freedom ν_{1} and ν_{2} if its pdf is of the form

$$
f\left(x ; \nu_{1}, \nu_{2}\right)=\left\{\begin{array}{l}
\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} x^{\frac{\nu_{1}}{2}-1}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)\left(1+\frac{\nu_{1}}{\nu_{2}} x\right)^{\left(\frac{\nu_{1}+\nu_{2}}{2}\right)},}, \text { if } 0 \leq x<\infty \\
0, \text { otherwise }
\end{array}\right.
$$

where $\nu_{1}, \nu_{2}>0$.
Then we write $X \sim F\left(\nu_{1}, \nu_{2}\right)$.

Sampling distributions

Sampling distributions

Properties of F-distribution If $X \sim F\left(\nu_{1}, \nu_{2}\right)$ then

$$
E(X)=\left\{\begin{array}{l}
\frac{\nu_{1}}{\nu_{2}-2}, \text { if } \nu_{2} \geq 3 \\
\mathrm{DNE}, \text { if } \nu_{2}=1,2
\end{array} \quad \operatorname{Var}(X)=\left\{\begin{array}{l}
\frac{2 \nu_{2}^{2}\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-2\right)^{2}\left(\nu_{2}-4\right)}, \text { if } \nu_{2} \geq 5 \\
\mathrm{DNE}, \text { if } \nu_{2}=1,2,3,4
\end{array}\right.\right.
$$

where DNE means does not exist.

Sampling distributions

Properties of F-distribution If $X \sim F\left(\nu_{1}, \nu_{2}\right)$ then

$$
E(X)=\left\{\begin{array}{l}
\frac{\nu_{1}}{\nu_{2}-2}, \text { if } \nu_{2} \geq 3 \\
\mathrm{DNE}, \text { if } \nu_{2}=1,2
\end{array} \quad \operatorname{Var}(X)=\left\{\begin{array}{l}
\frac{2 \nu_{2}^{2}\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-2\right)^{2}\left(\nu_{2}-4\right)}, \text { if } \nu_{2} \geq 5 \\
\mathrm{DNE}, \text { if } \nu_{2}=1,2,3,4
\end{array}\right.\right.
$$

where DNE means does not exist.
If $X \sim F\left(\nu_{1}, \nu_{2}\right)$ then $\frac{1}{X} \sim F\left(\nu_{2}, \nu_{1}\right)$ (which is helpful to calculate probabilities like $P(X \leq a)$ from F-table)

Sampling distributions

Properties of F-distribution If $X \sim F\left(\nu_{1}, \nu_{2}\right)$ then

$$
E(X)=\left\{\begin{array}{l}
\frac{\nu_{1}}{\nu_{2}-2}, \text { if } \nu_{2} \geq 3 \\
\text { DNE, if } \nu_{2}=1,2
\end{array} \quad \operatorname{Var}(X)=\left\{\begin{array}{l}
\frac{2 \nu_{2}^{2}\left(\nu_{1}+\nu_{2}-2\right)}{\nu_{1}\left(\nu_{2}-2\right)^{2}\left(\nu_{2}-4\right)}, \text { if } \nu_{2} \geq 5 \\
\mathrm{DNE}, \text { if } \nu_{2}=1,2,3,4
\end{array}\right.\right.
$$

where DNE means does not exist.
If $X \sim F\left(\nu_{1}, \nu_{2}\right)$ then $\frac{1}{X} \sim F\left(\nu_{2}, \nu_{1}\right)$ (which is helpful to calculate probabilities like $P(X \leq a)$ from F-table)

If $U \sim \chi^{2}\left(\nu_{1}\right)$ and $V \sim \chi^{2}\left(\nu_{2}\right)$, and they are independent then

$$
\frac{\frac{U}{\nu_{1}}}{\frac{V}{\nu_{2}}} \sim F\left(\nu_{1}, \nu_{2}\right)
$$

Sampling distributions

Let $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and X_{1}, \ldots, X_{n} be random sample of size n from a population X. Let $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and Y_{1}, \ldots, Y_{m} be a random sample of size m from the population Y. Then the statistic

$$
\frac{\frac{S_{1}^{2}}{\sigma_{1}^{2}}}{\frac{S_{2}^{2}}{\sigma_{2}^{2}}} \sim F(n-1, m-1)
$$

where S_{1}^{2} and S_{2}^{2} are sample variances of the samples $X_{i} \mathrm{~s}$ and $Y_{j} \mathrm{~s}$ respectively.

Sampling distributions

Let $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and X_{1}, \ldots, X_{n} be random sample of size n from a population X. Let $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and Y_{1}, \ldots, Y_{m} be a random sample of size m from the population Y. Then the statistic

$$
\frac{\frac{S_{1}^{2}}{\sigma_{1}^{2}}}{\frac{S_{2}^{2}}{\sigma_{2}^{2}}} \sim F(n-1, m-1),
$$

where S_{1}^{2} and S_{2}^{2} are sample variances of the samples $X_{i} \mathrm{~s}$ and Y_{j} s respectively.
Proof Since $X_{i} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right),(n-1) \frac{S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi^{2}(n-1)$. Similarly, since
$Y_{i} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right),(m-1) \frac{S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi^{2}(m-1)$

Sampling distributions

Let $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and X_{1}, \ldots, X_{n} be random sample of size n from a population X. Let $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ and Y_{1}, \ldots, Y_{m} be a random sample of size m from the population Y. Then the statistic

$$
\frac{\frac{S_{1}^{2}}{\sigma_{1}^{2}}}{\frac{S_{2}^{2}}{\sigma_{2}^{2}}} \sim F(n-1, m-1),
$$

where S_{1}^{2} and S_{2}^{2} are sample variances of the samples $X_{i} \mathrm{~s}$ and Y_{j} s respectively.
Proof Since $X_{i} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right),(n-1) \frac{S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi^{2}(n-1)$. Similarly, since
$Y_{i} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right),(m-1) \frac{S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi^{2}(m-1)$ Therefore

$$
\frac{\frac{S_{1}^{2}}{\sigma_{1}^{2}}}{\frac{S_{2}^{2}}{\sigma_{2}^{2}}}=\frac{\frac{(n-1) S_{1}^{2}}{(n-1) \sigma_{1}^{2}}}{\frac{(m-1) S_{2}^{2}}{(m-1) \sigma_{2}^{2}}} \sim F(n-1, m-1) .
$$

