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Sampling distributions

Statistic If X1,X2, . . . ,Xn is a random sample from a population then a
statistic is a function of Xi s.

Sampling distribution If the distribution of the population is known then
often it is possible to find the probability distribution of the statistics
associated with the population. If T is such a statistic then the
distribution of T is called the sampling distribution of T .
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Sampling distributions

Student’s t-distribution This distribution was discovered by W. S. Gosset
(1876-1936) who published his work under the pseudonym of student.
Thus it is known as Student’s t-distribution. This distribution is a
generalization of Cauchy distribution and normal distribution.

A continuous random variable X is said to have a t-distribution with ν
degrees of freedom if the pdf is of the form

f (x ; ν) =
Γ
(
ν+1
2

)
√
πν Γ

(
ν
2

) (
1 + x2

ν

)( ν+1
2 )

, −∞ < x < ∞

where ν > 0.

If X has t-distribution then we write X ∼ t(ν)
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Sampling distributions

Setting ν = 1, the pdf of t-distribution becomes

f (x ; 1) =
1

π(1 + x2)
,−∞ < x < ∞,

which is the pdf of Cauchy distribution.

Setting ν → ∞ then

lim
ν→∞

f (x ; ν) =
1√
2π

e−
1
2
x2 ,−∞ < x < ∞

which is the pdf of standard normal distribution.
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Sampling distributions
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Sampling distributions
Properties of t-distribution If X ∼ t(ν) then

E (X ) =

{
0, if ν ≥ 2

DNE, if ν = 1

and

Var(X ) =

{
ν

ν−2 , if ν ≥ 3

DNE, if ν = 1, 2

where DNE means does not exist.

If Z ∼ N (0, 1) and U ∼ χ2(ν) and in addition, Z and U are independent,
then the random variable W defined by

W =
Z
U
ν

has a t-distribution with ν degrees of freedom.
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Sampling distributions

If X ∼ N (µ, σ2) and X1,X2, . . . ,Xn be a random sample from the
population X , then

X − µ
S√
n

∼ t(n − 1)

Proof Since Xi ∼ N (µ, σ2), X ∼ N
(
µ, σ

2

n

)
. Thus X−µ

σ√
n

∼ N (0, 1).

Further we know
(n − 1)

σ2
S2 ∼ χ2(n − 1).

Hence

X − µ
S√
n

=

X−µ
σ√
n√

(n−1)S2

(n−1)σ2

∼ t(n − 1) (by previous result)
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Sampling distributions

(Snedecor’s) F -distribution The F -distribution was named in the honr of
Ronald Fisher by george Snedecor.

A continuous random variable X is said to have a F -distribution with
degrees of freedom ν1 and ν2 if its pdf is of the form

f (x ; ν1, ν2) =


Γ( ν1+ν2

2 )
(

ν1
ν2

) ν1
2 x

ν1
2 −1

Γ( ν1
2 )Γ(

ν2
2 )

(
1+

ν1
ν2

x
)( ν1+ν2

2 )
, if 0 ≤ x < ∞

0, otherwise

where ν1, ν2 > 0.

Then we write X ∼ F (ν1, ν2).
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Sampling distributions

Properties of F -distribution If X ∼ F (ν1, ν2) then

E (X ) =

{
ν1

ν2−2 , if ν2 ≥ 3

DNE, if ν2 = 1, 2
Var(X ) =

{
2ν22 (ν1+ν2−2)

ν1(ν2−2)2(ν2−4)
, if ν2 ≥ 5

DNE, if ν2 = 1, 2, 3, 4

where DNE means does not exist.

If X ∼ F (ν1, ν2) then
1
X ∼ F (ν2, ν1) (which is helpful to calculate

probabilities like P(X ≤ a) from F -table)

If U ∼ χ2(ν1) and V ∼ χ2(ν2), and they are independent then

U
ν1
V
ν2

∼ F (ν1, ν2)
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Sampling distributions

Let X ∼ N (µ1, σ
2
1) and X1, . . . ,Xn be random sample of size n from a

population X . Let Y ∼ N (µ2, σ
2
2) and Y1, . . . ,Ym be a random sample of

size m from the population Y . Then the statistic

S2
1

σ2
1

S2
2

σ2
2

∼ F (n − 1,m − 1),

where S2
1 and S2

2 are sample variances of the samples Xi s and Yjs
respectively.

Proof Since Xi ∼ N (µ1, σ
2
1), (n − 1)

S2
1

σ2
1
∼ χ2(n − 1). Similarly, since

Yi ∼ N (µ2, σ
2
2), (m − 1)

S2
2

σ2
2
∼ χ2(m − 1) Therefore

S2
1

σ2
1

S2
2

σ2
2

=

(n−1)S2
1

(n−1)σ2
1

(m−1)S2
2

(m−1)σ2
2

∼ F (n − 1,m − 1).
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