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Descriptive statistics

Review

1 We have studied two important functions associated with a random
variable: pdf and cdf

2 These functions help us predicting the behavior of the random
variable corresponding to a real life problem

3 There are many parameters, mainly the mean (µ) and variance σ2

characterize the random variable

4 In practice, however the pdf or cdf are not known and hence the
parameters are also not known

5 Goal: how to determine a reasonable pdf and approximate the values
for the distribution parameters from a data set
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Sampling distributions

Statistical problem Consider predicting life expectation of an object (such
as bulbs, batteries etc.) produced by a company. The problem is then is to
determine the mean effective life span of these objects so that a limited
warranty period can be placed.

Let X denote the random variable for the life span of a battery. Then the
distribution of X can never be obtained precisely because there will be
future objects that are not produced yet, and the existing number of
object is quite large for a inspection.

Population The (large) set of objects about which some inferences are to
be made is called the population. there should be at least one random
variable relative to the population whose behavior is to be studied. Since
we can not inspect all the elements of the population, we have to select a
sample of objects from the population.
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Sampling distributions

Random sampling Select n objects from the population such that the
selection of one object neither ensures nor precludes the selection of any
other. Thus the selection of one object is independent of selection of any
other. This set is called random sample.

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 4 / 19



Sampling distributions

Random sampling Select n objects from the population such that the
selection of one object neither ensures nor precludes the selection of any
other. Thus the selection of one object is independent of selection of any
other. This set is called random sample.

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 4 / 19



Sampling distributions

Sampling with replacement

1 Let X be a random variable associated with an experiment with pdf
f (x).

2 Repeat the experiment n times

3 Let Xk denote the rv associated with kth repetition

4 Then the rvs {X1,X2, . . . ,Xn} is called a random sample of size n

5 Note that X1, . . . ,Xn are iids with density function f (x)

Random sample

A random of size n from the distribution of X is a collection of n
independent random variables, each with the same distribution of X
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Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?

Then S2 becomes an unbiased (will be defined later) statistic for σ2
X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

For practical purposes, the sample constitutes 5% of the population.

Question What is a statistic?

A statistic is a random variable whose numerical value can be determined
from a random sample X1, . . . ,Xn. Some of the important statistics for
statisticians are

∑n
i=1 Xi ,

∑n
i=1 X

2
i , maxi Xi , mini Xi , sample mean,

sample variance etc.

Statistics

1 Sample mean: X = 1
n

∑n
i=1 Xi

2 Sample variance: S2 = 1
n−1

∑n
i=1(Xi − X )2

The statistic S =
√
S2 is called the sample standard deviation

Question Why 1/(n − 1) instead of 1/n in the definition of S2?
Then S2 becomes an unbiased (will be defined later) statistic for σ2

X .

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 16 October 31, 2022 6 / 19



Sampling distributions

We denote x and s2 as realizations from a particular sample. We denote X
as the population random variable. Then note that µx and X need not be
same.

We are mainly interested finding the probability distributions of the sample
mean X and sample variance S2, that is the distribution of the statistics of
samples.
Problems..
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Sampling distributions

If X1, . . . ,Xn are mutually independent random variables with respective
means µ1, . . . , µn and variances σ2

1, . . . , σ
2
n then the mean and variance of

Y =
∑n

i=1 aiXi , ai ∈ R are given by

µY =
n∑

i=1

aiµi and σ2
Y =

n∑
i=1

a2i σ
2
i .

Proof

µY = E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiE (Xi ) =
n∑

i=1

aiµi

Since Xi s are mutually independent, Cov(Xi ,Xj) = 0 when i ̸= j . Thus

σ2
Y = Var(Y ) =

n∑
i=1

Var(aiXi ) =
n∑

i=1

a2i Var(Xi ) =
n∑

i=1

a2i σ
2
i .
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Sampling distributions

If X1, . . . ,Xn are independent random variables with respective mgfs
MXi

(t), i = 1, . . . , n then the mgf of Y =
∑n

i=1 aiXi is given by

MY (t) =
n∏

i=1

MXi
(ai t)

Proof

MY (t) = M∑n
i=1 aiXi

(t) =
n∏

i=1

MaiXi
(t) =

n∏
i=1

MXi
(ai t)

If X1, . . . ,Xn are independent random variables with Xi ∼ N (µi , σ
2
i ) then

the random variable Y =
∑n

i=1 aiXi ∼ N (µY , σ
2
Y ), where

µY =
n∑

i=1

aiµi and σ2
Y =

n∑
i=1

a2i σ
2
i

(the proof from above result)
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Sampling distributions

If X1, . . . ,Xn is a random sample of size n from a normal distribution with

mean and variance σ2 then X ∼ N
(
µ, σ

2

n

)
(proof follows from above

result)

If X1, . . . ,Xn are independent random variables with respective
distributions χ2(r1), . . . , χ

2(rn) then

Y =
n∑

i=1

Xi ∼ χ2

(
n∑

i=1

ri

)

Proof Since Xi ∼ χ2(ri ), the mgf of Xi is

MXi
(t) = (1− 2t)−

ri
2 .

Then from the above result regarding mgf,

MY (t) =
n∏

i=1

MXi
(t) =

n∏
i=1

(1− 2t)−
ri
2 = (1− 2t)−

1
2

∑n
i−1 ri
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If X1, . . . ,Xn are independent random variables with respective
distributions χ2(r1), . . . , χ

2(rn) then

Y =
n∑

i=1

Xi ∼ χ2

(
n∑

i=1

ri

)

Proof Since Xi ∼ χ2(ri ), the mgf of Xi is

MXi
(t) = (1− 2t)−

ri
2 .

Then from the above result regarding mgf,

MY (t) =
n∏

i=1

MXi
(t) =

n∏
i=1

(1− 2t)−
ri
2 = (1− 2t)−

1
2

∑n
i−1 ri
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Sampling distributions

If X1, . . . ,Xn are iid with standard normal distribution then

X 2
1 + . . .+ X 2

n ∼ χ2(n)

Before we discuss our next result, let us denote

X n =
1

n

n∑
i=1

Xi and S2
n =

1

n − 1

n∑
i=1

(Xi − X n)
2
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Sampling distributions

If X1, . . . ,Xn is a random sample of size n from the normal distribution
N (µ, σ2) then

1
(n−1)S2

n
σ2 ∼ χ2(n − 1) and

2 X n and S2
n are independent

Proof The proof follows by induction. let us prove it for n = 2. Since
Xi ∼ N (µ, σ2), i = 1, . . . , n then X1 + X2 ∼ N (2µ, 2σ2) and
X1 − X2 ∼ N (0, 2σ2). Hence

X1 − X2

2σ2
∼ N (0, 1)

and thus
(X1 − X2)

2

2σ2
∼ χ2(1)

which proves S2
2 ∼ χ2(1).
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Sampling distributions

Now, since X1 and X2 are independent,

Cov(X1 + X2,X1 − X2) (1)

= Cov(X1,X1) + Cov(X1,X2)− Cov(X2,X1)− Cov(X2,X2)

= σ2 + 0− 0− σ2 = 0

Thus X1 + X2 and X1 − X2 are uncorrelated bivariate normal random
variables. This yields that they are independent. Therefore 1

2(X1 + X2)
and 1

2(X1 − X2)
2 are independent i.e. X2 and S2

2 are independent.
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Sampling distributions

Now we will sow that the sample mean gets close (in terms of probability)
to the population mean when the sample size is large.

First we recall
Chebychev inequality as follows.

Suppose X is a nonnegative random variable with variance σ2. Then

P(|X − µ| ≥ t) ≤ σ2

t2

for all t > 0.

Definition

Suppose X1,X2, . . . is a sequence of random variables on a sample space.
Then the sequence converges in probability to the random variable X if,
for any ϵ > 0,

lim
n→∞

P(|Xn − X | < ϵ) = 1.
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Sampling distributions

Weak law of large numbers (WLLN)

Let X1,X2, . . . be a sequence of iid random variables with µ = E (Xi ) and
σ2 = Var(Xi ) < ∞ for 1 = 1, 2, . . . Then

lim
n→∞

P(|X n − µ| ≥ ϵ) = 0 i.e. lim
n→∞

P(|X n − µ| < ϵ) = 1.

Proof We proved before that E (X n) = µ and Var(X n) =
σ2

n . Then by
Chebyshev’s inequality,

P(|X n − µ| ≥ ϵ) ≤ σ2

nϵ2

for > 0. Then the result follows by setting n → ∞ both sides.
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Sampling distributions

Question What is the meaning of WLLN?

It means that the sequence of sample means from a population stays close
to the population mean most of the time.

For instance, consider an experiment of tossing a coin infinitely many
times. Let Xi be 1 if the ith toss is head, and 0 otherwise. Then WLLN
says

X n =
X1 + X2 + . . .+ Xn

n
→ 1

2
as n → ∞

However, there can exists sequence of coin tosses link

HHHHHHHHHH . . .

but the WLLN says that probability of occurrence of such a sequence is
zero.
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Sampling distributions

Definition

Let X − 1,X2, . . . be a sequence of random variables on a sample space S .
Then the sequence Xn(ω) converges almost surely to X (ω) if

P
({

ω ∈ S | lim
n→∞

Xn(ω) = X (ω)
})

= 1,

where X is a random variable on the sample space S .

String law of large numbers (SLLN)

Let X1,X2, . . . be a sequence of iids with µ = E (Xi ), i = 1, 2, . . . Then

P
(
lim
n→∞

X n = µ
)
= 1.
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Sampling distributions

Recall: Let X1, . . . ,Xn be a random sample. Then these are iids with a
common pdf which is the pdf of the population. Further, if the population
pdf is normal then the the sample mean is normal i.e. if Xi is from the
distribution

f (x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

then

X n ∼ N
(
µ,

σ2

n

)
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Sampling distributions

Central limit theorem/Lindeberg-Levy theorem

Let X1,X2, . . . ,Xn be a random sample from a distribution with mean µ
and variance σ2 < ∞. Then the limiting distribution of

Zn =
X n − µ

σ√
n

is standard normal, i.e. Zn converges in distribution to the standard
normal random variable.
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