Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur
Lecture 15
October 25, 2022

Bivariate normal distribution

Introduced by Galton and Dickson in 1886.

Bivariate normal distribution

Introduced by Galton and Dickson in 1886.A continuous bivariate random variable (X, Y) is said to have the bivariate normal distribution if the joint pdf is of the form

$$
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2} Q(x, y)}
$$

where $\mu_{1}, \mu_{2} \in \mathbb{R}, \sigma_{1}, \sigma_{2} \in(0, \infty)$ and $\rho \in(-1,1)$ are parameters, and
$Q(x, y)=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]$

Bivariate normal distribution

Introduced by Galton and Dickson in 1886.A continuous bivariate random variable (X, Y) is said to have the bivariate normal distribution if the joint pdf is of the form

$$
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2} Q(x, y)}
$$

where $\mu_{1}, \mu_{2} \in \mathbb{R}, \sigma_{1}, \sigma_{2} \in(0, \infty)$ and $\rho \in(-1,1)$ are parameters, and
$Q(x, y)=\frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]$

Denote:

$$
(X, Y) \sim \mathcal{N}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)
$$

Bivariate normal/Gaussian distribution

Parameters:

(1) The surface $f(x, y)$ has the shape of mountain

Bivariate normal/Gaussian distribution

Parameters:
(1) The surface $f(x, y)$ has the shape of mountain
(2) The pair $\left(\mu_{1}, \mu_{2}\right)$ gives the center of the mountain located in the (x, y) plane

Bivariate normal/Gaussian distribution

Parameters:
(1) The surface $f(x, y)$ has the shape of mountain
(2) The pair $\left(\mu_{1}, \mu_{2}\right)$ gives the center of the mountain located in the (x, y) plane
(3) σ_{1}^{2} and σ_{2}^{2} measure the spread of the mountain in the x-direction and y-direction respectively

Bivariate normal/Gaussian distribution

Parameters:
(1) The surface $f(x, y)$ has the shape of mountain
(2) The pair $\left(\mu_{1}, \mu_{2}\right)$ gives the center of the mountain located in the (x, y) plane
(3) σ_{1}^{2} and σ_{2}^{2} measure the spread of the mountain in the x-direction and y-direction respectively
(9) ρ determines the shape and orientation

Watch: The link

Bivariate normal/Gaussian distribution

Observation If we vertically slice the joint pdf of bivariate normal distribution then we have a univariate normal distribution.

Bivariate normal/Gaussian distribution

Observation If we vertically slice the joint pdf of bivariate normal distribution then we have a univariate normal distribution. Thus the marginal pdfs are also normal.

Bivariate normal/Gaussian distribution

Observation If we vertically slice the joint pdf of bivariate normal distribution then we have a univariate normal distribution. Thus the marginal pdfs are also normal.

$$
f_{X}(x)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}}
$$

Bivariate normal/Gaussian distribution

Observation If we vertically slice the joint pdf of bivariate normal distribution then we have a univariate normal distribution. Thus the marginal pdfs are also normal.

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}} \\
& f_{Y}(y)=\frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}}
\end{aligned}
$$

Bivariate normal/Gaussian distribution

Observation If we vertically slice the joint pdf of bivariate normal distribution then we have a univariate normal distribution. Thus the marginal pdfs are also normal.

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}} \\
& f_{Y}(y)=\frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}}
\end{aligned}
$$

Remark However the converse need not be true!!

Bivariate normal/Gaussian distribution
 proof of marginal distribution

Bivariate normal/Gaussian distribution

proof of marginal distribution

$$
\begin{aligned}
Q(x, y)= & \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)\right. \\
& \left.+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]
\end{aligned}
$$

Bivariate normal/Gaussian distribution

proof of marginal distribution

$$
\begin{aligned}
Q(x, y)= & \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)\right. \\
& \left.+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
= & \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}-\rho \frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}+\left(1-\rho^{2}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
= & \frac{(x-a)^{2}}{\left(1-\rho^{2}\right) \sigma_{1}^{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}
\end{aligned}
$$

where $a=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right)$.

Bivariate normal/Gaussian distribution

 proof of marginal distribution$$
\begin{aligned}
Q(x, y)= & \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)\right. \\
& \left.+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
= & \frac{1}{1-\rho^{2}}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}-\rho \frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}+\left(1-\rho^{2}\right)\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right] \\
= & \frac{(x-a)^{2}}{\left(1-\rho^{2}\right) \sigma_{1}^{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}
\end{aligned}
$$

where $a=\mu_{1}+\rho \frac{\sigma_{1}}{\sigma_{2}}\left(y-\mu_{2}\right)$. Hence

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\frac{1}{\pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} e^{-\frac{\left(y-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}} \int_{-\infty}^{\infty} e^{-\frac{(x-a)^{2}}{2\left(1-\rho^{2}\right) \sigma_{1}^{2}}} d x
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then
$E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}$
Correlation coefficient $=\rho, M(s, t)=e^{\mu_{X} s+\mu_{Y} t+\frac{1}{2}\left(\sigma_{X}^{2} s^{2}+2 \rho \sigma_{X} \sigma_{Y} s t+\sigma_{Y}^{2} t^{2}\right)}$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}
$$

Correlation coefficient $=\rho, M(s, t)=e^{\mu_{X} s+\mu_{Y} t+\frac{1}{2}\left(\sigma_{X}^{2} s^{2}+2 \rho \sigma_{X} \sigma_{Y} s t+\sigma_{Y}^{2} t^{2}\right)}$
Proof $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Then $W=s X+t Y \sim \mathcal{N}\left(\mu_{W}, \sigma_{W}^{2}\right)$ where

$$
\mu_{W}=s \mu_{X}+t \mu_{Y}, \sigma_{W}^{2}=s^{2} \sigma_{X}^{2}+2 s t \rho \sigma_{X} \sigma_{Y}+t^{2} \sigma_{Y}
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}
$$

Correlation coefficient $=\rho, M(s, t)=e^{\mu_{X} s+\mu_{Y} t+\frac{1}{2}\left(\sigma_{X}^{2} s^{2}+2 \rho \sigma_{X} \sigma_{Y} s t+\sigma_{Y}^{2} t^{2}\right)}$
Proof $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Then $W=s X+t Y \sim \mathcal{N}\left(\mu_{W}, \sigma_{W}^{2}\right)$ where

$$
\mu_{W}=s \mu_{X}+t \mu_{Y}, \sigma_{W}^{2}=s^{2} \sigma_{X}^{2}+2 s t \rho \sigma_{X} \sigma_{Y}+t^{2} \sigma_{Y}
$$

Therefore, the mgf of W is $M(\tau)=e^{\mu_{W} \tau+\frac{1}{2} \tau^{2} \sigma_{W}^{2}}$.

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
E(X)=\mu_{X}, E(Y)=\mu_{Y}, \operatorname{Var}(X)=\sigma_{X}^{2}, \operatorname{Var}(Y)=\sigma_{Y}^{2}
$$

Correlation coefficient $=\rho, M(s, t)=e^{\mu_{X} s+\mu_{Y} t+\frac{1}{2}\left(\sigma_{X}^{2} s^{2}+2 \rho \sigma_{X} \sigma_{Y} s t+\sigma_{Y}^{2} t^{2}\right)}$
Proof $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right), Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Then $W=s X+t Y \sim \mathcal{N}\left(\mu_{W}, \sigma_{W}^{2}\right)$ where

$$
\mu_{W}=s \mu_{X}+t \mu_{Y}, \sigma_{W}^{2}=s^{2} \sigma_{X}^{2}+2 s t \rho \sigma_{X} \sigma_{Y}+t^{2} \sigma_{Y}
$$

Therefore, the mgf of W is $M(\tau)=e^{\mu_{W} \tau+\frac{1}{2} \tau^{2} \sigma_{W}^{2}}$. Then mgf of (X, Y) is

$$
\begin{aligned}
M(s, t) & =E\left(e^{s X+t Y}\right)=e^{\mu_{W}+\frac{1}{2} \sigma_{W}^{2}} \\
& =e^{\mu_{X} s+\mu_{Y} t+\frac{1}{2}\left(\sigma_{X}^{2} s^{2}+2 \rho \sigma_{X} \sigma_{Y} s t+\sigma_{Y}^{2} t^{2}\right)}
\end{aligned}
$$

Bivariate normal/Gaussian distribution

Let $f(x, y)$ be the joint pdf of (X, Y). Then conditional density of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sigma_{Y} \sqrt{2 \pi\left(1-\rho^{2}\right)}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_{Y} \sqrt{1-\rho^{2}}}\right)^{2}}
$$

where

$$
b=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) .
$$

Bivariate normal/Gaussian distribution

Let $f(x, y)$ be the joint pdf of (X, Y). Then conditional density of Y given $X=x$ is

$$
f_{Y \mid X}(y \mid x)=\frac{1}{\sigma_{Y} \sqrt{2 \pi\left(1-\rho^{2}\right)}} e^{-\frac{1}{2}\left(\frac{y-b}{\sigma_{Y} \sqrt{1-\rho^{2}}}\right)^{2}}
$$

where

$$
b=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) .
$$

Similarly,

$$
f_{X \mid Y}(x \mid y)=\frac{1}{\sigma_{X} \sqrt{2 \pi\left(1-\rho^{2}\right)}} e^{-\frac{1}{2}\left(\frac{x-c}{\sigma_{X} \sqrt{1-\rho^{2}}}\right)^{2}}
$$

where

$$
c=\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right)
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right)
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
\begin{aligned}
& E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
& E(X \mid y)=\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right)
\end{aligned}
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
\begin{aligned}
& E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
& E(X \mid y)=\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right) \\
& \operatorname{Var}(Y \mid x)=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
\begin{aligned}
& E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
& E(X \mid y)=\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right) \\
& \operatorname{Var}(Y \mid x)=\sigma_{Y}^{2}\left(1-\rho^{2}\right) \\
& \operatorname{Var}(X \mid y)=\sigma_{X}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Bivariate normal/Gaussian distribution

If $(X, Y) \sim \mathcal{N}\left(\mu_{X}, \mu_{Y}, \sigma_{X}, \sigma_{Y}, \rho\right)$ then

$$
\begin{aligned}
& E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
& E(X \mid y)=\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right) \\
& \operatorname{Var}(Y \mid x)=\sigma_{Y}^{2}\left(1-\rho^{2}\right) \\
& \operatorname{Var}(X \mid y)=\sigma_{X}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Interesting result (Cramer, 1941)

Two random variables X and Y have a joint bivariate normal distribution if and only if every linear combination of X and Y has univariate normal distribution

