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Joint distributions

Joint expectation

Let X ,Y be random variables. Then the joint expectation of the pair is
defined as

E (XY ) =


∑

y∈ΩY

∑
x∈ΩX

xy f (x , y) if X ,Y are discrete

∫
y∈ΩY

∫
x∈ΩX

xy f (x , y) dx dy if X ,Y are continuous

Question Why is the joint expectation defined as the product random
variable instead of addition (E (X + Y )) or difference (E (X − Y )) or
quotient (E (X/Y ))?

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 12 October 11, 2022 2 / 18



Joint distributions

Joint expectation

Let X ,Y be random variables. Then the joint expectation of the pair is
defined as

E (XY ) =


∑

y∈ΩY

∑
x∈ΩX

xy f (x , y) if X ,Y are discrete

∫
y∈ΩY

∫
x∈ΩX

xy f (x , y) dx dy if X ,Y are continuous

Question Why is the joint expectation defined as the product random
variable instead of addition (E (X + Y )) or difference (E (X − Y )) or
quotient (E (X/Y ))?

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 12 October 11, 2022 2 / 18



Joint distributions

Suppose X and Y are discrete random variables with range spaces
ΩX = {x1, . . . , xn} and ΩY = {y1, . . . , yn}.

Now define the vectors

x = [x1, . . . , xn]
T , y = [y1, . . . , yn]

T .

Then define the pmf matrix as

P =


f (x1, y1) f (x1, y2) . . . f (x1, yn)
f (x2, y1) f (x2, y2) . . . f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) . . . f (xn, yn)

 .

Then
E (XY ) = xTPy ,

the weighted inner (scalar) product of x and y .
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Joint distributions

For example, if ΩX = {1, . . . , n} = ΩY with

f (x , y) =

{
1
n x = y

0 x ̸= y

then

P =
1

n
I , E (XY ) =

1

n
xTy
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Joint distributions
Recall that the cosine angle between x and y is defined as

cos θ =
xTy

∥x∥ ∥y∥

where ∥x∥ =
√∑n

i=1 x
2
i and ∥y∥ =

√∑n
i=1 y

2
i .

Geometry of expectation: geometry defined by the weighted inner product
and weighted norm

where

cos θ =
xTPy
∥x∥ ∥y∥

=
E (XY )√

E (X 2)
√
E (Y 2)
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Joint distribution
In the above,

E (X 2) = xTPXx = ∥x∥2PX

E (Y 2) = yTPY y = ∥y∥2PY

where

PX =

p(x1) . . . 0
...

. . .
...

0 . . . p(xn)

 , PY =

p(y1) . . . 0
...

. . .
...

0 . . . p(yn)



Obviously,

−1 ≤ E (XY )√
E (X 2)

√
E (Y 2)

≤ 1

due to Cauchy-Schwarz inequality:

(E (XY ))2 ≤ E (X 2)E (Y 2)
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Joint distributions

Conclusion E (XY ) can be interpreted as a measure of correlation between
x and y

Covariance

Let X ,Y be random variables with means µX , µY respectively. Then

Cov(X ,Y ) = E ((X − µX )(Y − µY ))

Note: If X = Y then Cov(X ,Y ) = Var(X ). Hence, covariance is a
generalization of variance.
Observations:

1 Cov(X ,Y ) = E (XY )− E (X )E (Y )

2 Var(X + Y ) = Var(X ) + 2Cov(X ,Y ) + Var(Y )

3 Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

4 Cov(aX + b, cY + d) = ac Cov(X ,Y )
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Joint distributions

Correlation coefficient

Let X ,Y be random variables. Then the correlation coefficient is defined
by

ρ =
Cov(X ,Y )√
Var(x)Var(Y )

=
Cov(X ,Y )

σXσY

Observations:

1 −1 ≤ ρ ≤ 1

2 if X = Y i.e. fully correlated then ρ = 1

3 if X = −Y i.e. negatively correlated then = −1

4 if X and Y are uncorrelated then ρ = 0

5 if X and Y are independent then E (XY ) = E (X )E (Y ) and hence
Cov(X ,Y ) = 0 and Var(XY ) = Var(X )Var(Y )
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Joint distributions

Interesting result Let X ∗ = X−µX
σX

and Y ∗ = Y−µY
σY

.

Then

ρ∗ ==
Cov(X ∗,Y ∗)

σX∗σY ∗
==

Cov(X ,Y )

σXσY
= ρ

Remark Independent random variables means Cov(X ,Y ) = 0 i.e.
uncorrelated random variable, however the converse need not be true.
Counterexample Let Z be a random variable with ΩZ = {0, 1, 2, 3} and
pmf f (z) = 1

4 , z ∈ ΩZ . Now define

X = cos
π

2
Z , Y = sin

π

2
Z .

Then check that Cov(X ,Y ) = 0 but f (x , y) ̸= fX (x)fY (y). (Homework)
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Joint distributions

Joint Moment Generating Function

Let X ,Y be random variables with joint pdf f (x , y). Then the real values
function

M(s, t) = E (esX+tY )

is called the joint mgf of X and Y , if it exists in some interval
(s, t) ∈ [−h, h]× [−k , k]

Observations

1 M(s, 0) = E (esX )

2 M(0, t) = E (ety )

3 E (X k) = ∂kM(s,t)
∂sk

∣∣∣
(0,0)

, E (Y k) = ∂kM(s,t)
∂tk

∣∣∣
(0,0)

, k = 1, 2, 3, . . .

4 E (XY ) = ∂2M(s,t)
∂s∂t

∣∣∣
(0,0)

5 if X ,Y are independent then MaX+bY (t) = MX (at) +MY (bt)
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Joint distributions
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Joint distributions

Conditional pmf/pdf

Let X and Y be discrete random variables. Then the conditional pmf of X
given Y is

fX |Y (x |y) =
f (x , y)

fY (y)

Question What is the interpretation behind this definition!

Probability of an (conditional) event

Let X ,Y be discrete and A be an event. Then

P(X ∈ A|Y = y) =
∑
x∈A

fX |Y (x |y)

and

P(X ∈ A) =
∑
x∈A

∑
y∈ΩY

fX |Y (x |y)fY (y) =
∑
y∈ΩY

P(X ∈ A|Y = y)fY (y)
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Joint distributions

Probability of conditional event

let X ,Y be continuous r.v. and A be an event. Then

P(X ∈ A|Y = y) =

∫
A
fX |Y (x |y)dx

and

P(X ∈ A) =

∫
ΩY

P(X ∈ A|Y = y)fY (y)dy

Conditional cdf

Let X ,Y be rvs. Then

FX |Y (x |y) = P(X ≤ x |Y = y) =


∑

x ′≤x fX |Y (x
′|y) if X ,Y are discrete

∫ x
−∞ f (x ′,y)dx ′

fY (y) if X ,Y are continuous
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Joint distributions

Conditional expectation

The conditional expectation of X given Y = y is

E (X |Y = y) =
∑
x

xfX |Y (x |y)

for discrete random variables, and

E (X |Y = y) =

∫ ∞

−∞
x fX |Y (x |y) dx

for continuous random variables

The law of total expectation

E (X ) =
∑
y

E (X |Y = y) pY (y) or E (X ) =

∫ ∞

−∞
E (X |Y = y) fY (y)dy
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Joint distributions
Proof:

E (X ) =
∑
x

xfX (x) =
∑
x

x

(∑
y

f (x , y)

)
=

∑
x

∑
y

xfX |Y (x |y)fY (y)

=
∑
y

(∑
x

sfX |Y (x |y)

)
fY (y)

=
∑
y

E (X |Y = y)fY (y)

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 12 October 11, 2022 14 / 18



Joint distributions
Proof:

E (X ) =
∑
x

xfX (x) =
∑
x

x

(∑
y

f (x , y)

)
=

∑
x

∑
y

xfX |Y (x |y)fY (y)

=
∑
y

(∑
x

sfX |Y (x |y)

)
fY (y)

=
∑
y

E (X |Y = y)fY (y)

Bibhas Adhikari (Autumn 2022-23, IIT Kharagpur) Proability and Statistics Lecture 12 October 11, 2022 14 / 18



Joint distributions

Note

1 The mean of a random variable X is a deterministic number.

2 The conditional mean of X given Y = y , that is, E (X |y), is a
function h(y) of y .

3 Form the function h(Y ), which is a random variable

Thus:
E (X ) = EY (EX |Y (X |Y ))

Proof.

E (X ) =
∑
y

E (X |Y = y)fY (y) =
∑
y

h(y)fY (y) = E (h(Y )) = E (E (X |Y ))

Remark All the above results can be obtained when X = x is given and Y
is free
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Joint distributions
A special result Let X and Y be random variables with mean µX and µY ,
and standard deviation σX and σy , respectively. If conditional expectation
of Y given X = x is linear in x , then

E (Y |X = x) = µY + ρ
σY
σX

(x − µX ).

Proof. Assume that X and Y are continuous. Let E (Y |X = x) = ax + b.
Thus ∫ ∞

−∞
yfY |X (y |x) = ax + b

⇒
∫ ∞

−∞
y
f (x , y)

fX (x)
dy = ax + b

⇒
∫ ∞

−∞
yf (x , y)dy = (ax + b)fX (x)

⇒
∫ ∞

−∞

∫ ∞

−∞
yf (x , y)dydx =

∫ ∞

−∞
(ax + b)fX (x)dx
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Joint distributions
Thus it follows that

µY = aµX + b.

Further, ∫ ∞

−∞

∫ ∞

−∞
xyf (x , y)dydx =

∫ ∞

−∞
(ax2 + bx)fX (x)dx

⇒ E (XY ) = aE (X 2) + bµX .

Therefore,

a =
E (XY )− µXµY

σ2
X

=
Cov(X ,Y )

σ2
X

=
Cov(X ,Y )

σXσX

σY
σX

= ρ
σY
σX

Similarly, b = µY − ρσY
σX

µX
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Joint distributions

Conditional variance

Let X ,Y be random variables with joint pdf f (x , y). Let fY |X (y |x) be the
conditional density of Y given X = x . Then the conditional variance of Y
given X = x is defined as

Var(Y |X = x) = E (Y 2|X = x)− (E (Y |X = x))2

An interesting result If X ,Y are random variables with mean µX , µY , and
standard deviation σX , σY respectively then

EX (Var(Y |X )) = (1− ρ2)Var(Y )
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