Proability and Statistics MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur
Lecture 11
October 10, 2022

Joint distributions

\square A single variable X is described by a one-variable pdf $f(x)$

Joint distributions

\square A single variable X is described by a one-variable pdf $f(x)$
\square A pair of random variables (X, Y) is described by a two-variable pdf $f(x, y)$

Joint distributions

Let X and Y be two random variables with sample spaces Ω_{X} and Ω_{Y} respectively.
Then the joint random variable is given by $(X, Y): \Omega_{X} \times \Omega_{y} \rightarrow \mathbb{R} \times \mathbb{R}$
Joint pmf for pair of discrete rvs
Let X and Y be two discrete random variables. The joint pmf of (X, Y) is defined as

$$
f(x, y)=P(X=x \text { and } Y=y)=P((\omega, \eta): X(\omega)=x \text { and } Y(\zeta)=y)
$$

Joint distributions

Let X and Y be two random variables with sample spaces Ω_{X} and Ω_{Y} respectively.
Then the joint random variable is given by $(X, Y): \Omega_{X} \times \Omega_{y} \rightarrow \mathbb{R} \times \mathbb{R}$
Joint pmf for pair of discrete rvs
Let X and Y be two discrete random variables. The joint pmf of (X, Y) is defined as

$$
f(x, y)=P(X=x \text { and } Y=y)=P((\omega, \eta): X(\omega)=x \text { and } Y(\zeta)=y)
$$

Joint distributions

Let X be a random variable for a coin toss and Y be draw of a die. The sample space is $\Omega_{X} \times \Omega_{Y}=\{(\omega, \eta): \omega \in\{0,1\}, \eta \in\{1,2,3,4,5,6\}\}$. Then

$$
f(x, y)=\frac{1}{12},(x, y) \in S
$$

is a pmf corresponding to (X, Y).

Joint distributions

Let X be a random variable for a coin toss and Y be draw of a die. The sample space is $\Omega_{X} \times \Omega_{Y}=\{(\omega, \eta): \omega \in\{0,1\}, \eta \in\{1,2,3,4,5,6\}\}$. Then

$$
f(x, y)=\frac{1}{12},(x, y) \in S
$$

is a pmf corresponding to (X, Y).
Questions
(1) Let $A=\{(x, y): x+y=3\}$. Then $P(A)=$?

Joint distributions

Let X be a random variable for a coin toss and Y be draw of a die. The sample space is $\Omega_{X} \times \Omega_{Y}=\{(\omega, \eta): \omega \in\{0,1\}, \eta \in\{1,2,3,4,5,6\}\}$. Then

$$
f(x, y)=\frac{1}{12},(x, y) \in S
$$

is a pmf corresponding to (X, Y).
Questions
(1) Let $A=\{(x, y): x+y=3\}$. Then $P(A)=$?
(2) Let $B=\{(x, y): \min \{x, y\}=1\}$. Then $P(B)=$?

Joint distributions

Joint pdf for continuous rvs
Let X, Y be continuous rvs with sample spaces Ω_{X}, Ω_{Y} respectively. Then joint pdf of (X, Y) is a function $f(x, y)$ such that

$$
P(A)=\int_{A} f(x, y) d x d y
$$

for any event $A \subset \Omega_{X} \times \Omega_{Y}$.

Joint distributions

Joint pdf for continuous rvs

Let X, Y be continuous rvs with sample spaces Ω_{X}, Ω_{Y} respectively. Then joint pdf of (X, Y) is a function $f(x, y)$ such that

$$
P(A)=\int_{A} f(x, y) d x d y
$$

for any event $A \subset \Omega_{X} \times \Omega_{Y}$.
For example, if $A=[a, b] \times[c, d]$ then

$$
P(A)=P(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Joint distributions

Joint pdf for continuous rvs

Let X, Y be continuous rvs with sample spaces Ω_{X}, Ω_{Y} respectively. Then joint pdf of (X, Y) is a function $f(x, y)$ such that

$$
P(A)=\int_{A} f(x, y) d x d y
$$

for any event $A \subset \Omega_{X} \times \Omega_{Y}$.
For example, if $A=[a, b] \times[c, d]$ then

$$
P(A)=P(a \leq X \leq b, c \leq Y \leq d)=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Joint distributions

Let (X, Y) be a joint random variable with uniform distribution on $[0,2] \times[0,2]$. Then find $P(A)$ if $A=\{(x, y): x+y \leq 2\}$.

Joint distributions

Let (X, Y) be a joint random variable with uniform distribution on $[0,2] \times[0,2]$. Then find $P(A)$ if $A=\{(x, y): x+y \leq 2\}$.

$$
\begin{aligned}
P(A) & =\int_{A} f(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{2-y} \frac{1}{4} d x d y \\
& =\frac{1}{2}
\end{aligned}
$$

Joint distributions

Normalization property Let $\Omega=\Omega_{X} \times \Omega_{Y}$. All joint pmfs and pdfs satisfy

$$
\sum_{(x, y) \in \Omega} f(x, y)=1 \text { or } \int_{\Omega} f(x, y) d x d y=1
$$

Joint distributions

Normalization property Let $\Omega=\Omega_{X} \times \Omega_{Y}$. All joint pmfs and pdfs satisfy

$$
\sum_{(x, y) \in \Omega} f(x, y)=1 \text { or } \int_{\Omega} f(x, y) d x d y=1
$$

Problem Find the value of k for which

$$
f(x, y)=\left\{\begin{array}{l}
k e^{-x} e^{-y} 0 \leq y \leq x<\infty \\
0 \text { otherwise }
\end{array}\right.
$$

is a joint pdf.

Joint distributions

Marginal pmf and pdf

The marginal pmf is defined by

$$
f_{X}(x)=\sum_{y \in \Omega_{Y}} f(x, y), f_{Y}(y)=\sum_{x \in \Omega_{X}} f(x, y)
$$

and the marginal pdf is defined as

$$
f_{X}(x)=\int_{y \in \Omega_{Y}} f(x, y) d y, f_{Y}(y)=\int_{x \in \Omega_{X}} f(x, y) d x
$$

Joint distributions

Marginal pmf and pdf

The marginal pmf is defined by

$$
f_{X}(x)=\sum_{y \in \Omega_{Y}} f(x, y), f_{Y}(y)=\sum_{x \in \Omega_{X}} f(x, y)
$$

and the marginal pdf is defined as

$$
f_{X}(x)=\int_{y \in \Omega_{Y}} f(x, y) d y, f_{Y}(y)=\int_{x \in \Omega_{X}} f(x, y) d x
$$

Joint Gaussian/normal random variable
A joint Gaussioan random variable (X, Y) has a joint pdf given by

$$
f(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{\left(x-\mu_{x}\right)^{2}+\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\}
$$

Joint distributions

Marginal pdfs of Gaussian:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{-\infty}^{\infty} \frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{\left(x-\mu_{X}\right)^{2}+\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma^{2}}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\} d y
\end{aligned}
$$

Joint distributions

Marginal pdfs of Gaussian:

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{-\infty}^{\infty} \frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{\left(x-\mu_{X}\right)^{2}+\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma^{2}}\right\} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\} d y
\end{aligned}
$$

Thus

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(x-\mu_{X}\right)^{2}}{2 \sigma^{2}}\right\} \\
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{\left(y-\mu_{Y}\right)^{2}}{2 \sigma^{2}}\right\}
\end{aligned}
$$

Joint distributions

From the above derivation, note that

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Joint distributions

From the above derivation, note that

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Independent random variables

Random variables X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Joint distributions

From the above derivation, note that

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Independent random variables

Random variables X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

QuestionHow to justify this definition?

Joint distributions

From the above derivation, note that

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Independent random variables

Random variables X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

QuestionHow to justify this definition?
Sequence of independent random variables
A sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ is independent if and only if

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \ldots f_{X_{n}}\left(x_{n}\right)
$$

Joint distributions

From the above derivation, note that

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Independent random variables

Random variables X and Y are independent if and only if

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

QuestionHow to justify this definition?
Sequence of independent random variables
A sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ is independent if and only if

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \ldots f_{X_{n}}\left(x_{n}\right)
$$

Joint distributions

Terminology If n random variables are independent and have the same distribution, then the random variables are called independent and identically distributed (iid) random variables.

Joint distributions

Terminology If n random variables are independent and have the same distribution, then the random variables are called independent and identically distributed (iid) random variables.

Joint cdf
Let X and Y be random variables. The joint cdf of X and Y is defined as

$$
F(x, y)=P(X \leq x \cap Y \leq y)
$$

Joint distributions

Terminology If n random variables are independent and have the same distribution, then the random variables are called independent and identically distributed (iid) random variables.

Joint cdf
Let X and Y be random variables. The joint cdf of X and Y is defined as

$$
F(x, y)=P(X \leq x \cap Y \leq y)
$$

Obviously.

$$
F(x, y)=\sum_{y^{\prime} \leq y} \sum_{x^{\prime} \leq x} f\left(x^{\prime}, y^{\prime}\right)
$$

if X and Y are discrete, and

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) d x d y
$$

Joint distributions

Observations
(1) If X and Y are independent then

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

Joint distributions

Observations
(1) If X and Y are independent then

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

(2) Let X and Y are iid with pdf $\operatorname{Unif}(0,1)$. Then

$$
F(x, y)=x y
$$

Joint distributions

Observations
(1) If X and Y are independent then

$$
F(x, y)=F_{X}(x) F_{Y}(y)
$$

(2) Let X and Y are iid with pdf $\operatorname{Unif}(0,1)$. Then

$$
F(x, y)=x y
$$

(3) If X and Y are iid with $\operatorname{pdf} \mathcal{N}\left(\mu, \sigma^{2}\right)$ then

$$
F(x, y)=\Phi\left(\frac{x-\mu}{\sigma}\right) \Phi\left(\frac{y-\mu}{\sigma}\right)
$$

Joint distributions

Observations

(1) $F(x,-\infty)=0$

Joint distributions

Observations

(1) $F(x,-\infty)=0$
(2) $F(-\infty, y)=0$

Joint distributions

Observations

(1) $F(x,-\infty)=0$
(2) $F(-\infty, y)=0$
(3) $F(-\infty,-\infty)=0$

Joint distributions

Observations

(1) $F(x,-\infty)=0$
(2) $F(-\infty, y)=0$
(3) $F(-\infty,-\infty)=0$
(9) $F(\infty, \infty)=1$

Joint distributions

Observations

(1) $F(x,-\infty)=0$
(2) $F(-\infty, y)=0$
(3) $F(-\infty,-\infty)=0$
(3) $F(\infty, \infty)=1$

Marginal cdf
The marginal cdfs are

$$
F_{X}(x)=F(x, \infty), \quad F_{Y}(y)=F(\infty, y)
$$

Joint distributions

Question How to obtain joint pdf from joint cdf?

$$
f(x, y)=\frac{\partial^{2}}{\partial y \partial x} F(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Joint distributions

Question How to obtain joint pdf from joint cdf?

$$
f(x, y)=\frac{\partial^{2}}{\partial y \partial x} F(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Example Let X and Y be random variables with joint cdf

$$
F(x, y)=\left(1-e^{-\lambda x}\right)\left(1-e^{-\lambda y}\right), x \geq 0, y \geq 0
$$

Then

Joint distributions

Question How to obtain joint pdf from joint cdf?

$$
f(x, y)=\frac{\partial^{2}}{\partial y \partial x} F(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

Example Let X and Y be random variables with joint cdf

$$
F(x, y)=\left(1-e^{-\lambda x}\right)\left(1-e^{-\lambda y}\right), x \geq 0, y \geq 0
$$

Then

$$
f(x, y)=\lambda^{2} e^{-\lambda x} e^{-\lambda y}
$$

Joint distributions

Joint expectation

Let X, Y be random variables. Then the joint expectation of the pair is defined as

$$
E(X Y)=\left\{\begin{array}{l}
\sum_{y \in \Omega_{Y}} \sum_{x \in \Omega_{X}} x y f(x, y) \text { if } X, Y \text { are discrete } \\
\int_{y \in \Omega_{Y}} \int_{x \in \Omega_{X}} x y f(x, y) d x d y \text { if } X, Y \text { are continuous }
\end{array}\right.
$$

Joint distributions

Joint expectation

Let X, Y be random variables. Then the joint expectation of the pair is defined as

$$
E(X Y)=\left\{\begin{array}{l}
\sum_{y \in \Omega_{Y}} \sum_{x \in \Omega_{X}} x y f(x, y) \text { if } X, Y \text { are discrete } \\
\int_{y \in \Omega_{Y}} \int_{x \in \Omega_{X}} x y f(x, y) d x d y \text { if } X, Y \text { are continuous }
\end{array}\right.
$$

Question Why is the joint expectation defined as the product random variable instead of addition $(E(X+Y))$ or difference $(E(X-Y))$ or quotient $(E(X / Y))$?

Joint distributions

Suppose X and Y are discrete random variables with range spaces $\Omega_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Omega_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$.

Joint distributions

Suppose X and Y are discrete random variables with range spaces $\Omega_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Omega_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$. Now define the vectors

$$
\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]^{T}, \boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right]^{T} .
$$

Joint distributions

Suppose X and Y are discrete random variables with range spaces $\Omega_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Omega_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$. Now define the vectors

$$
\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]^{T}, \boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right]^{T} .
$$

Then define the pmf matrix as

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
f\left(x_{1}, y_{1}\right) & f\left(x_{1}, y_{2}\right) & \ldots & f\left(x_{1}, y_{n}\right) \\
f\left(x_{2}, y_{1}\right) & f\left(x_{2}, y_{2}\right) & \ldots & f\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(x_{n}, y_{1}\right) & f\left(x_{n}, y_{2}\right) & \ldots & f\left(x_{n}, y_{n}\right)
\end{array}\right]
$$

Joint distributions

Suppose X and Y are discrete random variables with range spaces $\Omega_{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Omega_{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$. Now define the vectors

$$
\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]^{T}, \boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right]^{T}
$$

Then define the pmf matrix as

$$
\boldsymbol{P}=\left[\begin{array}{cccc}
f\left(x_{1}, y_{1}\right) & f\left(x_{1}, y_{2}\right) & \ldots & f\left(x_{1}, y_{n}\right) \\
f\left(x_{2}, y_{1}\right) & f\left(x_{2}, y_{2}\right) & \ldots & f\left(x_{2}, y_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
f\left(x_{n}, y_{1}\right) & f\left(x_{n}, y_{2}\right) & \ldots & f\left(x_{n}, y_{n}\right)
\end{array}\right] .
$$

Then

$$
E(X Y)=\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{y}
$$

the weighted inner (scalar) product of \boldsymbol{x} and \boldsymbol{y}.

Joint distributions

For example, if $\Omega_{X}=\{1, \ldots, n\}=\Omega_{Y}$ with

$$
f(x, y)=\left\{\begin{array}{l}
\frac{1}{n} x=y \\
0 x \neq y
\end{array}\right.
$$

then

$$
\boldsymbol{P}=\frac{1}{n} \boldsymbol{I}, E(X Y)=\frac{1}{n} \boldsymbol{x}^{T} \boldsymbol{y}
$$

Joint distributions

Recall that the cosine angle between \boldsymbol{x} and \boldsymbol{y} is defined as

$$
\cos \theta=\frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}
$$

where $\|\boldsymbol{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ and $\|\boldsymbol{y}\|=\sqrt{\sum_{i=1}^{n} y_{i}^{2}}$.

Joint distributions

Recall that the cosine angle between \boldsymbol{x} and \boldsymbol{y} is defined as

$$
\cos \theta=\frac{\boldsymbol{x}^{\top} \boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|}
$$

where $\|\boldsymbol{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$ and $\|\boldsymbol{y}\|=\sqrt{\sum_{i=1}^{n} y_{i}^{2}}$.
Geometry of expectation: geometry defined by the weighted inner product and weighted norm

where

$$
\cos \theta=\frac{\boldsymbol{x}^{T} \boldsymbol{P}_{\boldsymbol{y}}}{\|\boldsymbol{x}\|_{\boldsymbol{P}_{X}}\|\boldsymbol{y}\|_{\boldsymbol{P}_{Y}}}=\frac{E(X Y)}{\sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}}
$$

Joint distribution

In the above,

$$
\begin{aligned}
& E\left(X^{2}\right)=\boldsymbol{x}^{T} \boldsymbol{P}_{X} \boldsymbol{x}=\|\boldsymbol{x}\|_{\boldsymbol{P}_{X}}^{2} \\
& E\left(Y^{2}\right)=\boldsymbol{y}^{T} \boldsymbol{P}_{Y} \boldsymbol{y}=\|\boldsymbol{y}\|_{\boldsymbol{P}_{Y}}^{2}
\end{aligned}
$$

where

$$
\boldsymbol{P}_{X}=\left[\begin{array}{ccc}
p\left(x_{1}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & p\left(x_{n}\right)
\end{array}\right], \boldsymbol{P}_{Y}=\left[\begin{array}{ccc}
p\left(y_{1}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & p\left(y_{n}\right)
\end{array}\right]
$$

Joint distribution

In the above,

$$
\begin{aligned}
& E\left(X^{2}\right)=\boldsymbol{x}^{\top} \boldsymbol{P}_{X} \boldsymbol{x}=\|\boldsymbol{x}\|_{\boldsymbol{P}_{X}}^{2} \\
& E\left(Y^{2}\right)=\boldsymbol{y}^{\top} \boldsymbol{P}_{Y} \boldsymbol{y}=\|\boldsymbol{y}\|_{\boldsymbol{P}_{Y}}^{2}
\end{aligned}
$$

where

$$
\boldsymbol{P}_{X}=\left[\begin{array}{ccc}
p\left(x_{1}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & p\left(x_{n}\right)
\end{array}\right], \boldsymbol{P}_{Y}=\left[\begin{array}{ccc}
p\left(y_{1}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & p\left(y_{n}\right)
\end{array}\right]
$$

Obviously,

$$
-1 \leq \frac{E(X Y)}{\sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}} \leq 1
$$

due to Cauchy-Schwarz inequality:

$$
(E(X Y))^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)
$$

