Proability and Statistics
 MA20205

Bibhas Adhikari

Autumn 2022-23, IIT Kharagpur

Lecture 10
September 13, 2022

Functions of a Random Variable

Problem Suppose the probability distribution of a random variable X is known. Then, what is the probability distribution of $Y=\phi(X)$?

Functions of a Random Variable

Problem Suppose the probability distribution of a random variable X is known. Then, what is the probability distribution of $Y=\phi(X)$? Examples:

$$
\begin{aligned}
& Y=X^{2}, Y=|X|, Y=\sqrt{|X|}, Y=\ln X, \\
& Y=\frac{X-\mu}{\sigma}, Y=\left(\frac{X-\mu}{\sigma}\right)^{2}
\end{aligned}
$$

Functions of a Random Variable

Problem Suppose the probability distribution of a random variable X is known. Then, what is the probability distribution of $Y=\phi(X)$? Examples:

$$
\begin{aligned}
& Y=X^{2}, Y=|X|, Y=\sqrt{|X|}, Y=\ln X, \\
& Y=\frac{X-\mu}{\sigma}, Y=\left(\frac{X-\mu}{\sigma}\right)^{2}
\end{aligned}
$$

Problems...

Functions of a Random Variable

For continuous random variables Let X be a continuous random variable with pdf $f(x)$. Let $y=T(x)$ be an increasing (or decreasing) function. Then the pdf of the random variable $Y=T(X)$ is given by

$$
g(y)=\left|\frac{d x}{d y} f(W(y))\right|
$$

where $x=W(y)$ is the inverse function of $T(x)$.

Functions of a Random Variable

For continuous random variables Let X be a continuous random variable with pdf $f(x)$. Let $y=T(x)$ be an increasing (or decreasing) function. Then the pdf of the random variable $Y=T(X)$ is given by

$$
g(y)=\left|\frac{d x}{d y} f(W(y))\right|
$$

where $x=W(y)$ is the inverse function of $T(x)$. Suppose $y=T(x)$ is an increasing function.

$$
G(y)=P(Y \leq y)=P(X \leq W(y))=\int_{-\infty}^{W(y)} f(x) d x
$$

Functions of a Random Variable

For continuous random variables Let X be a continuous random variable with pdf $f(x)$. Let $y=T(x)$ be an increasing (or decreasing) function. Then the pdf of the random variable $Y=T(X)$ is given by

$$
g(y)=\left|\frac{d x}{d y} f(W(y))\right|
$$

where $x=W(y)$ is the inverse function of $T(x)$.
Suppose $y=T(x)$ is an increasing function.

$$
G(y)=P(Y \leq y)=P(X \leq W(y))=\int_{-\infty}^{W(y)} f(x) d x
$$

Then
$g(y)=\frac{d G(y)}{d y}=\frac{d}{d y}\left(\int_{-\infty}^{W(y)} f(x) d x\right)=f(W(y)) \frac{d W(y)}{d y}=f(W(y)) \frac{d x}{d y}$

Reliability

The reliability is concerned with accessing whether or not a system functions adequately under the conditions for which it was designed.

Reliability

The reliability is concerned with accessing whether or not a system functions adequately under the conditions for which it was designed. Let the random variable X defines the time to failure of a system that can not be repaired once it fails to operate. Thus X is a continuous random variable with range space $(0, \infty)$

Reliability

The reliability is concerned with accessing whether or not a system functions adequately under the conditions for which it was designed. Let the random variable X defines the time to failure of a system that can not be repaired once it fails to operate. Thus X is a continuous random variable with range space $(0, \infty)$
Three important functions for accessing reliability:
(1) failure density, denoted by f (pdf of X)
(2) the reliability function R, the probability that the system (or a component) will not fail before time t
(3) the failure or hazard rate of the distribution

Reliability

Let a system being put into operation at time $t=0$. We observe the system until it eventually fails. Then

$$
\begin{aligned}
R(t) & =1-P(\text { the system will fail beforw time } t) \\
& =1-\int_{0}^{t} f(x) d x \\
& =1-F(t)
\end{aligned}
$$

where F is the CDF of X.

Reliability

Let a system being put into operation at time $t=0$. We observe the system until it eventually fails. Then

$$
\begin{aligned}
R(t) & =1-P(\text { the system will fail beforw time } t) \\
& =1-\int_{0}^{t} f(x) d x \\
& =1-F(t)
\end{aligned}
$$

where F is the CDF of X.

Reliability

Hazard/failure rate $(\rho(t))$: Consider the time interval $[t, t+\triangle t]$ of length \triangle. Then

$$
\begin{aligned}
\rho(t) & =\frac{P(t \leq X \leq t+\Delta t \mid t \leq X)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\int_{t}^{t+\Delta t} f(x) d x}{\int_{t}^{\infty} f(x) d x} \frac{1}{\triangle t} \\
& =\lim _{\Delta \rightarrow 0} \frac{F(t+\Delta t)-F(t)}{1-F(t)} \frac{1}{\Delta t} \\
& =\lim _{\Delta \rightarrow 0} \frac{F^{\prime}(t)}{R(t)}=\frac{f(t)}{R(t)}
\end{aligned}
$$

Reliability

Hazard/failure rate $(\rho(t))$: Consider the time interval $[t, t+\triangle t]$ of length \triangle. Then

$$
\begin{aligned}
\rho(t) & =\frac{P(t \leq X \leq t+\Delta t \mid t \leq X)}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\int_{t}^{t+\Delta t} f(x) d x}{\int_{t}^{\infty} f(x) d x} \frac{1}{\triangle t} \\
& =\lim _{\Delta \rightarrow 0} \frac{F(t+\Delta t)-F(t)}{1-F(t)} \frac{1}{\Delta t} \\
& =\lim _{\Delta \rightarrow 0} \frac{F^{\prime}(t)}{R(t)}=\frac{f(t)}{R(t)}
\end{aligned}
$$

Question What is the job of a reliability scientist/engineer?

Reliability

Question Can we find the failure density and the reliability function from the failure rate?

Reliability

Question Can we find the failure density and the reliability function from the failure rate?
Theorem $R(t)=\exp \left\{-\int_{0}^{t} \rho(x) d x\right\}$ and $f(t)=\rho(t) R(t)$.

Reliability

Question Can we find the failure density and the reliability function from the failure rate?
Theorem $R(t)=\exp \left\{-\int_{0}^{t} \rho(x) d x\right\}$ and $f(t)=\rho(t) R(t)$.
$R(x)=1-F(x) \Rightarrow R^{\prime}(x)=-F^{\prime}(x)$. Thus

$$
\rho(x)=\frac{f(x)}{R(x)}=\frac{F^{\prime}(x)}{R(x)}=\frac{R^{\prime}(x)}{R(x)}
$$

Then

$$
\int_{0}^{t} \rho(x) d x=-\int_{0}^{t} \frac{R^{\prime}(x)}{R(x)}=-[\ln R(t)-\ln R(0)]
$$

Reliability

Question Can we find the failure density and the reliability function from the failure rate?
Theorem $R(t)=\exp \left\{-\int_{0}^{t} \rho(x) d x\right\}$ and $f(t)=\rho(t) R(t)$.
$R(x)=1-F(x) \Rightarrow R^{\prime}(x)=-F^{\prime}(x)$. Thus

$$
\rho(x)=\frac{f(x)}{R(x)}=\frac{F^{\prime}(x)}{R(x)}=\frac{R^{\prime}(x)}{R(x)}
$$

Then

$$
\int_{0}^{t} \rho(x) d x=-\int_{0}^{t} \frac{R^{\prime}(x)}{R(x)}=-[\ln R(t)-\ln R(0)]
$$

Now $R(0)=1$ since the system will not fail before t. Thus

$$
\ln R(t)=-\int_{0}^{t} \rho(x) d x
$$

Reliability

Series system

A system whose components are arranged in such a way that the system fails whenever any of its components fail.

Reliability

Series system

A system whose components are arranged in such a way that the system fails whenever any of its components fail.

Suppose a series system with k components. Let $R_{i}(t)$ denote the reliability of component i and assume that the components are independent i.e. one is unaffected by the reliability of others.

Reliability

Series system

A system whose components are arranged in such a way that the system fails whenever any of its components fail.

Suppose a series system with k components. Let $R_{i}(t)$ denote the reliability of component i and assume that the components are independent i.e. one is unaffected by the reliability of others.
Then the reliability of the entire system is the probability that the system will not fail before time t. Thus the system will not fail if and only if no component fails before time t. Therefore, reliability of the system, $R_{s}(t)$ is given by

$$
R_{s}(t)=\prod_{i=1}^{k} R_{i}(t)
$$

Reliability

Parallel system

A system whose components are arranged in such a way that the system fails only if all of its components fail.

Reliability

Parallel system

A system whose components are arranged in such a way that the system fails only if all of its components fail.

Consider a system with k components that are independent. When the first fails, the second is used; when the second fails, the third comes on line and this continues until the last component fails, at which the system fails.

Reliability

Parallel system

A system whose components are arranged in such a way that the system fails only if all of its components fail.

Consider a system with k components that are independent. When the first fails, the second is used; when the second fails, the third comes on line and this continues until the last component fails, at which the system fails. Then

$$
R_{s}(t)=1-P(\text { all components fail })=1-\prod_{i=1}^{k}\left(1-R_{i}(t)\right)
$$

