MA 20205 Probability and Statistics Assignment No. 7

1. Let (X, Y) be discrete with the joint pmf

$Y \backslash X$	-1	0	1
-2	$1 / 6$	$1 / 12$	$1 / 6$
1	$1 / 6$	$1 / 12$	$1 / 6$
2	$1 / 12$	0	$1 / 12$

Find the joint pmf of (U, V) where $U=|X|, V=Y^{2}$.
2. Projectiles are fired at the origin of an $X Y$ - coordinate system. Assume that the point which is hit, say (X, Y), consists of a pair of independent standard normal r.v.'s. For two projectiles fired independently of one another, let $\left(X_{1}, Y_{1}\right)$ and (X_{2}, Y_{2}) represent the points which are hit and Z be the distance between them. What is the distribution of Z^{2} ?
3. Let X_{1} and X_{2} be independent r.v.'s each with negative exponential distribution with $\operatorname{pdf} \lambda e^{-\lambda x}, x>0$. Find the joint and marginal distributions of $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{1}+X_{2}$.
4. Let X_{1}, X_{2} be i.i.d. $N(0,1)$ and $Y_{1}=X_{1}^{2}+X_{2}^{2}, Y_{2}=X_{1} / X_{2}$. Find the joint and marginal distributions of Y_{1} and Y_{2}. Are Y_{1}, Y_{2} independent?
5. Let X_{1} and X_{2} have independent gamma distributions with parameters $\left(n_{1}, \lambda\right)$ and $\left(n_{2}, \lambda\right)$. Find the distributions of $Y=\frac{X_{1}}{X_{1}+X_{2}}$ and $Z=X_{1}+X_{2}$. Is Y independent of Z ? Is Z independent of $U=X_{1} / X_{2}$?
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent exponential random variables with the probability density $f(x)=e^{-x}, x>0$. Define random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ as

$$
\begin{aligned}
Y_{1} & =X_{1}+X_{2}+\cdots+X_{n}, Y_{2}=\frac{X_{1}+X_{2}+\cdots+X_{n-1}}{X_{1}+X_{2}+\cdots+X_{n}} \\
Y_{3} & =\frac{X_{1}+X_{2}+\cdots+X_{n-2}}{X_{1}+X_{2}+\cdots+X_{n-1}}, \ldots, Y_{n-1}=\frac{X_{1}+X_{2}}{X_{1}+X_{2}+X_{3}} \\
Y_{n} & =\frac{X_{1}}{X_{1}+X_{2}}
\end{aligned}
$$

Find the joint and marginal densities of $Y_{1}, Y_{2}, \ldots, Y_{n}$. Are they independent?
7. Suppose independent random variables Y_{1}, Y_{2}, Y_{3} are such that $Y_{1}=\ln X_{1} \sim N(4,1), Y_{2}=\ln X_{2} \sim N(3,1)$ and $Y_{3}=\ln X_{3} \sim N(2,0.5)$. Find the distribution and the median of $=e^{2} X_{1}^{2} X_{2}^{4} X_{3}^{4}$. Determine L and R such that $P(L \leq W \leq R)=0.90$.
8. Let (X, Y) have bivariate normal distribution with density function
$f(x, y)=\frac{1}{\pi \sqrt{3}} \operatorname{Exp}\left\{-\frac{2}{3}\left(x^{2}-x y+y^{2}\right)\right\},-\infty<x, y<\infty$
Find the correlation coefficient between X and $Y, V(X-Y)$ and $P(-1<X+Y<2)$.
9. A straight rod consists of two sections \mathbf{A} and \mathbf{B}, each of which is manufactured independently on a different machine. The length (in inches) of section \mathbf{A} is normally distributed with mean $\mathbf{2 0}$ and variance $\mathbf{0 . 0 3}$ and the length of section \mathbf{B} is normally distributed with mean 14 and variance $\mathbf{0 . 0 1}$. The rod is formed by joining the two sections together as shown below:

Suppose that the rod can be used in the construction of an airplane wing if its total length is between 33.6 to 34.4 inches. What is the probability that the rod can be used in the construction?

