MA 20205 Probability and Statistics Assignment No. 5

1. Let X be a continuous random variable with the density function given by

$$f_X(x) = \begin{cases} \frac{2(x+1)}{9} & -1 < x < 2\\ 0 & otherwise \end{cases}$$

Find the density function of $Y = X^2$.

2. Let X be continuous random variable with the density given by

$$f_X(x) = \begin{cases} \frac{x}{2} & 0 < x \le 1\\ \frac{1}{2} & 1 < x \le 2\\ \frac{3-x}{2} & 2 < x < 3 \end{cases}$$

Find the density of $Y = \left(X - \frac{3}{2}\right)^2$.

3. Let X be a random variable with the density function given by

$$f_X(x) = \begin{cases} \frac{2x}{\pi^2} & 0 < x < \pi \\ 0 & otherwise \end{cases}$$

Find the distribution of $Y = \sin X$.

- 4. Let $X \sim Bin(n, p)$. Find the p.m.f. of each of the following functions of X:
- (a) $Y_1 = 3X + 4$; (b) $Y_2 = X 3$; (c) $Y_3 = X^2 + 2$; (d) $Y_4 = \sqrt{X}$.
- 5. Let $X \sim Beta(a, b)$. Find the distributions of $Y_1 = \frac{1}{1+X}$ and $Y_2 = 1 X$.
- 6. Let *C* denote the temperature in degree Celsius to which a computer will be subjected to in the field. Assume that *C* is uniformly distributed over the interval (15, 21). Let *F* denote the field temperature in degrees Fahrenheit so that $F = \frac{9}{5}C + 32$. Find the density of *F*.
- 7. Let *X* denote the velocity of a random gas molecule. According to the Maxwell-Boltzmann law, the density for *X* is given by

$$f_X(x) = cx^2 e^{-bx^2}$$
, $x > 0$.

The kinetic energy of the molecule, is given by $Y = \frac{1}{2}mX^2$, where *m* is positive. Find the density of *Y*.

8. Let *X* be a random variable with the pdf

$$f_X(x) = \begin{cases} \frac{x+1}{4} & -1 < x \le 1\\ \frac{3-x}{4} & 1 < x < 3 \end{cases}$$

Find the distribution of Y = |X|.

9. Let *X* be a standard normal random variable and

$$Y = \begin{cases} \frac{\sqrt{X}}{2} & X \ge 0\\ -\sqrt{|X|} & X < 0 \end{cases}$$

Find the pdf of *Y*.

10. Let X be a discrete random variable with the p.m.f. given by

$$P(X = i) = \frac{1}{4i^2}$$
, $P(X = i) = \frac{1}{(1+i)^2}$, $i = 1, 2, 3$
 $X = 0) = \frac{17}{72}$.

and $P(X = 0) = \frac{17}{72}$

Find the distribution of $Y = X^2$ and determine its median.

11. Let *X* be a continuous random variable with the p.d.f. given by $f_X(x) = \begin{cases} k\sqrt{x} & 0 < x < 1\\ 0 & otherwise \end{cases}$

where k is a suitable constant. Find the pdf of $Y = \sqrt[4]{X}$.

12. Let *X* follow a uniform distribution on the interval (-1, 1). Let $Y = -2 \log_e |X|$. Find E(Y).