MA 20205 Probability and Statistics
 Assignment No. 5

1. Let X be a continuous random variable with the density function given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{2(x+1)}{9} & -1<x<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the density function of $Y=X^{2}$.
2. Let X be continuous random variable with the density given by

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{x}{2} & 0<x \leq 1 \\
\frac{1}{2} & 1<x \leq 2 \\
\frac{3-x}{2} & 2<x<3
\end{array}\right.
$$

Find the density of $Y=\left(X-\frac{3}{2}\right)^{2}$.
3. Let X be a random variable with the density function given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{2 x}{\pi^{2}} & 0<x<\pi \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the distribution of $Y=\sin X$.
4. Let $X \sim \operatorname{Bin}(n, p)$. Find the p.m.f. of each of the following functions of X :
(a) $Y_{1}=3 X+4$; (b) $Y_{2}=X-3$; (c) $Y_{3}=X^{2}+2$; (d) $Y_{4}=\sqrt{ } X$.
5. Let $X \sim \operatorname{Beta}(a, b)$. Find the distributions of $Y_{1}=\frac{1}{1+X}$ and $Y_{2}=1-X$.
6. Let C denote the temperature in degree Celsius to which a computer will be subjected to in the field. Assume that C is uniformly distributed over the interval $(15,21)$. Let F denote the field temperature in degrees Fahrenheit so that $F=\frac{9}{5} C+32$. Find the density of F.
7. Let X denote the velocity of a random gas molecule. According to the MaxwellBoltzmann law, the density for X is given by

$$
f_{X}(x)=c x^{2} e^{-b x^{2}}, x>0
$$

The kinetic energy of the molecule, is given by $Y=\frac{1}{2} m X^{2}$, where m is positive. Find the density of Y.
8. Let X be a random variable with the pdf

$$
f_{X}(x)=\left\{\begin{array}{lc}
\frac{x+1}{4} & -1<x \leq 1 \\
\frac{3-x}{4} & 1<x<3
\end{array}\right.
$$

Find the distribution of $Y=|X|$.
9. Let X be a standard normal random variable and

$$
Y=\left\{\begin{array}{cl}
\frac{\sqrt{X}}{2} & X \geq 0 \\
-\sqrt{|X|} & X<0
\end{array}\right.
$$

Find the pdf of Y.
10. Let X be a discrete random variable with the p.m.f. given by

$$
P(X=i)=\frac{1}{4 i^{2}}, \quad P(X=i)=\frac{1}{(1+i)^{2}}, i=1,2,3
$$

and $P(X=0)=\frac{17}{72}$.
Find the distribution of $Y=X^{2}$ and determine its median.
11. Let X be a continuous random variable with the p.d.f. given by

$$
f_{X}(x)=\left\{\begin{array}{cc}
k \sqrt{ } x & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

where k is a suitable constant. Find the pdf of $Y=\sqrt[4]{X}$.
12. Let X follow a uniform distribution on the interval $(-1,1)$. Let $Y=-2 \log _{\mathrm{e}}|X|$. Find $E(Y)$.

