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KL divergence
Convexity property of KL divergence

Log-sum inequality Let a1, a2, b1, b2 ≥ 0. Then

(a1 + a2) log

(
a1 + a2
b1 + b2

)
≤ a1 log

a1
b1

+ a2 log
a2
b2

In general, (∑
i

ai

)
log

(∑
i ai∑
i bi

)
≤
∑
i

ai log
ai
bi

Proof Recall that f (x) = x log x is a strictly convex function for all x > 0.
By Jensen’s inequality

f

(
n∑
i

αixi

)
≤

n∑
i=1

αi f (xi )

where
∑n

i=1 αi = 1, αi ≥ 0.
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Kl divergence

Then the proof follows by setting xi =
ai
bi

and αi =
bi∑n
i=1 bi

.

Question When does the equality hold?

Lemma Let P1,P2,Q1,Q2 be distributions on a finite set X , and
α ∈ [0, 1]. Then

D(αP1 + (1− α)P2 ∥αQ1 + (1− α)Q2)

≤ αD(P1∥Q1) + (1− α)D(P2∥Q2)

Meaning When D(P∥Q) is viewed as a function of the inputs P and Q, is
jointly convex in both of it’s inputs i.e. it is convex in the input (P,Q)
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KL divergence

Proof

D(αP1 + (1− α)P2 ∥αQ1 + (1− α)Q2)

=
∑
x∈X

(αp1(x) + (1− α)p2(x)) log

(
αp1(x) + (1− α)p2(x)

αq1(x) + (1− α)q2(x)

)

≤
∑
x∈X

αp1(x) log

(
αp1(x)

αq1(x)

)
+ (1− α)p2(x) log

(
(1− α)p2(x)

(1− α)q2(x)

)
= αD(P1∥Q1) + (1− α)D(P2∥Q2)
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KL divergence

l1-distance Let P and Q be two distributions on a finite set X . Then the
total-variation distance or statistical distance between P and Q is defined
as

δTV(P,Q) =
1

2
∥P − Q∥1 =

1

2

∑
x

|p(x)− q(x)|

Question Is it a standard notion of distance?

The quantity ∥P − Q∥1 is referred to as the l1-distance between P and Q

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 7 January 24, 2023 5 / 16



KL divergence

l1-distance Let P and Q be two distributions on a finite set X . Then the
total-variation distance or statistical distance between P and Q is defined
as

δTV(P,Q) =
1

2
∥P − Q∥1 =

1

2

∑
x

|p(x)− q(x)|

Question Is it a standard notion of distance?

The quantity ∥P − Q∥1 is referred to as the l1-distance between P and Q

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 7 January 24, 2023 5 / 16



KL divergence

l1-distance Let P and Q be two distributions on a finite set X . Then the
total-variation distance or statistical distance between P and Q is defined
as

δTV(P,Q) =
1

2
∥P − Q∥1 =

1

2

∑
x

|p(x)− q(x)|

Question Is it a standard notion of distance?

The quantity ∥P − Q∥1 is referred to as the l1-distance between P and Q

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 7 January 24, 2023 5 / 16



KL divergence
Lemma Let P,Q be any distributions on X . Let f : X → [0,B]. Then

|EP [f (x)]− EQ [f (x)]| ≤
B

2
∥P − Q∥1 = B · δTV(P,Q)

Proof

|EP [f (x)]− EQ [f (x)]|

=

∣∣∣∣∣∑
x

p(x) · f (x)−
∑
x

q(x) · f (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

(p(x)− q(x)) · f (x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x

(p(x)− q(x)) ·
(
f (x)− B

2

)
+

B

2
·

(∑
x

(p(x)− q(x))

)∣∣∣∣∣
≤

∑
x

|p(x)− q(x)| ·
∣∣∣∣f (x)− B

2

∣∣∣∣ ≤ B

2
∥P − Q∥1
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KL divergence
Question What is the interpretation of the above lemma?

Let f : X → {0, 1} be any classifier. For instance, f outputs 1 if the guess
is that the sample point came from P and 0 if the guess is that it came
from Q. Then the rate of true positive minus the rate of false positive can
be measured as the difference

|EP [f (x)]− EQ [f (x)]|

Pinsker’s inequality Let P and Q be two distributions defined on X . Then

D(P∥Q) ≥ 1

2 ln 2
∥P − Q∥21

Special case Let X = {0, 1} and

P =

{
1, wp p

0, wp 1− p
Q =

{
1, wp q

0, wp 1− q.
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KL divergence
Then

D(P∥Q) = p log
p

q
+ (1− q) log

1− p

1− q
and ∥P − Q∥1 = 2 |p − q|

Lemma(Pinsker’s inequality for X = {0, 1}) Let P and Q be distributions
as above. Then

p log
p

q
+ (1− q) log

1− p

1− q
≥ 2

ln 2
(p − q)2

Proof Let f (p, q) = p log p
q + (1− q) log 1−p

1−q − 2
ln 2(p − q)2

∂f

∂q
= −(p − q)

ln 2

(
1

q(1− q)
− 4

)

Since 1
q(1−q) − 4 ≥ 0 for all q, ∂f

∂q ≤ 0 when q ≤ p and ∂f
∂q ≥ 0 when

q ≥ p.
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KL divergence

Moreover, f (p, q) = ∞ when q = 0 and f (p, q) = 0 when q = p.

Thus,
the function achieves its minimum value at q = p and is always
non-negative.

Lemma Let P and Q be distributions on a finite set X . Then there exist
distributions P ′,Q ′ on {0, 1} such that

∥P ′ − Q ′∥1 = ∥P − Q∥1, and D(P∥Q) ≥ D(P ′∥Q ′)

Proof Let A ⊂ X be A = {x : p(x) ≥ q(x)} and P ′,Q ′ be

P ′ =

{
1, wp

∑
x∈A p(x)

0, wp
∑

x /∈A p(x)
Q ′ =

{
1, wp

∑
x∈A q(x)

0, wp
∑

x /∈A q(x).
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KL divergence

Then

∥P − Q∥1 =
∑
x∈X

|p(x)− q(x)|

=
∑
x∈A

(p(x)− q(x)) +
∑
x /∈A

(q(x)− p(x))

=

∣∣∣∣∣∑
x∈A

p(x)−
∑
x∈A

q(x)

∣∣∣∣∣+
∣∣∣∣∣
(
1−

∑
x∈A

p(x)

)
−

(
1−

∑
x∈A

q(x)

)∣∣∣∣∣
= ∥P ′ − Q ′∥1
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KL divergence

To calculate the KL-divergence, define a random variable Z as

Z =

{
1 if x ∈ A

0 if x /∈ A

Since Z is a function of X , the distributions P and Q can be thought of as
joint distributions for the random variables (X ,Z ). Besides, the marginal
distributions of Z are P ′ and Q ′. Then

D(P∥Q) = D(P(X ,Z )∥Q(X ,Z ))

= D(P(Z )∥Q(Z )) + D(P(X |Z )∥Q(X |Z ))
≥ D(P(Z )∥Q(Z ))

= D(P ′∥Q ′)
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Kl divergence
An application of Pinsker’s inequality How do you distinguish two coins of
slightly different biases?

Suppose we are one of the two coins is given to us with the probability
distributions

P =

{
1 wp 1

2

0 wp 1
2

and Q =

{
1 wp 1

2 + ϵ

0 wp 1
2 − ϵ

D(P∥Q) =
1

2
log

1/2

1/2 + ϵ
+

1

2
log

1/2

1/2− ϵ

=
1

2
log

1

1− 4ϵ2

=
1

2 ln 2
ln

(
1 +

4ϵ2

1− 4ϵ2

)
≤ 1

2 ln 2

4ϵ2

1− 4ϵ2
≤ 8ϵ2

2 ln 2
, using 1 + z ≤ ez , ϵ ≤ 1

4
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KL divergence

Consider the output of n independent coin tosses.

Then

nD(P∥Q) = D(Pn∥Qn).

Suppose there is an algorithm T (x1, . . . , xn) → {0, 1} which outputs 0 if
the coin is with distribution P, and 1 if the coin is with distribution Q
such that T identifies both coins with probability at least 0.9 i.e.

Px∈Pn [T (x) = 0] ≥ 9

10
and Px∈Qn [T (x) = 1] ≥ 9

10

Question Find a lower bound of n without knowing anything about T .
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KL divergence

Note that

Ex∈Pn [T (x)] ≤ 1

10
and Ex∈Qn [T (x)] ≥ 9

10

which gives

Ex∈Qn [T (x)]− Ex∈Pn [T (x)] ≥ 8

10
⇒ ∥Pn − Qn∥1 ≥

8

5

Then

nD(P ∥Q) ≥ 1

2 ln 2

(
8

5

)2

⇒ n ≥ 1

2 ln 2 · D(P ∥Q)

(
8

5

)2

≥ 1

8ϵ2

(
8

5

)2
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KL divergence
Recall

I (X ;Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
= D(p(x , y)∥p(x)p(y))

Graph entropy1 Let G = (V ,E ). A subset S of the vertices V of an
undirected graph G = (V ,E ) is independent if no edge in the graph has
both endpoints in S .

Define the graph entropy H(G ) as

min
X ,Y

I (X ;Y )

s.t. X is uniformly distributed over V

Y is an independent set in G containing X

Question It is defined in terms of mutual information, why is it called
entropy?

1Körner, János (1973). ”Coding of an information source having ambiguous alphabet
and the entropy of graphs”. 6th Prague conference on information theory: 411–425.
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KL divergence
Let I denote the independent vertex sets in G . Then we wish to find the
joint distribution of (X ,Y ) on V × I with the lowest mutual information
such that (i) the marginal distribution of X is uniform and (ii) in samples
from the distribution, the Y contains X almost surely. The mutual
information of X and Y is then called the entropy of G .

Examples

→ Let Kn denote the complete graph on n vertices. Then

H(G ) = log n

→ Let G be a bipartite graph, with n1 vertices on one class and n2
vertices on the other. Then, for any vertex v , all the vertices in the
class which contains v form an independent set containing v . If X is a
uniformly random vertex and Y is the set of all vertices which
contains X then

I (X ;Y ) ≤ H(Y ) =
n1

n1 + n2
log

(
n1 + n2

n1

)
+

n2
n1 + n2

log

(
n1 + n2

n2

)
≤ 1
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