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Kullback Leibler (KL) divergence

Also known as relative entropy is a measure of how different two
distributions are.

Definition Let P and and Q be be two distributions on a sample space X .
The KL-divergence between P and Q is defined as:

D(P∥Q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)

Example Suppose X = {a, b, c} with p(x) = 1
3 , x ∈ X and q(a) = 1

2 ,
q(b) = 1

2 , q(c) = 0. Then

D(P∥Q) =
2

3
log

2

3
+∞ = ∞

D(Q∥P) = log
3

2
+ 0 = log

3

2
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KL divergence
→ D(P∥Q) and D(Q∥P) are necessarily equal

→ D(P∥Q) may be infinite
→ Let Supp(P) = {x : p(x) > 0}. Then we must have

Supp(P) ⊆ Supp(Q) if D(P∥Q) < ∞
Even though the KL-divergence is not symmetric, it is often used as a
measure of “dissimilarity” between two distributions

Lemma Let P and Q be distributions on a finite space X . Then
D(P∥Q) ≥ 0 with equality if and only if P = Q.

D(P∥Q) =
∑
x

p(x) log
p(x)

q(x)
=

∑
x∈Supp(P)

p(x) log
p(x)

q(x)

≥ − log

 ∑
x∈Supp(P)

p(x) · q(x)
p(x)


= − log

 ∑
x∈Supp(P)

q(x)

 ≥ − log 1 = 0
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Kl divergence

Homework When D(P∥Q) = 0 implies p(x) = q(x) for all x ∈ Supp(P),
which gives p(x) = q(x) ∀x ∈ X

Chain rule for KL-divergence Let P(X ,Y ) and Q(X ,Y ) be two
distributions for a pair of variables X and Y . Then,

D(P(X ,Y )∥Q(X ,Y ))

= D(P(X )∥Q(X )) + Ex [D(P(Y |X = x)∥Q(Y |X = x))]

= D(P(X )∥Q(X )) + D(P(Y |X )∥Q(Y |X ))
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KL divergence

D(P(X ,Y )∥Q(X ,Y ))

=
∑
x ,y

p(x , y) log
p(x , y)

q(x , y)

=
∑
x ,y

p(x)p(y |x) log
(
p(x)

q(x)
· p(y |x)
q(y |x)

)
=

∑
x

p(x) log
p(x)

q(x)

∑
y

p(y |x) +
∑
x

p(x)
∑
y

p(y |x) log p(y |x)
q(y |x)

= D(P(X )∥Q(X )) +
∑
x

p(x) · D(P(Y |X = x)∥Q(Y |X = x))

= D(P(X )∥Q(x)) + D(P(Y |X )∥Q(Y |X ))

Note If P(X ,Y ) = P1(X )P2(Y ) and Q(X ,Y ) = Q1(X )Q2(Y ) then

D(P∥Q) = D(P1∥Q1) + D(P2∥Q2)
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Kl divergence

Interpretation of KL divergence in terms of source coding

D(P∥Q) =
∑
x

p(x) log
p(x)

q(x)
=

∑
x

p(x) log
1

q(x)
−
∑
x

p(x) log
1

p(x)

→ This can be interpreted as the number of extra bits we use (on
average) if we designed a code according to the distribution P, but
used it to communicate outcomes of a random variable X distributed
according to Q

→ The first term in the RHS, which corresponds to the average number
of bits used by the “wrong” encoding, is also referred to as cross
entropy
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