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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality?

'Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical
Monthly 111 (2004), no. 9, 749-760. 6, 8
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An information theoretic proof of the Cauchy-Schwarz inequality?
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Z ajbi | < Z 3,2 . Z b,2
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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality?

n n n
Z ajbi | < Z 3,2 . Z b,2
i=1 i=1 i=1

First observe that it is enough to prove it for natural numbers a;, b;.

'Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical
Monthly 111 (2004), no. 9, 749-760. 6, 8
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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality?

n n n
Z a,-b,- < Z 3,2 . Z b,2
i=1 i=1 i=1

First observe that it is enough to prove it for natural numbers a;, b;.

> Consider disjoint subsets of natural numbers A, ..., A, such that
|A,'| = a;

'Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical
Monthly 111 (2004), no. 9, 749-760. 6, 8
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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality?

n n n
Z a,-b,- < Z 3,2 . Z b,2
i=1 i=1 i=1

First observe that it is enough to prove it for natural numbers a;, b;.
> Consider disjoint subsets of natural numbers A, ..., A, such that
|Ail = ai
> do the same, |Bj| = b;

'Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical
Monthly 111 (2004), no. 9, 749-760. 6, 8
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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality?

n n n
Z ajbi | < Z a; | - Z b?
i—1 i—1 i—1

First observe that it is enough to prove it for natural numbers a;, b;.
> Consider disjoint subsets of natural numbers A, ..., A, such that
|Ail = ai
> do the same, |Bj| = b;
> Consider rectangles in the xy plane with x coordinates in the sets A;
and y coordinates in the sets B;.

'Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical

Monthly 111 (2004), no. 9, 749-760. 6, 8
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Entropy

> Pick two points (X1, Y1) and (X3, Y2) at random
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Entropy

> Pick two points (X1, Y1) and (X2, Y2) at random
V Pick a rectangle R with probability proportional to its area i.e.

aj - bj
>j 4~ bj

where rj = A; X B; is the rectangle with a; - b; points

P[R = r,-] =
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Entropy

> Pick two points (X1, Y1) and (X2, Y2) at random
V Pick a rectangle R with probability proportional to its area i.e.

a,--b,-

PR=r]= """ _
[ ] >j 4~ bj

where rj = A; X B; is the rectangle with a; - b; points
vV Pick two points (X1, Y1) and (X, Y2) independently from R
(uniform distribution)
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Entropy

> Pick two points (X1, Y1) and (X3, Y2) at random
V Pick a rectangle R with probability proportional to its area i.e.

a,--b;
>j 4~ bj

where r; = A; x B; is the rectangle with a; - b; points

vV Pick two points (X1, Y1) and (X, Y2) independently from R
(uniform distribution)

P[R = r,-] =

> since the sets are disjoint, specifying any of the variables
X1, Y1, X2, Yo reveals the rectangle R i.e.
H(X1, Y1,R) = H(X2, Y2, R) = H(X1, Y1) =
H(X2, Y2)="W log (3. 3; - by)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have

H(X1, Y1, R) + H(Xa, Y2, R)
= 2H(R) + H(X1, Y4|R) + H(X2, Ya|R)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have
H(X1, Y1, R) + H(Xz, Y2, R)

= 2H(R) + H(X1, Y1|R) + H(Xz, Y2|R)
= 2H(R) + H(X1|R) + H(Y1|R) + H(Xz|R) + H(Y2|R)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have

H(X1, Y1, R) + H(Xa, Ya, R)
= 2H(R) + H(X1, Y1|R) + H(Xa, Y2|R)
2H(R) + H(X1|R) + H(Y1|R) + H(X2|R) + H(Y2|R)
= 2H(R) + H(X1, Xo|R) + H(Y1, Y2|R)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have

H(X1, Y1, R) + H(Xa, Y2, R)
= 2H(R) + H(X1, Y1|R) + H(Xa, Y2|R)
2H(R) + H(X|R) + H(Y1|R) + H(Xo|R) + H(Ya|R)
2H(R) 4+ H(X1, Xa|R) + H( Y41, Y2|R)
= H(X1, Xz, R) + H(Y1, Y2, R)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have

H(X1, Y1, R) + H(Xa, Ya, R)
= 2H(R) + H(X1, Y1|R) + H(Xa, Y2|R)
2H(R) + H(X|R) + H(Y1|R) + H(Xo|R) + H(Ya|R)
2H(R) + H(X1, X2|R) + H(Y1, Y2|R)
H(X1, X2, R) + H(Y1, Ya, R)
= H(X1, X2) + H(Y1, Ys)
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Entropy

Since given R, X1, X5, Y1, Y> are independent, we have

H(X1, Y1, R) + H(Xa, Ya, R)
= 2H(R) + H(X1, Y1|R) + H(Xa, Y2|R)
2H(R) + H(X|R) + H(Y1|R) + H(Xo|R) + H(Ya|R)
2H(R) + H(X1, X2|R) + H(Y1, Y2|R)
H(X1, X2, R) + H(Y1, Ya, R)
= H(X1, X2) + H(Y1, Ys)

log (Z a%) + log (Z b%)

IN
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Mutual information

The mutual information (MI) between two random variables X and Y is
defined as

I(X; Y) = H(X) — H(X]Y)
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Mutual information

The mutual information (MI) between two random variables X and Y is
defined as

I(X; Y) = H(X) — H(X]Y)

Question What is the difference between correlation and MI?

Bibhas Adhikari (Spring 2022-23, IIT Kharag|

Information and Coding Theory

Lecture 5 January 17, 2023 5/9



Mutual information

The mutual information (MI) between two random variables X and Y is
defined as

I(X; Y) = H(X) — H(X]Y)

Question What is the difference between correlation and MI?

Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)
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Mutual information

The mutual information (MI) between two random variables X and Y is
defined as

I(X; Y) = H(X) — H(X]Y)

Question What is the difference between correlation and MI?

Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I(X; Y) = H(X)— H(X|Y) = H(Y) = H(Y|X) = H(X)+ H(Y) = H(X, Y)
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Mutual information

The mutual information (MI) between two random variables X and Y is

defined as
I(X;Y)=H(X)—-H(X|Y)

Question What is the difference between correlation and MI?
Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I(X; Y) = H(X)— H(X|Y) = H(Y) = H(Y|X) = H(X)+ H(Y) = H(X, Y)

Then (expanding the formula of entropy)
= I(X;Y) >0
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Mutual information

The mutual information (MI) between two random variables X and Y is

defined as
I(X;Y)=H(X)—-H(X|Y)

Question What is the difference between correlation and MI?
Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I(X; Y) = H(X)— H(X|Y) = H(Y) = H(Y|X) = H(X)+ H(Y) = H(X, Y)

Then (expanding the formula of entropy)
= I(X;Y) >0
S I Y) = (Y X)
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Mutual information

The mutual information (MI) between two random variables X and Y is

defined as
I(X;Y)=H(X)—-H(X|Y)

Question What is the difference between correlation and MI?
Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I(X; Y) = H(X)— H(X|Y) = H(Y) = H(Y|X) = H(X)+ H(Y) = H(X, Y)

Then (expanding the formula of entropy)
— I(X;Y)>0
— 1(X;Y)=1(Y; X)
Homework Let X, Y be two variables with X vV Y =1, X € {0,1},
Y € {0,1} such that (X,Y) = (1,0), (X,Y)=(0,1) and (X,Y) =(1,1)
with probabilities 1/3. Then calculate /(X; Y)
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
= Ez[H(X|Z =z) — H(X]Y,Z = z)]
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
= Ez[H(X|Z =z) — H(X]Y,Z = z)]
= H(X|Z) - H(X|Y, Z)
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
= Ez[H(X|Z =z) — H(X]Y,Z = z)]
= H(X|Z) - H(X|Y, Z)

Example Let (X, Y, Z) be a random variable with Z = X & Y, X € {0,1},

Y € {0,1} such that (X, Y, Z) = (x,y, z) are equally likely. Then check
that /(X;Y) =0 and

I(X;Y|Z) = Ez[I(X|Z=2z2),Y|Z=Z2]
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
= Ez[H(X|Z =z) — H(X]Y,Z = z)]
= H(X|Z) - H(X|Y, Z)

Example Let (X, Y, Z) be a random variable with Z = X & Y, X € {0,1},
Y € {0,1} such that (X, Y, Z) = (x,y, z) are equally likely. Then check
that /(X;Y) =0 and

I(X;Y|Z) = Ez[I(X|Z=2z2),Y|Z=Z2]
1 1
= EI(X]Z:O; Y|Z:0)—+—§/(X|Z:1; Y|Z=1)
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Mutual information

Conditional mutual information

I(X;Y|Z) = Ez[I(X|Z=2zY|Z=2z)
= Ez[H(X|Z =z) — H(X]Y,Z = z)]
= H(X|Z) - H(X|Y, Z)

Example Let (X, Y, Z) be a random variable with Z = X & Y, X € {0,1},
Y €{0,1} such that (X, Y,Z) = (x,y, z) are equally likely. Then check
that /(X;Y) =0 and

I(X;Y|Z) = Ez[I(X|Z=2z2),Y|Z=Z2]
1 1
= EI(X]Z:O; Y|Z:0)—+—§/(X|Z:1; Y|Z=1)

1 1
= §|0g2+§|og2:1
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Mutual information

Question What is the conclusion from the above example?
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Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: I((X1,..., Xm); Y) =D 1(Xi; YIX1, ..., Xiz1)
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Mutual information

Question What is the conclusion from the above example?

Chain rule of MI: I((X1,..., Xm); Y) =D 1(Xi; YIX1, ..., Xiz1)
Proof

(X, ..., Xm): Y)
= H(X1,... . Xm) = H(X1,- ., Xm|Y)
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Mutual information

Question What is the conclusion from the above example?

Chain rule of MI: I((X1,..., Xm); Y) =D 1(Xi; YIX1, ..., Xiz1)
Proof

(X, ..., Xm): Y)
= H(X1,... . Xm) = H(X1,- ., Xm|Y)

m

= > HXilXy,..., Xic1) = Y _HXY, X1, ., Xi1)
i=1 i=1
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Mutual information

Question What is the conclusion from the above example?

Chain rule of MI: I((X1,..., Xm); Y) =D 1(Xi; YIX1, ..., Xiz1)
Proof

(X1, Xm): Y)
= H(X1,..., Xm) — H(X1, ..., Xm|Y)

= > HXilXy,..., Xic1) = Y _HXY, X1, ., Xi1)
i i=1

= > [HXiIX1, ... Xim1) = HOGLY X, X))
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Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: I((X1,..., Xm); Y) =D 1(Xi; YIX1, ..., Xiz1)
Proof

S Xm) YY)
— H(X1,..., Xm)— H

= > HXilXy,..., Xic1) = Y _HXY, X1, ., Xi1)
i i=1

(X1, s XmlY)

= > [HXiIX1, ... Xim1) = HOGLY X, X))

m
= Z/(x,, Y|X1,. .., Xi_1)
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are

independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.
Question If X = Y = Zthen Z =Y — X?

Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?

Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).

Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?

Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).

Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).
I(X:Y) = H(X)—=HX]Y) =H(X) - HX|Y,g(Y))
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?

Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).

Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).
I(X:Y) = H(X)—=HX]Y) =H(X) - HX|Y,g(Y))
> H(X)—H(X|g(Y)) = 1(X; g(Y))
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?

Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).

Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).
I(X;Y) = H(X) = H(X|Y) = H(X) = H(X|Y, g(Y))

> H(X)—H(X|g(Y)) = 1(X; g(Y))
From the first line, I(X; Y) = I(X;(Y.,g(Y))) = I(X; (Y, 2))
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = Zthen Z =Y — X?
Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).
Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).

I(X;Y) = H(X)—=HX|Y)=H(X)-HX]|Y,g(Y))

> H(X) - H(X|g(Y)) = I(X:g(Y))
From the first line, I(X; Y) = I(X;(Y,g(Y))) = I(X; (Y, Z)) However, in
general,
1(X;:(Y,2)=1(X;Y)+1(X;Z|]Y)=I(X;Y)
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Mutual information

Markov chain (a memoryless process) An ordered tuple of random
variables (X, Y, Z) is said to form a Markov chain if X and Z are
independent conditioned on Y. In that case we write as X — Y — Z.

Question If X = Y = ZthenZ =Y — X?
Lemma Data Processing Inequality: Let X — Y — Z be a Markov chain.
Then I(X;Y) > I(X; Z).
Proof Let Z = g(Y) for some g then obviously X — Y — g(Y).

I(X;Y) = H(X)—=H(X|Y)=H(X) - H(X[Y,g(Y))

> H(X)— H(X|g(Y)) = I(X; g(Y))
From the first line, I(X; Y) = I(X;(Y,g(Y))) = I(X; (Y, Z)) However, in
general,
1(X;:(Y,2)=1(X;Y)+1(X;Z|]Y)=I(X;Y)

Thus,
I(X;Y)=1(X;(Y,2)) = HX)-H(X|Y,Z) > HX)—-H(X|Z) = I(X; Z)
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Mutual information

Question What is the context of this inequality in digital communication
systems?
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Mutual information

Question What is the context of this inequality in digital communication
systems?

Sufficient statistic For rvs X and Y/, a function g(Y) is called a sufficient
statistic of Y for X if I(X;Y) =1(X;g(Y)) i.e. g(Y) contains all the
relevant information about X
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Mutual information

Question What is the context of this inequality in digital communication
systems?

Sufficient statistic For rvs X and Y/, a function g(Y) is called a sufficient
statistic of Y for X if I(X;Y) =1(X;g(Y)) i.e. g(Y) contains all the
relevant information about X

Example Let X take two values x; and x with equal probability. Suppose
Y is a sequence of n coin tosses with probability of heads given by X. Let
g(Y) be the number of heads in Y. Then show that

1(X;Y) = I(X: g(Y)).
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