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Entropy

An information theoretic proof of the Cauchy-Schwarz inequality1

(
n∑

i=1

aibi

)
≤

(
n∑

i=1

a2i

)
·

(
n∑

i=1

b2i

)

First observe that it is enough to prove it for natural numbers ai , bi .

▷ Consider disjoint subsets of natural numbers A1, . . . ,An such that
|Ai | = ai

▷ do the same, |Bi | = bi

▷ Consider rectangles in the xy plane with x coordinates in the sets Ai

and y coordinates in the sets Bi .

1Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical
Monthly 111 (2004), no. 9, 749–760. 6, 8
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Entropy

▷ Pick two points (X1,Y1) and (X2,Y2) at random

▽ Pick a rectangle R with probability proportional to its area i.e.

P[R = ri ] =
ai · bi∑
j aj · bj

where ri = Ai × Bi is the rectangle with ai · bi points
▽ Pick two points (X1,Y1) and (X2,Y2) independently from R

(uniform distribution)

▷ since the sets are disjoint, specifying any of the variables
X1,Y1,X2,Y2 reveals the rectangle R i.e.
H(X1,Y1,R) = H(X2,Y2,R) = H(X1,Y1) =

H(X2,Y2)=
how log (

∑
i ai · bi )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 5 January 17, 2023 3 / 9



Entropy

▷ Pick two points (X1,Y1) and (X2,Y2) at random

▽ Pick a rectangle R with probability proportional to its area i.e.

P[R = ri ] =
ai · bi∑
j aj · bj

where ri = Ai × Bi is the rectangle with ai · bi points

▽ Pick two points (X1,Y1) and (X2,Y2) independently from R
(uniform distribution)

▷ since the sets are disjoint, specifying any of the variables
X1,Y1,X2,Y2 reveals the rectangle R i.e.
H(X1,Y1,R) = H(X2,Y2,R) = H(X1,Y1) =

H(X2,Y2)=
how log (

∑
i ai · bi )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 5 January 17, 2023 3 / 9



Entropy

▷ Pick two points (X1,Y1) and (X2,Y2) at random

▽ Pick a rectangle R with probability proportional to its area i.e.

P[R = ri ] =
ai · bi∑
j aj · bj

where ri = Ai × Bi is the rectangle with ai · bi points
▽ Pick two points (X1,Y1) and (X2,Y2) independently from R

(uniform distribution)

▷ since the sets are disjoint, specifying any of the variables
X1,Y1,X2,Y2 reveals the rectangle R i.e.
H(X1,Y1,R) = H(X2,Y2,R) = H(X1,Y1) =

H(X2,Y2)=
how log (

∑
i ai · bi )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 5 January 17, 2023 3 / 9



Entropy

▷ Pick two points (X1,Y1) and (X2,Y2) at random

▽ Pick a rectangle R with probability proportional to its area i.e.

P[R = ri ] =
ai · bi∑
j aj · bj

where ri = Ai × Bi is the rectangle with ai · bi points
▽ Pick two points (X1,Y1) and (X2,Y2) independently from R

(uniform distribution)

▷ since the sets are disjoint, specifying any of the variables
X1,Y1,X2,Y2 reveals the rectangle R i.e.
H(X1,Y1,R) = H(X2,Y2,R) = H(X1,Y1) =

H(X2,Y2)=
how log (

∑
i ai · bi )

Bibhas Adhikari (Spring 2022-23, IIT Kharagpur) Information and Coding Theory Lecture 5 January 17, 2023 3 / 9



Entropy

Since given R, X1,X2,Y1,Y2 are independent, we have

H(X1,Y1,R) + H(X2,Y2,R)

= 2H(R) + H(X1,Y1|R) + H(X2,Y2|R)

= 2H(R) + H(X1|R) + H(Y1|R) + H(X2|R) + H(Y2|R)
= 2H(R) + H(X1,X2|R) + H(Y1,Y2|R)
= H(X1,X2,R) + H(Y1,Y2,R)

= H(X1,X2) + H(Y1,Y2)

≤ log

(∑
i

a2i

)
+ log

(∑
i

b2i

)
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Mutual information
The mutual information (MI) between two random variables X and Y is
defined as

I (X ;Y ) = H(X )− H(X |Y )

Question What is the difference between correlation and MI?
Example X represents the roll of a fair 6-sided die, and Y represents
whether the roll is even (0 if even, 1 if odd)

I (X ;Y ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ) = H(X )+H(Y )−H(X ,Y )

Then (expanding the formula of entropy)

→ I (X ;Y ) ≥ 0

→ I (X ;Y ) = I (Y ;X )

Homework Let X ,Y be two variables with X ∨ Y = 1, X ∈ {0, 1},
Y ∈ {0, 1} such that (X ,Y ) = (1, 0), (X ,Y ) = (0, 1) and (X ,Y ) = (1, 1)
with probabilities 1/3. Then calculate I (X ;Y )
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Mutual information

Conditional mutual information

I (X ;Y |Z ) = EZ [I (X |Z = z ;Y |Z = z)]

= EZ [H(X |Z = z)− H(X |Y ,Z = z)]

= H(X |Z )− H(X |Y ,Z )

Example Let (X ,Y ,Z ) be a random variable with Z = X ⊕Y , X ∈ {0, 1},
Y ∈ {0, 1} such that (X ,Y ,Z ) = (x , y , z) are equally likely. Then check
that I (X ;Y ) = 0 and

I (X ;Y |Z ) = EZ [I (X |Z = z);Y |Z = z ]

=
1

2
I (X |Z = 0;Y |Z = 0) +

1

2
I (X |Z = 1;Y |Z = 1)

=
1

2
log 2 +

1

2
log 2 = 1
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Mutual information

Question What is the conclusion from the above example?

Chain rule of MI: I ((X1, . . . ,Xm);Y ) =
∑m

i=1 I (Xi ;Y |X1, . . . ,Xi−1)

Proof

I ((X1, . . . ,Xm);Y )

= H(X1, . . . ,Xm)− H(X1, . . . ,Xm|Y )

=
m∑
i=1

H(Xi |X1, . . . ,Xi−1)−
m∑
i=1

H(Xi |Y ,X1, . . . ,Xi−1)
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Mutual information
Markov chain (a memoryless process) An ordered tuple of random
variables (X ,Y ,Z ) is said to form a Markov chain if X and Z are
independent conditioned on Y . In that case we write as X → Y → Z .

Question If X → Y → Z then Z → Y → X?

Lemma Data Processing Inequality: Let X → Y → Z be a Markov chain.
Then I (X ;Y ) ≥ I (X ;Z ).

Proof Let Z = g(Y ) for some g then obviously X → Y → g(Y ).

I (X ;Y ) = H(X )− H(X |Y ) = H(X )− H(X |Y , g(Y ))

≥ H(X )− H(X |g(Y )) = I (X ; g(Y ))

From the first line, I (X ;Y ) = I (X ; (Y , g(Y ))) = I (X ; (Y ,Z )) However, in
general,

I (X ; (Y ,Z )) = I (X ;Y ) + I (X ;Z |Y ) = I (X ;Y )

Thus,

I (X ;Y ) = I (X ; (Y ,Z )) = H(X )−H(X |Y ,Z ) ≥ H(X )−H(X |Z ) = I (X ;Z )
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Mutual information

Question What is the context of this inequality in digital communication
systems?

Sufficient statistic For rvs X and Y , a function g(Y ) is called a sufficient
statistic of Y for X if I (X ;Y ) = I (X ; g(Y )) i.e. g(Y ) contains all the
relevant information about X

Example Let X take two values x1 and x2 with equal probability. Suppose
Y is a sequence of n coin tosses with probability of heads given by X . Let
g(Y ) be the number of heads in Y . Then show that
I (X ;Y ) = I (X ; g(Y )).
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