Information and Coding Theory
 MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 5
January 17, 2023

Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$
${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

First observe that it is enough to prove it for natural numbers a_{i}, b_{i}.

[^0]
Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

First observe that it is enough to prove it for natural numbers a_{i}, b_{i}.
\triangleright Consider disjoint subsets of natural numbers A_{1}, \ldots, A_{n} such that $\left|A_{i}\right|=a_{i}$

[^1]
Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

First observe that it is enough to prove it for natural numbers a_{i}, b_{i}.
\triangleright Consider disjoint subsets of natural numbers A_{1}, \ldots, A_{n} such that $\left|A_{i}\right|=a_{i}$
\triangleright do the same, $\left|B_{i}\right|=b_{i}$

[^2]
Entropy

An information theoretic proof of the Cauchy-Schwarz inequality ${ }^{1}$

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right) \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right) \cdot\left(\sum_{i=1}^{n} b_{i}^{2}\right)
$$

First observe that it is enough to prove it for natural numbers a_{i}, b_{i}.
\triangleright Consider disjoint subsets of natural numbers A_{1}, \ldots, A_{n} such that $\left|A_{i}\right|=a_{i}$
\triangleright do the same, $\left|B_{i}\right|=b_{i}$
\triangleright Consider rectangles in the xy plane with x coordinates in the sets A_{i} and y coordinates in the sets B_{i}.

[^3]
Entropy

\triangleright Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ at random

Entropy

\triangleright Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ at random
∇ Pick a rectangle R with probability proportional to its area i.e.

$$
\mathbb{P}\left[R=r_{i}\right]=\frac{a_{i} \cdot b_{i}}{\sum_{j} a_{j} \cdot b_{j}}
$$

where $r_{i}=A_{i} \times B_{i}$ is the rectangle with $a_{i} \cdot b_{i}$ points

Entropy

\triangleright Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ at random
∇ Pick a rectangle R with probability proportional to its area i.e.

$$
\mathbb{P}\left[R=r_{i}\right]=\frac{a_{i} \cdot b_{i}}{\sum_{j} a_{j} \cdot b_{j}}
$$

where $r_{i}=A_{i} \times B_{i}$ is the rectangle with $a_{i} \cdot b_{i}$ points
∇ Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ independently from R (uniform distribution)

Entropy

\triangleright Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ at random
∇ Pick a rectangle R with probability proportional to its area i.e.

$$
\mathbb{P}\left[R=r_{i}\right]=\frac{a_{i} \cdot b_{i}}{\sum_{j} a_{j} \cdot b_{j}}
$$

where $r_{i}=A_{i} \times B_{i}$ is the rectangle with $a_{i} \cdot b_{i}$ points
∇ Pick two points $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$ independently from R (uniform distribution)
\triangleright since the sets are disjoint, specifying any of the variables $X_{1}, Y_{1}, X_{2}, Y_{2}$ reveals the rectangle R i.e.
$H\left(X_{1}, Y_{1}, R\right)=H\left(X_{2}, Y_{2}, R\right)=H\left(X_{1}, Y_{1}\right)=$ $H\left(X_{2}, Y_{2}\right)=$ how $\log \left(\sum_{i} a_{i} \cdot b_{i}\right)$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right)
\end{aligned}
$$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1} \mid R\right)+H\left(Y_{1} \mid R\right)+H\left(X_{2} \mid R\right)+H\left(Y_{2} \mid R\right)
\end{aligned}
$$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1} \mid R\right)+H\left(Y_{1} \mid R\right)+H\left(X_{2} \mid R\right)+H\left(Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1}, X_{2} \mid R\right)+H\left(Y_{1}, Y_{2} \mid R\right)
\end{aligned}
$$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1} \mid R\right)+H\left(Y_{1} \mid R\right)+H\left(X_{2} \mid R\right)+H\left(Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1}, X_{2} \mid R\right)+H\left(Y_{1}, Y_{2} \mid R\right) \\
= & H\left(X_{1}, X_{2}, R\right)+H\left(Y_{1}, Y_{2}, R\right)
\end{aligned}
$$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1} \mid R\right)+H\left(Y_{1} \mid R\right)+H\left(X_{2} \mid R\right)+H\left(Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1}, X_{2} \mid R\right)+H\left(Y_{1}, Y_{2} \mid R\right) \\
= & H\left(X_{1}, X_{2}, R\right)+H\left(Y_{1}, Y_{2}, R\right) \\
= & H\left(X_{1}, X_{2}\right)+H\left(Y_{1}, Y_{2}\right)
\end{aligned}
$$

Entropy

Since given $R, X_{1}, X_{2}, Y_{1}, Y_{2}$ are independent, we have

$$
\begin{aligned}
& H\left(X_{1}, Y_{1}, R\right)+H\left(X_{2}, Y_{2}, R\right) \\
= & 2 H(R)+H\left(X_{1}, Y_{1} \mid R\right)+H\left(X_{2}, Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1} \mid R\right)+H\left(Y_{1} \mid R\right)+H\left(X_{2} \mid R\right)+H\left(Y_{2} \mid R\right) \\
= & 2 H(R)+H\left(X_{1}, X_{2} \mid R\right)+H\left(Y_{1}, Y_{2} \mid R\right) \\
= & H\left(X_{1}, X_{2}, R\right)+H\left(Y_{1}, Y_{2}, R\right) \\
= & H\left(X_{1}, X_{2}\right)+H\left(Y_{1}, Y_{2}\right) \\
\leq & \log \left(\sum_{i} a_{i}^{2}\right)+\log \left(\sum_{i} b_{i}^{2}\right)
\end{aligned}
$$

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI?

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI ? Example X represents the roll of a fair 6 -sided die, and Y represents whether the roll is even (0 if even, 1 if odd)

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI? Example X represents the roll of a fair 6 -sided die, and Y represents whether the roll is even (0 if even, 1 if odd)
$I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)$

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI? Example X represents the roll of a fair 6 -sided die, and Y represents whether the roll is even (0 if even, 1 if odd)
$I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)$
Then (expanding the formula of entropy)
$\rightarrow I(X ; Y) \geq 0$

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI? Example X represents the roll of a fair 6 -sided die, and Y represents whether the roll is even (0 if even, 1 if odd)
$I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)$
Then (expanding the formula of entropy)

$$
\begin{aligned}
& \rightarrow I(X ; Y) \geq 0 \\
& \rightarrow I(X ; Y)=I(Y ; X)
\end{aligned}
$$

Mutual information

The mutual information (MI) between two random variables X and Y is defined as

$$
I(X ; Y)=H(X)-H(X \mid Y)
$$

Question What is the difference between correlation and MI ? Example X represents the roll of a fair 6 -sided die, and Y represents whether the roll is even (0 if even, 1 if odd)
$I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y)$
Then (expanding the formula of entropy)

$$
\begin{aligned}
& \rightarrow I(X ; Y) \geq 0 \\
& \rightarrow I(X ; Y)=I(Y ; X)
\end{aligned}
$$

Homework Let X, Y be two variables with $X \vee Y=1, X \in\{0,1\}$, $Y \in\{0,1\}$ such that $(X, Y)=(1,0),(X, Y)=(0,1)$ and $(X, Y)=(1,1)$ with probabilities $1 / 3$. Then calculate $I(X ; Y)$

Mutual information

Conditional mutual information

$$
I(X ; Y \mid Z)=\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)]
$$

Mutual information

Conditional mutual information

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
& =\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)]
\end{aligned}
$$

Mutual information

Conditional mutual information

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
& =\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)] \\
& =H(X \mid Z)-H(X \mid Y, Z)
\end{aligned}
$$

Mutual information

Conditional mutual information

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
& =\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)] \\
& =H(X \mid Z)-H(X \mid Y, Z)
\end{aligned}
$$

Example Let (X, Y, Z) be a random variable with $Z=X \oplus Y, X \in\{0,1\}$, $Y \in\{0,1\}$ such that $(X, Y, Z)=(x, y, z)$ are equally likely. Then check that $I(X ; Y)=0$ and

$$
I(X ; Y \mid Z)=\mathbb{E}_{Z}[I(X \mid Z=z) ; Y \mid Z=z]
$$

Mutual information

Conditional mutual information

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
& =\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)] \\
& =H(X \mid Z)-H(X \mid Y, Z)
\end{aligned}
$$

Example Let (X, Y, Z) be a random variable with $Z=X \oplus Y, X \in\{0,1\}$, $Y \in\{0,1\}$ such that $(X, Y, Z)=(x, y, z)$ are equally likely. Then check that $I(X ; Y)=0$ and

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X \mid Z=z) ; Y \mid Z=z] \\
& =\frac{1}{2} I(X|Z=0 ; Y| Z=0)+\frac{1}{2} I(X|Z=1 ; Y| Z=1)
\end{aligned}
$$

Mutual information

Conditional mutual information

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
& =\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)] \\
& =H(X \mid Z)-H(X \mid Y, Z)
\end{aligned}
$$

Example Let (X, Y, Z) be a random variable with $Z=X \oplus Y, X \in\{0,1\}$, $Y \in\{0,1\}$ such that $(X, Y, Z)=(x, y, z)$ are equally likely. Then check that $I(X ; Y)=0$ and

$$
\begin{aligned}
I(X ; Y \mid Z) & =\mathbb{E}_{Z}[I(X \mid Z=z) ; Y \mid Z=z] \\
& =\frac{1}{2} I(X|Z=0 ; Y| Z=0)+\frac{1}{2} I(X|Z=1 ; Y| Z=1) \\
& =\frac{1}{2} \log 2+\frac{1}{2} \log 2=1
\end{aligned}
$$

Mutual information

Question What is the conclusion from the above example?

Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: $I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right)=\sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$

Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: $I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right)=\sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$
Proof

$$
\begin{aligned}
& I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right) \\
= & H\left(X_{1}, \ldots, X_{m}\right)-H\left(X_{1}, \ldots, X_{m} \mid Y\right)
\end{aligned}
$$

Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: $I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right)=\sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$
Proof

$$
\begin{aligned}
& I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right) \\
= & H\left(X_{1}, \ldots, X_{m}\right)-H\left(X_{1}, \ldots, X_{m} \mid Y\right) \\
= & \sum_{i=1}^{m} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-\sum_{i=1}^{m} H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: $I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right)=\sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$
Proof

$$
\begin{aligned}
& I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right) \\
= & H\left(X_{1}, \ldots, X_{m}\right)-H\left(X_{1}, \ldots, X_{m} \mid Y\right) \\
= & \sum_{i=1}^{m} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-\sum_{i=1}^{m} H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right) \\
= & \sum_{i=1}^{m}\left[H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right)\right]
\end{aligned}
$$

Mutual information

Question What is the conclusion from the above example?
Chain rule of MI: $I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right)=\sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$
Proof

$$
\begin{aligned}
& I\left(\left(X_{1}, \ldots, X_{m}\right) ; Y\right) \\
= & H\left(X_{1}, \ldots, X_{m}\right)-H\left(X_{1}, \ldots, X_{m} \mid Y\right) \\
= & \sum_{i=1}^{m} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-\sum_{i=1}^{m} H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right) \\
= & \sum_{i=1}^{m}\left[H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right)\right] \\
= & \sum_{i=1}^{m} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$. Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$. Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$. Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.
Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

$$
I(X ; Y)=H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y))
$$

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.
Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y)) \\
& \geq H(X)-H(X \mid g(Y))=I(X ; g(Y))
\end{aligned}
$$

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.
Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y)) \\
& \geq H(X)-H(X \mid g(Y))=I(X ; g(Y))
\end{aligned}
$$

From the first line, $I(X ; Y)=I(X ;(Y, g(Y)))=I(X ;(Y, Z))$

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.
Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y)) \\
& \geq H(X)-H(X \mid g(Y))=I(X ; g(Y))
\end{aligned}
$$

From the first line, $I(X ; Y)=I(X ;(Y, g(Y)))=I(X ;(Y, Z))$ However, in general,

$$
I(X ;(Y, Z))=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Y)
$$

Mutual information

Markov chain (a memoryless process) An ordered tuple of random variables (X, Y, Z) is said to form a Markov chain if X and Z are independent conditioned on Y. In that case we write as $X \rightarrow Y \rightarrow Z$.
Question If $X \rightarrow Y \rightarrow Z$ then $Z \rightarrow Y \rightarrow X$?
Lemma Data Processing Inequality: Let $X \rightarrow Y \rightarrow Z$ be a Markov chain. Then $I(X ; Y) \geq I(X ; Z)$.
Proof Let $Z=g(Y)$ for some g then obviously $X \rightarrow Y \rightarrow g(Y)$.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y)) \\
& \geq H(X)-H(X \mid g(Y))=I(X ; g(Y))
\end{aligned}
$$

From the first line, $I(X ; Y)=I(X ;(Y, g(Y)))=I(X ;(Y, Z))$ However, in general,

$$
I(X ;(Y, Z))=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Y)
$$

Thus,
$I(X ; Y)=I(X ;(Y, Z))=H(X)-H(X \mid Y, Z) \geq H(X)-H(X \mid Z)=I(X ; Z)$

Mutual information

Question What is the context of this inequality in digital communication systems?

Mutual information

Question What is the context of this inequality in digital communication systems?

Sufficient statistic For rvs X and Y, a function $g(Y)$ is called a sufficient statistic of Y for X if $I(X ; Y)=I(X ; g(Y))$ i.e. $g(Y)$ contains all the relevant information about X

Mutual information

Question What is the context of this inequality in digital communication systems?

Sufficient statistic For rvs X and Y, a function $g(Y)$ is called a sufficient statistic of Y for X if $I(X ; Y)=I(X ; g(Y))$ i.e. $g(Y)$ contains all the relevant information about X

Example Let X take two values x_{1} and x_{2} with equal probability. Suppose Y is a sequence of n coin tosses with probability of heads given by X. Let $g(Y)$ be the number of heads in Y. Then show that $I(X ; Y)=I(X ; g(Y))$.

[^0]: ${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

[^1]: ${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

[^2]: ${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

[^3]: ${ }^{1}$ Ehud Friedgut, Hypergraphs, entropy, and inequalities, The American Mathematical Monthly 111 (2004), no. 9, 749-760. 6, 8

