Information and Coding Theory
 MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

> Lecture 4 January 16,2023

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect?

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Joint entropy Let $Z=(X, Y)$ be a pair of random variables with joint distribution $p(x, y)$. Then

$$
H(Z)=H(X, Y)=\sum_{x, y} p(x, y) \log (1 / p(x, y))
$$

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Joint entropy Let $Z=(X, Y)$ be a pair of random variables with joint distribution $p(x, y)$. Then

$$
\begin{aligned}
H(Z) & =H(X, Y)=\sum_{x, y} p(x, y) \log (1 / p(x, y)) \\
& =\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(x)}+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)}
\end{aligned}
$$

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Joint entropy Let $Z=(X, Y)$ be a pair of random variables with joint distribution $p(x, y)$. Then

$$
\begin{aligned}
H(Z) & =H(X, Y)=\sum_{x, y} p(x, y) \log (1 / p(x, y)) \\
& =\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(x)}+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =\sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x)+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)}
\end{aligned}
$$

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Joint entropy Let $Z=(X, Y)$ be a pair of random variables with joint distribution $p(x, y)$. Then

$$
\begin{aligned}
H(Z) & =H(X, Y)=\sum_{x, y} p(x, y) \log (1 / p(x, y)) \\
& =\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(x)}+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =\sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x)+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =H(X)+\sum_{x} p(x) H(Y \mid X=x)
\end{aligned}
$$

Entropy

Communication Suppose we have a source rv X and at the receiver end an output rv Y. The source letters are being transmitted through the channel. What do we expect? What is a channel?

Joint entropy Let $Z=(X, Y)$ be a pair of random variables with joint distribution $p(x, y)$. Then

$$
\begin{aligned}
H(Z) & =H(X, Y)=\sum_{x, y} p(x, y) \log (1 / p(x, y)) \\
& =\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(x)}+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =\sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x)+\sum_{x, y} p(x) p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& =H(X)+\sum_{x} p(x) H(Y \mid X=x) \\
& =H(X)+\mathbb{E}_{x}[H(Y \mid X=x)]
\end{aligned}
$$

Entropy

Chain rule of entropy
Set $H(Y \mid X)=\mathbb{E}_{\times}[H(Y \mid X=x)]$. Then we have

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Entropy

Chain rule of entropy
Set $H(Y \mid X)=\mathbb{E}_{x}[H(Y \mid X=x)]$. Then we have

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Similarly, we can obtain

$$
H(X, Y)=H(Y)+H(X \mid Y)
$$

Entropy

Chain rule of entropy
Set $H(Y \mid X)=\mathbb{E}_{\times}[H(Y \mid X=x)]$. Then we have

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Similarly, we can obtain

$$
H(X, Y)=H(Y)+H(X \mid Y)
$$

Homework Let (X, Y) be a joint random variable with $X \vee Y=1$, $X \in\{0,1\}$ and $Y \in\{0,1\}$ such that $p(0,1)=p(1,0)=p(1,1)=1 / 3$. Then calculate $H(X), H(Y), H(Y \mid X=0), H(Y \mid X=1), H(Y \mid X)$, $H(X, Y)$

Entropy

Proposition $H(Y) \geq H(Y \mid X)$

Entropy

Proposition $H(Y) \geq H(Y \mid X)$
Proof
$H(Y \mid X)-H(Y)=\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)}$

Entropy

Proposition $H(Y) \geq H(Y \mid X)$
Proof

$$
\begin{aligned}
H(Y \mid X)-H(Y)= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)} \\
= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& -\sum_{y} p(y) \log \frac{1}{p(y)} \sum_{x} p(x \mid y)
\end{aligned}
$$

Entropy

Proposition $H(Y) \geq H(Y \mid X)$
Proof

$$
\begin{aligned}
H(Y \mid X)-H(Y)= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)} \\
= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& -\sum_{y} p(y) \log \frac{1}{p(y)} \sum_{x} p(x \mid y) \\
= & \sum_{x, y} p(x, y)\left(\log \frac{1}{p(y \mid x)}-\log \frac{1}{p(y)}\right)
\end{aligned}
$$

Entropy

Proposition $H(Y) \geq H(Y \mid X)$
Proof

$$
\begin{aligned}
H(Y \mid X)-H(Y)= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)}-\sum_{y} p(y) \log \frac{1}{p(y)} \\
= & \sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{1}{p(y \mid x)} \\
& -\sum_{y} p(y) \log \frac{1}{p(y)} \sum_{x} p(x \mid y) \\
= & \sum_{x, y} p(x, y)\left(\log \frac{1}{p(y \mid x)}-\log \frac{1}{p(y)}\right) \\
= & \sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right)
\end{aligned}
$$

Entropy

Now let W be a rv that takes the value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then using jensen's inequality

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Entropy

Now let W be a rv that takes the value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then using jensen's inequality

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Question What do you conclude ?

Entropy

Now let W be a rv that takes the value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then using jensen's inequality

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Question What do you conclude ?
Conditioning reduces entropy on average!!

Entropy

Now let W be a rv that takes the value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then using jensen's inequality

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Question What do you conclude ?
Conditioning reduces entropy on average!! Homework $H(Y)=H(Y \mid X)$ if and only if X and Y are independent

Entropy

Now let W be a rv that takes the value $\frac{p(x) p(y)}{p(x, y)}$ with probability $p(x, y)$. Then using jensen's inequality

$$
\sum_{x, y} p(x, y)\left(\log \frac{p(x) p(y)}{p(x, y)}\right) \leq \log \left(\sum_{x, y} \frac{p(x) p(y)}{p(x, y)} p(x, y)\right)=\log (1)=0
$$

Question What do you conclude ?
Conditioning reduces entropy on average!! Homework $H(Y)=H(Y \mid X)$ if and only if X and Y are independent Homework $H(Y \mid X, Z) \leq H(Y \mid Z)$

Entropy

General case Suppose $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.

Entropy

General case Suppose $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.
Homework Show (by induction) that

$$
\begin{align*}
H\left(X_{1}, \ldots, X_{m}\right)= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots \tag{1}\\
& +H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right)
\end{align*}
$$

Entropy

General case Suppose $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.
Homework Show (by induction) that

$$
\begin{align*}
H\left(X_{1}, \ldots, X_{m}\right)= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots \tag{1}\\
& +H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right)
\end{align*}
$$

Sub-additive property of entropy

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{m}\right)
$$

Entropy

General case Suppose $\bar{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.
Homework Show (by induction) that

$$
\begin{align*}
H\left(X_{1}, \ldots, X_{m}\right)= & H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots \tag{1}\\
& +H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right)
\end{align*}
$$

Sub-additive property of entropy

$$
H\left(X_{1}, \ldots, X_{m}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{m}\right)
$$

Question Can the upper bound for expected code length of $H(X)+1$ be improved?

Entropy

Recall

\triangleright Let X be a rv with range set $\left\{a_{1}, \ldots, a_{n}\right\}$ and $p\left(a_{i}\right)=p_{i}$

Entropy

Recall

\triangleright Let X be a rv with range set $\left\{a_{1}, \ldots, a_{n}\right\}$ and $p\left(a_{i}\right)=p_{i}$
\triangleright We want to encode $a_{i} s$ with expected code length small i.e. expected number of bits needed is small

Entropy

Recall

\triangleright Let X be a rv with range set $\left\{a_{1}, \ldots, a_{n}\right\}$ and $p\left(a_{i}\right)=p_{i}$
\triangleright We want to encode $a_{i} s$ with expected code length small i.e. expected number of bits needed is small
\triangleright If $I_{1}, l_{2}, \ldots, I_{n}$ are the codeword lengths for a_{1}, \ldots, a_{n} respectively then

$$
\sum_{i=1}^{n} 2^{l_{i}} \leq 1
$$

Entropy

Recall

\triangleright Let X be a rv with range set $\left\{a_{1}, \ldots, a_{n}\right\}$ and $p\left(a_{i}\right)=p_{i}$
\triangleright We want to encode $a_{i} s$ with expected code length small i.e. expected number of bits needed is small
\triangleright If $I_{1}, l_{2}, \ldots, I_{n}$ are the codeword lengths for a_{1}, \ldots, a_{n} respectively then

$$
\sum_{i=1}^{n} 2^{l_{i}} \leq 1
$$

\triangleright We proved that the expected length is bounded below by $H(X)$ and bounded above by $H(X)+1$ (Shannon code)

Entropy

Recall

\triangleright Let X be a rv with range set $\left\{a_{1}, \ldots, a_{n}\right\}$ and $p\left(a_{i}\right)=p_{i}$
\triangleright We want to encode $a_{i} s$ with expected code length small i.e. expected number of bits needed is small
\triangleright If $I_{1}, l_{2}, \ldots, I_{n}$ are the codeword lengths for a_{1}, \ldots, a_{n} respectively then

$$
\sum_{i=1}^{n} 2^{l_{i}} \leq 1
$$

\triangleright We proved that the expected length is bounded below by $H(X)$ and bounded above by $H(X)+1$ (Shannon code)
Question Can we improve the upper bound?

The idea - Source Coding Theorem

The idea - Source Coding Theorem
\triangleright Consider m copies of the rv X, X_{1}, \ldots, X_{m} and a code $C: \mathcal{X}^{m} \rightarrow\{0,1\}^{*}$

The idea - Source Coding Theorem
\triangleright Consider m copies of the rv X, X_{1}, \ldots, X_{m} and a code $C: \mathcal{X}^{m} \rightarrow\{0,1\}^{*}$
\triangleright Let $|\mathcal{X}|^{m}=N$

The idea - Source Coding Theorem
\triangleright Consider m copies of the rv X, X_{1}, \ldots, X_{m} and a code $C: \mathcal{X}^{m} \rightarrow\{0,1\}^{*}$
\triangleright Let $|\mathcal{X}|^{m}=N$
\triangleright We know that

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq \sum_{i=1}^{N} p_{i}\left\lceil\log \frac{1}{p_{i}}\right\rceil \leq H\left(X_{1}, \ldots, X_{m}\right)+1
$$

The idea - Source Coding Theorem
\triangleright Consider m copies of the rv X, X_{1}, \ldots, X_{m} and a code $C: \mathcal{X}^{m} \rightarrow\{0,1\}^{*}$
\triangleright Let $|\mathcal{X}|^{m}=N$
\triangleright We know that

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq \sum_{i=1}^{N} p_{i}\left\lceil\log \frac{1}{p_{i}}\right\rceil \leq H\left(X_{1}, \ldots, X_{m}\right)+1
$$

\triangleright Assume that m copies of X are iid

The idea - Source Coding Theorem
\triangleright Consider m copies of the $\mathrm{rv} X, X_{1}, \ldots, X_{m}$ and a code $C: \mathcal{X}^{m} \rightarrow\{0,1\}^{*}$
\triangleright Let $|\mathcal{X}|^{m}=N$
\triangleright We know that

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq \sum_{i=1}^{N} p_{i}\left\lceil\log \frac{1}{p_{i}}\right\rceil \leq H\left(X_{1}, \ldots, X_{m}\right)+1
$$

\triangleright Assume that m copies of X are iid
\triangleright Then

$$
\begin{aligned}
H\left(X_{1}, \ldots, X_{m}\right) & =H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+\ldots+H\left(X_{m} \mid X_{1}, \ldots, X_{m-1}\right) \\
& =H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{m}\right) \\
& =m \cdot H(X)
\end{aligned}
$$

Entropy

Thus we have

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq m \cdot H(X)+1
$$

Entropy

Thus we have

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq m \cdot H(X)+1
$$

Thus we conclude that we can use $H(X)+\frac{1}{m}$ bits on average per copy of X

Entropy

Thus we have

$$
\mathbb{E}\left[\left|C\left(X_{1}, \ldots, X_{m}\right)\right|\right] \leq m \cdot H(X)+1
$$

Thus we conclude that we can use $H(X)+\frac{1}{m}$ bits on average per copy of X

Theorem (Fundamental Source Coding Theorem (Shannon)). For any $\epsilon>0$ there exists a n_{0} such that for all $n \geq n_{0}$ and given n copies of X, X_{1}, \ldots, X_{n} sampled i.i.d., it is possible to communicate (X_{1}, \ldots, X_{n}) using at most $H(X)+\epsilon$ bits per copy on average.

