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Entropy
Communication Suppose we have a source rv X and at the receiver end an
output rv Y . The source letters are being transmitted through the
channel. What do we expect?

What is a channel?

Joint entropy Let Z = (X ,Y ) be a pair of random variables with joint
distribution p(x , y). Then

H(Z ) = H(X ,Y ) =
∑
x ,y

p(x , y) log(1/p(x , y))

=
∑
x ,y

p(x)p(y |x) log 1

p(x)
+
∑
x ,y

p(x)p(y |x) log 1

p(y |x)

=
∑
x

p(x) log
1

p(x)

∑
y

p(y |x) +
∑
x ,y

p(x)p(y |x) log 1

p(y |x)

= H(X ) +
∑
x

p(x)H(Y |X = x)

= H(X ) + Ex [H(Y |X = x)]
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Entropy

Chain rule of entropy
Set H(Y |X ) = Ex [H(Y |X = x)]. Then we have

H(X ,Y ) = H(X ) + H(Y |X )

Similarly, we can obtain

H(X ,Y ) = H(Y ) + H(X |Y )

Homework Let (X ,Y ) be a joint random variable with X ∨ Y = 1,
X ∈ {0, 1} and Y ∈ {0, 1} such that p(0, 1) = p(1, 0) = p(1, 1) = 1/3.
Then calculate H(X ), H(Y ), H(Y |X = 0), H(Y |X = 1), H(Y |X ),
H(X ,Y )
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Entropy

Proposition H(Y ) ≥ H(Y |X )

Proof

H(Y |X )− H(Y ) =
∑
x

p(x)
∑
y

p(y |x) log 1

p(y |x)
−
∑
y

p(y) log
1

p(y)

=
∑
x

p(x)
∑
y

p(y |x) log 1

p(y |x)

−
∑
y

p(y) log
1

p(y)

∑
x

p(x |y)

=
∑
x ,y

p(x , y)

(
log

1

p(y |x)
− log

1

p(y)

)
=

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
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Entropy

Now let W be a rv that takes the value p(x)p(y)
p(x ,y) with probability p(x , y).

Then using jensen’s inequality

∑
x ,y

p(x , y)

(
log

p(x)p(y)

p(x , y)

)
≤ log

(∑
x ,y

p(x)p(y)

p(x , y)
p(x , y)

)
= log(1) = 0

Question What do you conclude ?

Conditioning reduces entropy on average!!
Homework H(Y ) = H(Y |X ) if and only if X and Y are independent

Homework H(Y |X ,Z ) ≤ H(Y |Z )
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Entropy

General case Suppose X = (X1,X2, . . . ,Xm).

Homework Show (by induction) that

H(X1, . . . ,Xm) = H(X1) + H(X2|X1) + H(X3|X1,X2) + . . . (1)

+H(Xm|X1, . . . ,Xm−1)

Sub-additive property of entropy

H(X1, . . . ,Xm) ≤ H(X1) + H(X2) + . . .+ H(Xm)

Question Can the upper bound for expected code length of H(X ) + 1 be
improved?
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Entropy

Recall

▷ Let X be a rv with range set {a1, . . . , an} and p(ai ) = pi

▷ We want to encode ai s with expected code length small i.e. expected
number of bits needed is small

▷ If l1, l2, . . . , ln are the codeword lengths for a1, . . . , an respectively then

n∑
i=1

2li ≤ 1

▷ We proved that the expected length is bounded below by H(X ) and
bounded above by H(X ) + 1 (Shannon code)

Question Can we improve the upper bound?
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The idea - Source Coding Theorem

▷ Consider m copies of the rv X , X1, . . . ,Xm and a code
C : Xm → {0, 1}∗

▷ Let |X |m = N

▷ We know that

E[|C (X1, . . . ,Xm)|] ≤
N∑
i=1

pi⌈log
1

pi
⌉ ≤ H(X1, . . . ,Xm) + 1

▷ Assume that m copies of X are iid

▷ Then

H(X1, . . . ,Xm) = H(X1) + H(X2|X1) + . . .+ H(Xm|X1, . . . ,Xm−1)

= H(X1) + H(X2) + . . .+ H(Xm)

= m · H(X )
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▷ Let |X |m = N

▷ We know that

E[|C (X1, . . . ,Xm)|] ≤
N∑
i=1

pi⌈log
1

pi
⌉ ≤ H(X1, . . . ,Xm) + 1

▷ Assume that m copies of X are iid

▷ Then
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Entropy

Thus we have
E[|C (X1, . . . ,Xm)|] ≤ m · H(X ) + 1

Thus we conclude that we can use H(X ) + 1
m bits on average per copy of

X

Theorem (Fundamental Source Coding Theorem (Shannon)). For any
ϵ > 0 there exists a n0 such that for all n ≥ n0 and given n copies of X ,
X1, . . . ,Xn sampled i.i.d., it is possible to communicate (X1, . . . ,Xn) using
at most H(X ) + ϵ bits per copy on average.
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