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Entropy

Random variables Let Ω be a finite set, and µ : Ω → [0, 1] a function with∑
ω∈Ω

µ(ω) = 1.

Then we refer Ω as the sample space and µ as a probability distribution
(probability measure) on Ω.

A random variable over Ω is any function X : Ω → R. Then the
expectation of X is

E[X ] =
∑
ω∈Ω

µ(ω) · X (ω)

If X is the range set of X then we can think of the probability distribution
on X as

p(x) = P[X = x ] =
∑

ω:X (ω)=x

µ(ω)

for any x ∈ X
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Entropy

Convex set and convex function
A set S ⊂ Rn is called convex if for any α ∈ [0, 1]

α · x + (1− α) · y ∈ S

for any x , y ∈ S .

Let S be a convex subset of Rn. Then a function f : S → R is said to be a
convex function on S if for all α ∈ [0, 1]

f (α · x + (1− α) · y) ≤ α · f (x) + (1− α) · f (y)

for all x , y ∈ S . Equivalently, f is convex if the set

Sf = {(x , z) : z ≥ f (x)}

is a convex subset of Rn+1. If the inequality is strict then f is called
strictly convex.
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Entropy

If f satisfies the opposite inequality for all x , y , α then f is called concave
function.

If f is a convex function then −f is a concave function

Note A function f : R → R is a twice differentiable function then f is
convex if and only if f ”(x) ≥ 0 for all x ∈ S

Homework f (x) = x2 is a convex function on R.
f (x) = log(x), f (x) = x log(x) are concave and convex functions
respectively, on (0,∞)
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Entropy

Observation Consider a rv X which takes the values x with probability α
and y with probability 1− α. Let f (X ) be a function. Then what happens
to the convexity condition?
Jensen’s inequality Let S ⊆ Rn be a convex set and let X be a random
variable whose range set is a subset of S . Then for a convex function
f : S → R,

E[f (X )] ≥ f (E[X ]).

Equivalently, for a concave function f : S → R,

E[f (X )] ≤ f (E[X ])

Homework Prove Cauchy-Schwarz inequality using Jensen’s inequality.
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Entropy

Shannon’s assumptions - Let X = {a1, . . . , an} with pmf p(ai ), 1 ≤ i ≤ n.
Denote the entropy by H

▷ H must be a continuous function of pi s

▷ H must be an increasing function of n when p(ai ) = 1/n, 1 ≤ i ≤ n

▷ Bundling property

Question How much information is revealed when we know outcome of a
random experiment? How surprised are we?
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Entropy
Entropy Suppose X is a rv distributed over X = {a1, . . . , an} such that
each value x ∈ X occurs with probability p(x). Then the entropy of X is

H(X ) =
∑
x∈X

p(x) · log2
(

1

p(x)

)
︸ ︷︷ ︸

surprise

= −
∑
x∈X

p(x) · log2(p(x))

Example Consider the entropy of coin toss with p as probability of head.
What happens if pi = 1/n?

Proposition 0 ≤ H(X ) ≤ log(|X |)
Proof Let Y be a rv which takes the value 1/p(x) with probability p(x).
Then

∑
x∈X

p(x) · log
(

1

p(x)

)
= E[log(Y )] ≤ log(E[Y ]) = log

(∑
x∈X

p(x) · 1

p(x)

)
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