Information and Coding Theory MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur
Lecture 19
March 28, 2023

Cyclic codes

Recall
\triangle If $\alpha \in F_{q}$ then the minimal polynomial of α over F_{q} is the (lowest degree) irreducible polynomial $f(x) \in F_{p}[x]$ such that $f(\alpha)=0$, where $q=p^{s}$

Cyclic codes

Recall
\triangle If $\alpha \in F_{q}$ then the minimal polynomial of α over F_{q} is the (lowest degree) irreducible polynomial $f(x) \in F_{p}[x]$ such that $f(\alpha)=0$, where $q=p^{s}$
\triangle If α has order e (note that in F_{q}, the multiplicative group $F_{q} \backslash\{0\}$ is a cyclic group) then the minimal polynomial is

$$
\prod_{i=0}^{m-1}\left(x-\alpha^{p^{i}}\right)
$$

where m is the smallest integer such that $p^{m} \equiv 1(\bmod e)$

Cyclic codes

Recall
\triangle If $\alpha \in F_{q}$ then the minimal polynomial of α over F_{q} is the (lowest degree) irreducible polynomial $f(x) \in F_{p}[x]$ such that $f(\alpha)=0$, where $q=p^{s}$
\triangle If α has order e (note that in F_{q}, the multiplicative group $F_{q} \backslash\{0\}$ is a cyclic group) then the minimal polynomial is

$$
\prod_{i=0}^{m-1}\left(x-\alpha^{p^{i}}\right)
$$

where m is the smallest integer such that $p^{m} \equiv 1(\bmod e)$
\triangle A generator of the multiplicative group of F_{q} is called a primitive element of the F_{q}

Cyclic codes

Recall
\triangle If $\alpha \in F_{q}$ then the minimal polynomial of α over F_{q} is the (lowest degree) irreducible polynomial $f(x) \in F_{p}[x]$ such that $f(\alpha)=0$, where $q=p^{s}$
\triangle If α has order e (note that in F_{q}, the multiplicative group $F_{q} \backslash\{0\}$ is a cyclic group) then the minimal polynomial is

$$
\prod_{i=0}^{m-1}\left(x-\alpha^{p^{i}}\right)
$$

where m is the smallest integer such that $p^{m} \equiv 1(\bmod e)$
\triangle A generator of the multiplicative group of F_{q} is called a primitive element of the F_{q}
\triangle An element $\beta \in F_{q}$ such that $\beta^{k}=1$ but $\beta^{\prime} \neq 1$, for $0<l<k$ is called a primitive k th root of unity

Cyclic codes

Recall

\triangle If $\alpha \in F_{q}$ then the minimal polynomial of α over F_{q} is the (lowest degree) irreducible polynomial $f(x) \in F_{p}[x]$ such that $f(\alpha)=0$, where $q=p^{s}$
\triangle If α has order e (note that in F_{q}, the multiplicative group $F_{q} \backslash\{0\}$ is a cyclic group) then the minimal polynomial is

$$
\prod_{i=0}^{m-1}\left(x-\alpha^{p^{i}}\right)
$$

where m is the smallest integer such that $p^{m} \equiv 1(\bmod e)$
\triangle A generator of the multiplicative group of F_{q} is called a primitive element of the F_{q}
\triangle An element $\beta \in F_{q}$ such that $\beta^{k}=1$ but $\beta^{\prime} \neq 1$, for $0<l<k$ is called a primitive k th root of unity
\triangle Obviously, a primitive element of F_{q} is a primitive $(q-1)$ th root of unity

Cyclic codes

Discovered independently by RC Bose, DK Ray-Chaudhuri (1960), and by A. Hocquenghem (1959)

Cyclic codes

Discovered independently by RC Bose, DK Ray-Chaudhuri (1960), and by A. Hocquenghem (1959)

BCH codes
\rightarrow Applications of the BCH codes were introduced for binary codes of length $2^{m}-1$

Cyclic codes

Discovered independently by RC Bose, DK Ray-Chaudhuri (1960), and by A. Hocquenghem (1959)

BCH codes
\rightarrow Applications of the BCH codes were introduced for binary codes of length $2^{m}-1$
\rightarrow Later it was extended by Gorenstein and Zierler to nonbinary codes in 1961

Cyclic codes

Discovered independently by RC Bose, DK Ray-Chaudhuri (1960), and by A. Hocquenghem (1959)

BCH codes
\rightarrow Applications of the BCH codes were introduced for binary codes of length $2^{m}-1$
\rightarrow Later it was extended by Gorenstein and Zierler to nonbinary codes in 1961
\rightarrow The decoding algo for binary BCH codes was first proposed by Peterson in 1960

Cyclic codes

For $n(\geq 3)$ divisor of $q^{m}-1$, for some positive integer, a cyclic code of block length n over the field F_{q}, an $(n, k) \mathrm{BCH}$ code with t-error-correction for $2 \leq 2 t \leq n-1$ is generated by

$$
g(x)=L C M\left\{m_{m_{0}}(x), m_{m_{0}+1}(x), \ldots, m_{m_{0}+2 t-1}(x)\right\}
$$

where $m_{m_{0}+i}(x), i=0,1, \ldots, 2 t-1$ are minimal polynomials of the $2 t$ successive powers $\alpha^{m_{0}}, \alpha^{m_{0}+1}, \ldots, \alpha^{m_{0}+2 t-1}$ of some $\alpha \in F_{q}$ whose order is n in some extension field $G F\left(q^{m}\right)$.
$\operatorname{LCM}\{\cdot\}$ denotes the least common multiple polynomial

Cyclic codes

For $n(\geq 3)$ divisor of $q^{m}-1$, for some positive integer, a cyclic code of block length n over the field F_{q}, an $(n, k) \mathrm{BCH}$ code with t-error-correction for $2 \leq 2 t \leq n-1$ is generated by

$$
g(x)=L C M\left\{m_{m_{0}}(x), m_{m_{0}+1}(x), \ldots, m_{m_{0}+2 t-1}(x)\right\}
$$

where $m_{m_{0}+i}(x), i=0,1, \ldots, 2 t-1$ are minimal polynomials of the $2 t$ successive powers $\alpha^{m_{0}}, \alpha^{m_{0}+1}, \ldots, \alpha^{m_{0}+2 t-1}$ of some $\alpha \in F_{q}$ whose order is n in some extension field $G F\left(q^{m}\right)$.
$\operatorname{LCM}\{\cdot\}$ denotes the least common multiple polynomial
If α is a primitive element in the extension field $G F\left(q^{m}\right)$ then the code is called primitive BCH

Cyclic codes

For $n(\geq 3)$ divisor of $q^{m}-1$, for some positive integer, a cyclic code of block length n over the field F_{q}, an $(n, k) \mathrm{BCH}$ code with t-error-correction for $2 \leq 2 t \leq n-1$ is generated by

$$
g(x)=L C M\left\{m_{m_{0}}(x), m_{m_{0}+1}(x), \ldots, m_{m_{0}+2 t-1}(x)\right\}
$$

where $m_{m_{0}+i}(x), i=0,1, \ldots, 2 t-1$ are minimal polynomials of the $2 t$ successive powers $\alpha^{m_{0}}, \alpha^{m_{0}+1}, \ldots, \alpha^{m_{0}+2 t-1}$ of some $\alpha \in F_{q}$ whose order is n in some extension field $G F\left(q^{m}\right)$.
$\operatorname{LCM}\{\cdot\}$ denotes the least common multiple polynomial
If α is a primitive element in the extension field $G F\left(q^{m}\right)$ then the code is called primitive BCH
The order of such an element $n=q^{m}-1$, the length of the code

Cyclic codes

For $n(\geq 3)$ divisor of $q^{m}-1$, for some positive integer, a cyclic code of block length n over the field F_{q}, an $(n, k) \mathrm{BCH}$ code with t-error-correction for $2 \leq 2 t \leq n-1$ is generated by

$$
g(x)=L C M\left\{m_{m_{0}}(x), m_{m_{0}+1}(x), \ldots, m_{m_{0}+2 t-1}(x)\right\}
$$

where $m_{m_{0}+i}(x), i=0,1, \ldots, 2 t-1$ are minimal polynomials of the $2 t$ successive powers $\alpha^{m_{0}}, \alpha^{m_{0}+1}, \ldots, \alpha^{m_{0}+2 t-1}$ of some $\alpha \in F_{q}$ whose order is n in some extension field $G F\left(q^{m}\right)$.
$\operatorname{LCM}\{\cdot\}$ denotes the least common multiple polynomial
If α is a primitive element in the extension field $G F\left(q^{m}\right)$ then the code is called primitive BCH
The order of such an element $n=q^{m}-1$, the length of the code
Codes with $m_{0}=1$ are called narrow-sense BCH codes

Cyclic codes

Observation

The degree of $g(x) \leq 2 t m$, as there are at most $2 t$ distinct minimal polynomials and each has degree at most m

Cyclic codes

Observation

The degree of $g(x) \leq 2 t m$, as there are at most $2 t$ distinct minimal polynomials and each has degree at most m
Thus for BCH codes over any finite field:

$$
n-k=\operatorname{deg}(g(x)) \leq 2 t \cdot m \text { and } n=q^{m}-1
$$

Cyclic codes

Observation

The degree of $g(x) \leq 2 t m$, as there are at most $2 t$ distinct minimal polynomials and each has degree at most m
Thus for BCH codes over any finite field:

$$
n-k=\operatorname{deg}(g(x)) \leq 2 t \cdot m \text { and } n=q^{m}-1
$$

Set $q=2$.

Cyclic codes

Observation

The degree of $g(x) \leq 2 t m$, as there are at most $2 t$ distinct minimal polynomials and each has degree at most m
Thus for BCH codes over any finite field:

$$
n-k=\operatorname{deg}(g(x)) \leq 2 t \cdot m \text { and } n=q^{m}-1
$$

Set $q=2$.
Suppose $m_{i}(x)$ is the minimal polynomial of α^{i}, also let $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ be a code polynomial with $c_{j} \in F_{2}$

If $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ are roots of $c(x)$ then $c(x)$ is divisible by the minimal polynomials $m_{1}(x), m_{2}(x), \ldots, m_{2 t}(x)$ of $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$, respectively

Cyclic codes

Then the generator polynomial of the BCH code is given by

$$
g(x)=\operatorname{LCM}\left\{m_{1}(x), \ldots, m_{2 t}(x)\right\}
$$

where $m_{i}(x)$ is the minimal polynomial of α^{i}, for $i=1,2, \ldots, 2 t$ and consists of $2 t$ successive powers of α

Cyclic codes

Then the generator polynomial of the BCH code is given by

$$
g(x)=\operatorname{LCM}\left\{m_{1}(x), \ldots, m_{2 t}(x)\right\}
$$

where $m_{i}(x)$ is the minimal polynomial of α^{i}, for $i=1,2, \ldots, 2 t$ and consists of $2 t$ successive powers of α

The order of α is n in the extension field $G F\left(2^{m}\right)$

Cyclic codes

Then the generator polynomial of the BCH code is given by

$$
g(x)=\operatorname{LCM}\left\{m_{1}(x), \ldots, m_{2 t}(x)\right\}
$$

where $m_{i}(x)$ is the minimal polynomial of α^{i}, for $i=1,2, \ldots, 2 t$ and consists of $2 t$ successive powers of α

The order of α is n in the extension field $G F\left(2^{m}\right)$
Nonprimitive BCH codes are defined when α is a nonprimitive element of $G F\left(q^{m}\right)$, and the code length is the order of α

Cyclic codes

Then the generator polynomial of the BCH code is given by

$$
g(x)=\operatorname{LCM}\left\{m_{1}(x), \ldots, m_{2 t}(x)\right\}
$$

where $m_{i}(x)$ is the minimal polynomial of α^{i}, for $i=1,2, \ldots, 2 t$ and consists of $2 t$ successive powers of α

The order of α is n in the extension field $G F\left(2^{m}\right)$
Nonprimitive BCH codes are defined when α is a nonprimitive element of $G F\left(q^{m}\right)$, and the code length is the order of α

Cyclic codes

Then the generator polynomial of the BCH code is given by

$$
g(x)=\operatorname{LCM}\left\{m_{1}(x), \ldots, m_{2 t}(x)\right\}
$$

where $m_{i}(x)$ is the minimal polynomial of α^{i}, for $i=1,2, \ldots, 2 t$ and consists of $2 t$ successive powers of α

The order of α is n in the extension field $G F\left(2^{m}\right)$
Nonprimitive BCH codes are defined when α is a nonprimitive element of $G F\left(q^{m}\right)$, and the code length is the order of α
Example $(15,7) \mathrm{BCH}$ code: Let α be a primitive element of $G F\left(2^{4}\right)$ such that $1+\alpha+\alpha^{4}=0$

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\text {min }} \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code.

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\text {min }} \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code. Procedure to determine parameters of a BCH code:

1. Choose a primitive polynomial of degree m, and construct $G F\left(2^{m}\right)$

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\text {min }} \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code. Procedure to determine parameters of a BCH code:

1. Choose a primitive polynomial of degree m, and construct $G F\left(2^{m}\right)$
2. Find the minimal polynomials $m_{i}(x)$ of $\alpha^{i}, i=1,3, \ldots, 2 t-1$

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\text {min }} \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code. Procedure to determine parameters of a BCH code:

1. Choose a primitive polynomial of degree m, and construct $G F\left(2^{m}\right)$
2. Find the minimal polynomials $m_{i}(x)$ of $\alpha^{i}, i=1,3, \ldots, 2 t-1$
3. Find $g(x)=\operatorname{LCM}\left\{m_{1}(x), m_{3}(x), \ldots, m_{2 t-1}(x)\right\}$

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\text {min }} \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code. Procedure to determine parameters of a BCH code:

1. Choose a primitive polynomial of degree m, and construct $G F\left(2^{m}\right)$
2. Find the minimal polynomials $m_{i}(x)$ of $\alpha^{i}, i=1,3, \ldots, 2 t-1$
3. Find $g(x)=L C M\left\{m_{1}(x), m_{3}(x), \ldots, m_{2 t-1}(x)\right\}$
4. Determine k from $\operatorname{deg}(g(x))=n-k$

Cyclic codes

For any positive integer pair m, t with $m \geq 3, t<n / 2$, there exists a binary BCH code of block length $n=2^{m}-1$, where the number of parity-check bits satisfies $n-k \leq m t$, and the minimum distance $d_{\min } \geq d_{0}=2 t+1$, where d_{0} is called the designed distance of the code. Procedure to determine parameters of a BCH code:

1. Choose a primitive polynomial of degree m, and construct $G F\left(2^{m}\right)$
2. Find the minimal polynomials $m_{i}(x)$ of $\alpha^{i}, i=1,3, \ldots, 2 t-1$
3. Find $g(x)=\operatorname{LCM}\left\{m_{1}(x), m_{3}(x), \ldots, m_{2 t-1}(x)\right\}$
4. Determine k from $\operatorname{deg}(g(x))=n-k$
5. Find $d_{\min } \geq 2 t+1$ through the parity-check matrix H, as discussed for the cyclic code

BCH code

Minimum distance of BCH code Let $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ be a code polynomial of a primitive t-error correcting BCH code of block length $n=2^{m}-1$

BCH code

Minimum distance of BCH code Let $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ be a code polynomial of a primitive t-error correcting BCH code of block length $n=2^{m}-1$
\rightarrow Suppose $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ are roots of $c(x)$, and hence $c(x)$ is divisible by the generator polynomial $g(x)$, the LCM of the $m_{i}(x), 1 \leq i \leq 2 t$

BCH code

Minimum distance of BCH code Let $c(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}$ be a code polynomial of a primitive t-error correcting BCH code of block length $n=2^{m}-1$
\rightarrow Suppose $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ are roots of $c(x)$, and hence $c(x)$ is divisible by the generator polynomial $g(x)$, the LCM of the $m_{i}(x), 1 \leq i \leq 2 t$ $\rightarrow c\left(\alpha^{i}\right)=c_{0}+c_{1} \alpha^{i}+\ldots+c_{n-1}\left(\alpha^{i}\right)^{n-1}=0$ implies that

$$
\mathbf{c}\left[\begin{array}{c}
1 \\
\alpha^{i} \\
\vdots \\
\left(\alpha^{i}\right)^{n-1}
\end{array}\right]=0,1 \leq i \leq 2 t
$$

and hence

$$
\mathbf{c} \cdot H_{i}^{T}=0
$$

where $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ and $H_{i}=\left(1 \alpha^{i} \ldots\left(\alpha^{i}\right)^{n-1}\right), 1 \leq i \leq 2 t$

BCH code

Now construct the matrix H as follows:

$$
H=\left[\begin{array}{cccc}
1 & \alpha & \ldots & \alpha^{n-1} \\
1 & \alpha^{2} & \ldots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & \alpha^{2 t} & \ldots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

where the entries of H are nonzero elements in $G F\left(2^{m}\right)$

BCH code

Now construct the matrix H as follows:

$$
H=\left[\begin{array}{cccc}
1 & \alpha & \ldots & \alpha^{n-1} \\
1 & \alpha^{2} & \ldots & \left(\alpha^{2}\right)^{n-1} \\
\vdots & \vdots & & \vdots \\
1 & \alpha^{2 t} & \ldots & \left(\alpha^{2 t}\right)^{n-1}
\end{array}\right]
$$

where the entries of H are nonzero elements in $G F\left(2^{m}\right)$
\rightarrow We want to show that any set of $d_{0}-1$ or $2 t$ columns of H cannot be linearly dependent so that the t-error-correcting BCH code has minimum distance of at least d_{0} or $2 t+1$

BCH code

Suppose there exists a codeword whose components consists of the nonzero digits $c_{j_{u}}=1,1 \leq u \leq 2 t$. Then we have

$$
\left(c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{2 t}}\right) \underbrace{\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \ldots & \left(\alpha^{j_{1}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\vdots & \vdots & \ldots & \vdots \\
\alpha^{j_{2 t}} & \left(\alpha^{j_{2 t}}\right)^{2} & \ldots & \left(\alpha^{j_{22 t}}\right)^{2 t}
\end{array}\right]_{2 t \times 2 t}}_{D}=0
$$

where $c_{j_{1}}=c_{j_{2}}=\ldots=c_{j_{2 t}}=1$

BCH code

Suppose there exists a codeword whose components consists of the nonzero digits $c_{j u}=1,1 \leq u \leq 2 t$. Then we have

$$
\left(c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{2 t}}\right) \underbrace{\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \ldots & \left(\alpha^{j_{1}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\vdots & \vdots & \ldots & \vdots \\
\alpha^{j_{2 t}} & \left(\alpha^{j_{2 t}}\right)^{2} & \ldots & \left(\alpha^{j_{22 t}}\right)^{2 t}
\end{array}\right]_{2 t \times 2 t}}_{D}=0
$$

where $c_{j_{1}}=c_{j_{2}}=\ldots=c_{j_{2 t}}=1$
However, $|D| \neq 0$, where $|D|$ is called the van der Monde determinant

BCH code

Suppose there exists a codeword whose components consists of the nonzero digits $c_{j u}=1,1 \leq u \leq 2 t$. Then we have

$$
\left(c_{j_{1}}, c_{j_{2}}, \ldots, c_{j_{2 t}}\right) \underbrace{\left[\begin{array}{cccc}
\alpha^{j_{1}} & \left(\alpha^{j_{1}}\right)^{2} & \ldots & \left(\alpha^{j_{1}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\alpha^{j_{2}} & \left(\alpha^{j_{2}}\right)^{2} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t} \\
\vdots & \vdots & \ldots & \vdots \\
\alpha^{j_{2 t}} & \left(\alpha^{j_{2 t}}\right)^{2} & \ldots & \left(\alpha^{j_{22 t}}\right)^{2 t}
\end{array}\right]_{2 t \times 2 t}}_{D}=0
$$

where $c_{j_{1}}=c_{j_{2}}=\ldots=c_{j_{2 t}}=1$
However, $|D| \neq 0$, where $|D|$ is called the van der Monde determinant

BCH codes

Now evaluating $|D|$ by factoring out $\alpha^{j_{u}}, 1 \leq u \leq 2 t$,

$$
\begin{aligned}
|D| & =\alpha^{j_{1}+j_{2}+\ldots+j_{2 t}}\left|\begin{array}{cccc}
1 & \alpha^{j_{1}} & \ldots & \left(\alpha^{j_{1}}\right)^{2 t-1} \\
1 & \alpha^{j_{2}} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t-1} \\
\vdots & \vdots & \ldots & \vdots \\
1 & \alpha^{j_{2 t}} & \ldots & \left(\alpha^{j_{2 t}}\right)^{2 t-1}
\end{array}\right| \\
& =\alpha^{j_{1}+j_{2}+\ldots+j_{2 t}} \prod_{v<u}\left(\alpha^{j_{u}}-\alpha^{j_{v}}\right) \neq 0
\end{aligned}
$$

BCH codes

Now evaluating $|D|$ by factoring out $\alpha^{j_{u}}, 1 \leq u \leq 2 t$,

$$
\begin{aligned}
|D| & =\alpha^{j_{1}+j_{2}+\ldots+j_{22}}\left|\begin{array}{cccc}
1 & \alpha^{j_{1}} & \ldots & \left(\alpha^{j_{1}}\right)^{2 t-1} \\
1 & \alpha^{j_{2}} & \ldots & \left(\alpha^{j_{2}}\right)^{2 t-1} \\
\vdots & \vdots & \ldots & \vdots \\
1 & \alpha^{j_{22}} & \ldots & \left(\alpha^{j_{2 t}}\right)^{2 t-1}
\end{array}\right| \\
& =\alpha^{j_{1}+j_{2}+\ldots+j_{2 t}} \prod_{v<u}\left(\alpha^{j_{u}}-\alpha^{j_{v}}\right) \neq 0
\end{aligned}
$$

Thus any set of $d_{0}-1$ columns is linearly independent and hence the assumption is invalid i.e. the minimum distance of the t-error-correcting BCH code is at least the designed distance $d_{0}=2 t-1 \geq d_{\text {min }}$

BCH code

Decoding of BCH code computing syndrome

 Suppose that a code polynomial $c(x)$ is transmitted and the received polynomial is $r(x)=c(x)+e(x)$, where $e(x)=e_{0}+e_{1} x+\ldots+e_{n-1} x^{n-1}$ is called the error polynomial.
BCH code

Decoding of BCH code computing syndrome Suppose that a code polynomial $c(x)$ is transmitted and the received polynomial is $r(x)=c(x)+e(x)$, where $e(x)=e_{0}+e_{1} x+\ldots+e_{n-1} x^{n-1}$ is called the error polynomial.

Suppose there are $v \leq t$ non-zero coefficients of $e(x)$ in the umknown locations $j_{1}, j_{2}, \ldots, j_{v}$ i.e.

$$
e(x)=\sum_{j=1}^{v} x^{j_{i}}, 0 \leq j_{i} \leq n-1
$$

BCH code

Decoding of BCH code computing syndrome Suppose that a code polynomial $c(x)$ is transmitted and the received polynomial is $r(x)=c(x)+e(x)$, where $e(x)=e_{0}+e_{1} x+\ldots+e_{n-1} x^{n-1}$ is called the error polynomial.

Suppose there are $v \leq t$ non-zero coefficients of $e(x)$ in the umknown locations $j_{1}, j_{2}, \ldots, j_{v}$ i.e.

$$
e(x)=\sum_{j=1}^{v} x^{j_{i}}, 0 \leq j_{i} \leq n-1
$$

Since $\alpha, \alpha^{2}, \ldots, \alpha^{2 t}$ are roots of each code polynomial, $c\left(\alpha^{i}\right)=0$ for $1 \leq i \leq 2 t$. Thus, from $r(x)=c(x)+e(x)$, we have

$$
r\left(\alpha^{i}\right)=e\left(\alpha^{i}\right), i=1,2, \ldots, 2 t
$$

BCH codes

Let $s(x)$ denote the syndrome polynomial from the received-word polynomial $r(x)$, given by

$$
\mathbf{S}=\left(S_{1}, S_{2}, \ldots, S_{2 t}\right)=\mathbf{r} \cdot H^{T}
$$

so that

$$
S_{i}=r\left(\alpha^{i}\right)=r_{0}+r_{1} \alpha^{i}+\ldots+r_{n-1} \alpha^{(n-1) i} \in G F\left(2^{m}\right), 1 \leq i \leq 2 t
$$

which corresponds to the syndrome polynomial

$$
s_{i}(x)=s_{0}^{(i)}+s_{1}^{(i)} x+\ldots+s_{n-k-1}^{(i)} x^{n-k-1} \equiv\left(s_{0}^{(1)}, s_{1}^{(i)}, \ldots, s_{n-k-1}^{(i)}\right)
$$

BCH codes

Let $s(x)$ denote the syndrome polynomial from the received-word polynomial $r(x)$, given by

$$
\mathbf{S}=\left(S_{1}, S_{2}, \ldots, S_{2 t}\right)=\mathbf{r} \cdot H^{T}
$$

so that

$$
S_{i}=r\left(\alpha^{i}\right)=r_{0}+r_{1} \alpha^{i}+\ldots+r_{n-1} \alpha^{(n-1) i} \in G F\left(2^{m}\right), 1 \leq i \leq 2 t
$$

which corresponds to the syndrome polynomial

$$
s_{i}(x)=s_{0}^{(i)}+s_{1}^{(i)} x+\ldots+s_{n-k-1}^{(i)} x^{n-k-1} \equiv\left(s_{0}^{(1)}, s_{1}^{(i)}, \ldots, s_{n-k-1}^{(i)}\right)
$$

Therefore, each syndrome entry of \mathbf{S} can be computed by dividing $r(x)$ by the minimal polynomial $m_{i}(x)$ for $1 \leq i \leq 2 t$ of α^{i} such that

$$
r(x)=q_{i}(x) m_{i}(x)+p_{i}(x)
$$

BCH code

Now, the remainder $p_{i}(x)$, where $x=\alpha^{i}$, is the syndrome entry S_{i} since $m_{i}\left(\alpha^{i}\right)=0$. Therefore, computing $r\left(\alpha^{i}\right)$ is equivalent to computinf $p_{i}\left(\alpha^{i}\right)$, and hence

$$
S_{i}=p_{i}\left(\alpha^{i}\right)=r\left(\alpha^{i}\right)=e\left(\alpha^{i}\right), 1 \leq i \leq 2 t
$$

which further implies that the syndrome vector \mathbf{S} depends only on the error vector \mathbf{e}

BCH code

Now, the remainder $p_{i}(x)$, where $x=\alpha^{i}$, is the syndrome entry S_{i} since $m_{i}\left(\alpha^{i}\right)=0$. Therefore, computing $r\left(\alpha^{i}\right)$ is equivalent to computinf $p_{i}\left(\alpha^{i}\right)$, and hence

$$
S_{i}=p_{i}\left(\alpha^{i}\right)=r\left(\alpha^{i}\right)=e\left(\alpha^{i}\right), 1 \leq i \leq 2 t
$$

which further implies that the syndrome vector \mathbf{S} depends only on the error vector e

Next task Find the error locations

BCH code

Now, the remainder $p_{i}(x)$, where $x=\alpha^{i}$, is the syndrome entry S_{i} since $m_{i}\left(\alpha^{i}\right)=0$. Therefore, computing $r\left(\alpha^{i}\right)$ is equivalent to computinf $p_{i}\left(\alpha^{i}\right)$, and hence

$$
S_{i}=p_{i}\left(\alpha^{i}\right)=r\left(\alpha^{i}\right)=e\left(\alpha^{i}\right), 1 \leq i \leq 2 t
$$

which further implies that the syndrome vector \mathbf{S} depends only on the error vector \mathbf{e}

Next task Find the error locations
Note that

$$
S_{i}=e\left(\alpha^{i}\right)=\sum_{u=1}^{v}\left(\alpha^{j_{u}}\right)^{i}, 1 \leq i \leq 2 t
$$

BCH codes

Thus we have relations between the syndrome entries and the error parameters $\alpha^{j u}, 1 \leq u \leq v$:

$$
\begin{aligned}
S_{1}= & \alpha^{j_{1}}+\alpha^{j_{2}}+\ldots+\alpha^{j_{v}} \\
S_{2}= & \left(\alpha^{j_{1}}\right)^{2}+\left(\alpha^{j_{2}}\right)^{2}+\ldots+\left(\alpha^{j_{v}}\right)^{2} \\
\vdots & \vdots \\
S_{2 t}= & \left(\alpha^{j_{1}}\right)^{2 t}+\left(\alpha^{j_{2}}\right)^{2 t}+\ldots+\left(\alpha^{j_{v}}\right)^{2 t}
\end{aligned}
$$

where the unknown parameters $\alpha^{j_{u}}, 1 \leq u \leq v$ are called the error-location numbers

BCH codes

Thus we have relations between the syndrome entries and the error parameters $\alpha^{j_{u}}, 1 \leq u \leq v$:

$$
\begin{aligned}
S_{1}= & \alpha^{j_{1}}+\alpha^{j_{2}}+\ldots+\alpha^{j_{v}} \\
S_{2}= & \left(\alpha^{j_{1}}\right)^{2}+\left(\alpha^{j_{2}}\right)^{2}+\ldots+\left(\alpha^{j_{v}}\right)^{2} \\
\vdots & \vdots \\
S_{2 t}= & \left(\alpha^{j_{1}}\right)^{2 t}+\left(\alpha^{j_{2}}\right)^{2 t}+\ldots+\left(\alpha^{j_{v}}\right)^{2 t}
\end{aligned}
$$

where the unknown parameters $\alpha^{j_{u}}, 1 \leq u \leq v$ are called the error-location numbers
When the parameters $\alpha^{j_{u}}, 1 \leq u \leq v$ are determined then the powers j_{u} can finally give the error locations in $e(x)$. These $2 t$ equations are called power-sum symmetric functions

