Information and Coding Theory MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

> Lecture 17
> March 21,2023

Cyclic codes

Observation

\rightarrow For every codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in F_{q}^{n}$, the polynomial is

$$
\mathbf{c}(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}
$$

Cyclic codes

Observation
\rightarrow For every codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in F_{q}^{n}$, the polynomial is

$$
\mathbf{c}(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}
$$

\rightarrow The codeword polynomial corresponding to the shifted codeword $\widetilde{\mathbf{c}}$ is

$$
\widetilde{\mathbf{c}}(x)=c_{n-1}+c_{0} x+c_{1} x^{2}+\ldots+c_{n-2} x^{n-1}=x \mathbf{c}(x)-c_{n-1}\left(x^{n}-1\right)
$$

Cyclic codes

Observation
\rightarrow For every codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in F_{q}^{n}$, the polynomial is

$$
\mathbf{c}(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}
$$

\rightarrow The codeword polynomial corresponding to the shifted codeword $\widetilde{\mathbf{c}}$ is

$$
\widetilde{\mathbf{c}}(x)=c_{n-1}+c_{0} x+c_{1} x^{2}+\ldots+c_{n-2} x^{n-1}=x \mathbf{c}(x)-c_{n-1}\left(x^{n}-1\right)
$$

\rightarrow Then

$$
\widetilde{\mathbf{c}}(x)=x \mathbf{c}(x) \bmod \left(x^{n}-1\right)
$$

Cyclic codes

Observation
\rightarrow For every codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in F_{q}^{n}$, the polynomial is

$$
\mathbf{c}(x)=c_{0}+c_{1} x+\ldots+c_{n-1} x^{n-1}
$$

\rightarrow The codeword polynomial corresponding to the shifted codeword $\widetilde{\mathbf{c}}$ is

$$
\widetilde{\mathbf{c}}(x)=c_{n-1}+c_{0} x+c_{1} x^{2}+\ldots+c_{n-2} x^{n-1}=x \mathbf{c}(x)-c_{n-1}\left(x^{n}-1\right)
$$

\rightarrow Then

$$
\widetilde{\mathbf{c}}(x)=x \mathbf{c}(x) \bmod \left(x^{n}-1\right)
$$

\rightarrow If $f(x)$ is any polynomial of $F[x]$ whose remainder, upon division by $x^{n}-1$, belongs to C then we may write

$$
f(x) \in C \bmod \left(x^{n}-1\right)
$$

Cyclic codes

\rightarrow For any i, and the cyclic code C, we have

$$
x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

Cyclic codes

\rightarrow For any i, and the cyclic code C, we have

$$
x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

\rightarrow By linearity, for any $a_{i} \in F$,

$$
a_{i} x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

and indeed

$$
\sum_{i=0}^{d} a_{i} x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

Cyclic codes

\rightarrow For any i, and the cyclic code C, we have

$$
x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

\rightarrow By linearity, for any $a_{i} \in F$,

$$
a_{i} x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

and indeed

$$
\sum_{i=0}^{d} a_{i} x^{i} \mathbf{c}(x) \in C \bmod \left(x^{n}-1\right)
$$

\rightarrow Thus for every polynomial $a(x)=\sum_{i=0}^{d} a_{i} x^{i} \in F[x]$, the product $a(x) \mathbf{c}(x)$ still belongs to C

Cyclic codes

Theorem Let $C \neq\{\mathbf{0}\}$ be a cyclic code of length n over F

1. Let $g(x)$ be a monic code polynomial of minimal degree in C. Then $g(x)$ is uniquely determined in C, and

$$
C=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\}
$$

where $r=\operatorname{deg}((g(x)))$. In particular, C has dimension $n-r$

Cyclic codes

Theorem Let $C \neq\{\mathbf{0}\}$ be a cyclic code of length n over F

1. Let $g(x)$ be a monic code polynomial of minimal degree in C. Then $g(x)$ is uniquely determined in C, and

$$
C=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\}
$$

where $r=\operatorname{deg}((g(x)))$. In particular, C has dimension $n-r$
2. The polynomial $g(x)$ divides $x^{n}-1$ in $F[x]$

Cyclic codes

Proof

1. As $C \neq\{\mathbf{0}\}$, it contains nonzero code polynomials, each of which has a unique monic scalar multiple. Thus there is a monic polynomial $g(x)$ in C of minimal degree. Let this degree be r, unique even if $g(x)$ is not.

Cyclic codes

Proof

1. As $C \neq\{\mathbf{0}\}$, it contains nonzero code polynomials, each of which has a unique monic scalar multiple. Thus there is a monic polynomial $g(x)$ in C of minimal degree. Let this degree be r, unique even if $g(x)$ is not. Then the set of polynomials

$$
C_{0}=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\} \subseteq C
$$

Cyclic codes

Proof

1. As $C \neq\{\mathbf{0}\}$, it contains nonzero code polynomials, each of which has a unique monic scalar multiple. Thus there is a monic polynomial $g(x)$ in C of minimal degree. Let this degree be r, unique even if $g(x)$ is not. Then the set of polynomials

$$
C_{0}=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\} \subseteq C
$$

Under addition and scalar multiplication, C_{0} is a vector space over F of dimension $n-r$.

Cyclic codes

Proof

1. As $C \neq\{\mathbf{0}\}$, it contains nonzero code polynomials, each of which has a unique monic scalar multiple. Thus there is a monic polynomial $g(x)$ in C of minimal degree. Let this degree be r, unique even if $g(x)$ is not. Then the set of polynomials

$$
C_{0}=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\} \subseteq C
$$

Under addition and scalar multiplication, C_{0} is a vector space over F of dimension $n-r$.
To prove 1., we must show that every code polynomial $\mathbf{c}(x)$ is an $F[x]$-multiple of $g(x)$ and so is in C_{0}.

Cyclic codes

Proof

1. As $C \neq\{\mathbf{0}\}$, it contains nonzero code polynomials, each of which has a unique monic scalar multiple. Thus there is a monic polynomial $g(x)$ in C of minimal degree. Let this degree be r, unique even if $g(x)$ is not. Then the set of polynomials

$$
C_{0}=\left\{q(x) g(x) \mid q(x) \in F[x]_{n-r}\right\} \subseteq C
$$

Under addition and scalar multiplication, C_{0} is a vector space over F of dimension $n-r$.
To prove 1., we must show that every code polynomial $\mathbf{c}(x)$ is an $F[x]$-multiple of $g(x)$ and so is in C_{0}.By division algorithm, we have

$$
\mathbf{c}(x)=q(x) g(x)+r(x)
$$

for some $q(x), r(x) \in F[x]$ with $\operatorname{deg}((r(x)))<r=\operatorname{deg}(g(x))$

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

By definition, $\mathbf{c}(x) \in C$ and $q(x) g(x) \in C_{0}$ (as $\mathbf{c}(x)$ has degree less than n)

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

By definition, $\mathbf{c}(x) \in C$ and $q(x) g(x) \in C_{0}$ (as $\mathbf{c}(x)$ has degree less than n) Thus by linearity $r(x) \in C$.

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

By definition, $\mathbf{c}(x) \in C$ and $q(x) g(x) \in C_{0}$ (as $\mathbf{c}(x)$ has degree less than n) Thus by linearity $r(x) \in C$. If $r(x)$ was nonzero, then it would have a monic scalar multiple belonging to C and of smaller degree than r. But this would contradict the original choice of $g(x)$.

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

By definition, $\mathbf{c}(x) \in C$ and $q(x) g(x) \in C_{0}$ (as $\mathbf{c}(x)$ has degree less than n) Thus by linearity $r(x) \in C$. If $r(x)$ was nonzero, then it would have a monic scalar multiple belonging to C and of smaller degree than r. But this would contradict the original choice of $g(x)$. Thus $r(x)=0$ and $\mathbf{c}(x)=q(x) g(x)$

Cyclic codes

Thus

$$
r(x)=\mathbf{c}(x)-q(x) g(x)
$$

By definition, $\mathbf{c}(x) \in C$ and $q(x) g(x) \in C_{0}$ (as $\mathbf{c}(x)$ has degree less than $n)$ Thus by linearity $r(x) \in C$. If $r(x)$ was nonzero, then it would have a monic scalar multiple belonging to C and of smaller degree than r. But this would contradict the original choice of $g(x)$.
Thus $r(x)=0$ and $\mathbf{c}(x)=q(x) g(x)$
Proof of 2. Next let $x^{n}-1=h(x) g(x)+s(x)$ for some $s(x)$ of degree less than $\operatorname{deg}(g(x))$. Then as before

$$
s(x)=(-h(x)) g(x) \bmod \left(x^{n}-1\right)
$$

and $s(x) \in C$. Further, if $s(x)$ is nonzero then it has a monic scalar multiple belonging to C and of smaller degree than that of $g(x)$, contradiction. Thus $s(x)=0$ and $g(x) h(x)=x^{n}-1$

Cyclic codes

Generator polynomial and check polynomial The polynomial $g(x)$ is called the generator polynomial for the code C.

Cyclic codes

Generator polynomial and check polynomial The polynomial $g(x)$ is called the generator polynomial for the code C. The polynomial $h(x) \in F[x]$ determined by

$$
g(x) h(x)=x^{n}-1
$$

is the check polynomial in C

Cyclic codes

Generator polynomial and check polynomial The polynomial $g(x)$ is called the generator polynomial for the code C. The polynomial $h(x) \in F[x]$ determined by

$$
g(x) h(x)=x^{n}-1
$$

is the check polynomial in C
Under some circumstances it is convenient to consider $x^{n}-1$ to be the generator polynomial of the cyclic code $\mathbf{0}$ of length n. Then by the above theorem, there is a one-to-one correspondence between cyclic codes of length n and monic divisors of $x^{n}-1$ in $F[x]$.

Cyclic codes

Generator polynomial and check polynomial The polynomial $g(x)$ is called the generator polynomial for the code C. The polynomial $h(x) \in F[x]$ determined by

$$
g(x) h(x)=x^{n}-1
$$

is the check polynomial in C
Under some circumstances it is convenient to consider $x^{n}-1$ to be the generator polynomial of the cyclic code $\mathbf{0}$ of length n. Then by the above theorem, there is a one-to-one correspondence between cyclic codes of length n and monic divisors of $x^{n}-1$ in $F[x]$.
Example Consider length 7 binary cyclic codes. The factorization of the irreducible polynomial

$$
x^{7}-1=(x-1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

Thus

$$
x^{7}+1=(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

Cyclic codes

Proposition if C is a cyclic code of length n with check polynomial $h(x)$, then $C=\left\{c(x) \in F[x]_{n} \mid c(x) h(x)=0 \bmod \left(x^{n}-1\right)\right\}$

Cyclic codes

Proposition if C is a cyclic code of length n with check polynomial $h(x)$, then $C=\left\{c(x) \in F[x]_{n} \mid c(x) h(x)=0 \bmod \left(x^{n}-1\right)\right\}$ Proof if $c(x) \in C$ then there is $q(x)$ such that $c(x)=q(x) g(x)$. But then

$$
c(x) h(x)=q(x) g(x) h(x)=q(x)\left(x^{n}-1\right)=0 \bmod \left(x^{n}-1\right)
$$

Cyclic codes

Proposition if C is a cyclic code of length n with check polynomial $h(x)$, then $C=\left\{c(x) \in F[x]_{n} \mid c(x) h(x)=0 \bmod \left(x^{n}-1\right)\right\}$ Proof if $c(x) \in C$ then there is $q(x)$ such that $c(x)=q(x) g(x)$. But then

$$
c(x) h(x)=q(x) g(x) h(x)=q(x)\left(x^{n}-1\right)=0 \bmod \left(x^{n}-1\right)
$$

Now consider an arbitrary polynomial $c(x) \in F[x]_{n}$ with $c(x) h(x)=p(x)\left(x^{n}-1\right)$, say. Then

$$
c(x) h(x)=p(x)\left(x^{n}-1\right)=p(x) g(x) h(x)
$$

hence

$$
(c(x)-p(x) g(x)) h(x)=0
$$

Cyclic codes

Proposition if C is a cyclic code of length n with check polynomial $h(x)$, then $C=\left\{c(x) \in F[x]_{n} \mid c(x) h(x)=0 \bmod \left(x^{n}-1\right)\right\}$ Proof if $c(x) \in C$ then there is $q(x)$ such that $c(x)=q(x) g(x)$. But then

$$
c(x) h(x)=q(x) g(x) h(x)=q(x)\left(x^{n}-1\right)=0 \bmod \left(x^{n}-1\right)
$$

Now consider an arbitrary polynomial $c(x) \in F[x]_{n}$ with $c(x) h(x)=p(x)\left(x^{n}-1\right)$, say. Then

$$
c(x) h(x)=p(x)\left(x^{n}-1\right)=p(x) g(x) h(x)
$$

hence

$$
(c(x)-p(x) g(x)) h(x)=0
$$

As $g(x) h(x)=x^{n}-1$, we do not have $h(x)=0$. Therefore $(c(x)-p(x) g(x)) h(x)=0$ and $c(x)=p(x) g(x)$ as desired

Cyclic codes

Generator matrix If $g(x)=\sum_{j=0}^{r} g_{j} x^{j}$ is a generator polynomial for the cyclic code C then the generator matrix is given by

$$
G=\left[\begin{array}{cccccccc}
g_{0} & g_{1} & \ldots & g_{r} & 0 & 0 & \ldots & 0 \\
0 & g_{0} & \ldots & g_{r-1} & g_{r} & 0 & \ldots & 0 \\
0 & 0 & \ldots & & & & \ldots & 0 \\
0 & 0 & \ldots & & g_{0} & g_{1} & \ldots & g_{r}
\end{array}\right]
$$

Cyclic codes

Observation
\rightarrow The matrix G has n columns and $k=n-r$ rows, so the first row, \mathbf{g}_{0}, finishes with a string of 0 's of length $k-1$

Cyclic codes

Observation

\rightarrow The matrix G has n columns and $k=n-r$ rows, so the first row, \mathbf{g}_{0}, finishes with a string of 0 's of length $k-1$
\rightarrow Each successive row is the cyclic shift of the previous row: $\mathbf{g}_{i}=\widetilde{\mathbf{g}}_{i-1}$, for $i=1, \ldots, k-1$

Cyclic codes

Observation

\rightarrow The matrix G has n columns and $k=n-r$ rows, so the first row, \mathbf{g}_{0}, finishes with a string of 0 's of length $k-1$
\rightarrow Each successive row is the cyclic shift of the previous row: $\mathbf{g}_{i}=\widetilde{\mathbf{g}}_{i-1}$, for $i=1, \ldots, k-1$
\rightarrow As $g(x) h(x)=x^{n}-1$, we have $g_{0} h_{0}=g(0) h(0)=0^{n}-1 \neq 0$. In particular $g_{0} \neq 0$ and $h_{0} \neq 0$

Cyclic codes

Observation

\rightarrow The matrix G has n columns and $k=n-r$ rows, so the first row, \mathbf{g}_{0}, finishes with a string of 0 's of length $k-1$
\rightarrow Each successive row is the cyclic shift of the previous row: $\mathbf{g}_{i}=\widetilde{\mathbf{g}}_{i-1}$, for $i=1, \ldots, k-1$
\rightarrow As $g(x) h(x)=x^{n}-1$, we have $g_{0} h_{0}=g(0) h(0)=0^{n}-1 \neq 0$. In particular $g_{0} \neq 0$ and $h_{0} \neq 0$
\rightarrow Therefore G is in echelon form (although likely not reduced). In particular the $k=\operatorname{dim}(C)$ rows of G are linearly independent

Cyclic codes

Observation

\rightarrow The matrix G has n columns and $k=n-r$ rows, so the first row, \mathbf{g}_{0}, finishes with a string of 0 's of length $k-1$
\rightarrow Each successive row is the cyclic shift of the previous row: $\mathbf{g}_{i}=\widetilde{\mathbf{g}}_{i-1}$, for $i=1, \ldots, k-1$
\rightarrow As $g(x) h(x)=x^{n}-1$, we have $g_{0} h_{0}=g(0) h(0)=0^{n}-1 \neq 0$. In particular $g_{0} \neq 0$ and $h_{0} \neq 0$
\rightarrow Therefore G is in echelon form (although likely not reduced). In particular the $k=\operatorname{dim}(C)$ rows of G are linearly independent
G is also called the cyclic generator matrix of C

Cyclic codes

Example For the [7, 4] binary cyclic code with generator polynomial $1+x+x^{3}$, the generator matrix is

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Cyclic codes

Example For the [7,4] binary cyclic code with generator polynomial $1+x+x^{3}$, the generator matrix is

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

For encoding the information or message k-tuple $\mathbf{m}=\left(m_{0}, \ldots, m_{k-1}\right)$, the encoded message is given by $\mathbf{c}=\mathbf{m} G$. In terms of polynomials, $m(x)=\sum_{i=0}^{k-1} m_{i} x^{i}$ and $\mathbf{c}(x)=\mathbf{m}(x) g(x)$.

Cyclic codes

Example For the [7,4] binary cyclic code with generator polynomial $1+x+x^{3}$, the generator matrix is

$$
\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

For encoding the information or message k-tuple $\mathbf{m}=\left(m_{0}, \ldots, m_{k-1}\right)$, the encoded message is given by $\mathbf{c}=\mathbf{m} G$. In terms of polynomials, $m(x)=\sum_{i=0}^{k-1} m_{i} x^{i}$ and $\mathbf{c}(x)=\mathbf{m}(x) g(x)$.
Observation Since the cyclic generator G is in echelon form, although G is not in standard/systematic form

Cyclic codes

Standard generator matrix We aim to have the encoding method such that

$$
\mathbf{m}=\left(m_{0}, \ldots, m_{k-1}\right) \mapsto \mathbf{c}=\left(m_{0}, \ldots, m_{k-1},-s_{0},-s_{1}, \ldots,-s_{r-1}\right)
$$

where $s(x)=\sum_{j=0}^{r-1} s_{j} x^{j}$ is the remainder upon dividing $x^{r} m(x)$ by $g(x)$ i.e.

$$
x^{r} m(x)=q(x) g(x)+s(x)
$$

with $\operatorname{deg}(s(x))<\operatorname{deg}(g(x))=r$.

Cyclic codes

Standard generator matrix We aim to have the encoding method such that

$$
\mathbf{m}=\left(m_{0}, \ldots, m_{k-1}\right) \mapsto \mathbf{c}=\left(m_{0}, \ldots, m_{k-1},-s_{0},-s_{1}, \ldots,-s_{r-1}\right)
$$

where $s(x)=\sum_{j=0}^{r-1} s_{j} x^{j}$ is the remainder upon dividing $x^{r} m(x)$ by $g(x)$ i.e.

$$
x^{r} m(x)=q(x) g(x)+s(x)
$$

with $\operatorname{deg}(s(x))<\operatorname{deg}(g(x))=r$.
To see that this is the correct standard encoding, first note that

$$
x^{r} m(x)-s(x)=q(x) g(x)=b(x) \in C
$$

with the corresponding codeword

$$
\mathbf{b}=\left(-s_{0},-s_{1}, \ldots,-s_{r-1}, m_{0}, \ldots, m_{k-1}\right)
$$

Cyclic codes

Standard generator matrix We aim to have the encoding method such that

$$
\mathbf{m}=\left(m_{0}, \ldots, m_{k-1}\right) \mapsto \mathbf{c}=\left(m_{0}, \ldots, m_{k-1},-s_{0},-s_{1}, \ldots,-s_{r-1}\right)
$$

where $s(x)=\sum_{j=0}^{r-1} s_{j} x^{j}$ is the remainder upon dividing $x^{r} m(x)$ by $g(x)$ i.e.

$$
x^{r} m(x)=q(x) g(x)+s(x)
$$

with $\operatorname{deg}(s(x))<\operatorname{deg}(g(x))=r$.
To see that this is the correct standard encoding, first note that

$$
x^{r} m(x)-s(x)=q(x) g(x)=b(x) \in C
$$

with the corresponding codeword

$$
\mathbf{b}=\left(-s_{0},-s_{1}, \ldots,-s_{r-1}, m_{0}, \ldots, m_{k-1}\right)
$$

Since this is a codeword of cyclic C, every cyclic shift of it is also a codeword

Cyclic codes

In particular the c given above is found after k right shifts. Thus c is a codeword of C.

Cyclic codes

In particular the c given above is found after k right shifts.
Thus c is a codeword of C.
Since C is systematic on the first k positions, this codeword is the only one with m on those positions and so is the result of standard encoding.

Cyclic codes

In particular the c given above is found after k right shifts.
Thus c is a codeword of C.
Since C is systematic on the first k positions, this codeword is the only one with m on those positions and so is the result of standard encoding.
To construct the standard generator matrix itself, we encode the k different k-tuple messages $(0,0, \ldots, 0,1,0, \ldots, 0)$ of weight 1 corresponding to message polynomials x^{i}, for $0 \leq i \leq k-1$. These are the rows of the standard generator matrix.

Cyclic codes

Example Consider the [7,4] binary cyclic code with generator $x^{3}+x+1$ (so $r=t-4=3$,) we find that, for instance,

$$
x^{3} x^{2}=\left(x^{2}+1\right)\left(x^{3}+x+1\right)+\left(x^{2}+x+1\right)
$$

so that the third row of the standard generator matrix, corresponding to message polynomial x^{2}, is

$$
\left(m_{0}, m_{1}, m_{2}, m_{3},-s_{0},-s_{1},-s_{2}\right)=(0,0,1,0,1,1,1)
$$

Cyclic codes

Example Consider the [7,4] binary cyclic code with generator $x^{3}+x+1$ (so $r=t-4=3$,) we find that, for instance,

$$
x^{3} x^{2}=\left(x^{2}+1\right)\left(x^{3}+x+1\right)+\left(x^{2}+x+1\right)
$$

so that the third row of the standard generator matrix, corresponding to message polynomial x^{2}, is

$$
\left(m_{0}, m_{1}, m_{2}, m_{3},-s_{0},-s_{1},-s_{2}\right)=(0,0,1,0,1,1,1)
$$

Proceeding in this way, we find that the standard generator matrix is

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

