Information and Coding Theory MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 13 March 6, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Information and Coding Theory

Lecture 13 March 6, 2023 1/8

3

A B A A B A

< A IN

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \leq d_{\min} \leq 2t+2$$

for some positive integer *t*.

3

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t. Suppose now that there are error patterns with l errors, l > t.

2/8

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t. Suppose now that there are error patterns with l errors, l > t.

Claim C is NOT capable of correcting all the error patterns of I errors.

ightarrow Suppose **v** and **w** are codewords such that $d(\mathbf{v}, \mathbf{w}) = d_{\min}$

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t. Suppose now that there are error patterns with *l* errors, l > t.

Claim C is NOT capable of correcting all the error patterns of I errors.

- \rightarrow Suppose **v** and **w** are codewords such that $d(\mathbf{v}, \mathbf{w}) = d_{\min}$
- \rightarrow Let \mathbf{e}_1 and \mathbf{e}_2 be two error patterns such that

 $e_1 + e_2 = v + w$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t. Suppose now that there are error patterns with l errors, l > t.

Claim C is NOT capable of correcting all the error patterns of I errors.

- \rightarrow Suppose **v** and **w** are codewords such that $d(\mathbf{v}, \mathbf{w}) = d_{\min}$
- $\rightarrow \mbox{ Let } e_1$ and e_2 be two error patterns such that

 $\mathbf{e}_1 + \mathbf{e}_2 = \mathbf{v} + \mathbf{w}$

 \boldsymbol{e}_1 and \boldsymbol{e}_2 do not have nonzero entries in common positions

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t. Suppose now that there are error patterns with l errors, l > t.

Claim C is NOT capable of correcting all the error patterns of I errors.

- $\rightarrow\,$ Suppose ${\bf v}$ and ${\bf w}$ are codewords such that $d({\bf v},{\bf w})=d_{\min}$
- $\rightarrow \mbox{ Let } e_1$ and e_2 be two error patterns such that

 $\mathbf{e}_1 + \mathbf{e}_2 = \mathbf{v} + \mathbf{w}$

 \boldsymbol{e}_1 and \boldsymbol{e}_2 do not have nonzero entries in common positions

 \rightarrow Then

$$w(\mathbf{e}_1) + w(\mathbf{e}_2) = w(\mathbf{v} + \mathbf{w}) = d(\mathbf{v}, \mathbf{w}) = d\min$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Suppose \mathbf{v} is transmitted and is corrupted by error \mathbf{e}_1 . Then

 $\mathbf{r} = \mathbf{v} + \mathbf{e}_1$

3

(日) (四) (日) (日) (日)

Suppose \mathbf{v} is transmitted and is corrupted by error \mathbf{e}_1 . Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e}_1$$

$$d(\mathbf{v}, \mathbf{r}) = w(\mathbf{v} + \mathbf{r}) = w(\mathbf{e}_1)$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Suppose \mathbf{v} is transmitted and is corrupted by error \mathbf{e}_1 . Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e}_1$$

$$d(\mathbf{v}, \mathbf{r}) = w(\mathbf{v} + \mathbf{r}) = w(\mathbf{e}_1)$$

$$d(\mathbf{w}, \mathbf{r}) = w(\mathbf{w} + \mathbf{r}) = w(\mathbf{w} + \mathbf{v} + \mathbf{e}_1) = w(\mathbf{e}_2)$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Suppose \mathbf{v} is transmitted and is corrupted by error \mathbf{e}_1 . Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e}_1$$

$$d(\mathbf{v}, \mathbf{r}) = w(\mathbf{v} + \mathbf{r}) = w(\mathbf{e}_1)$$

$$d(\mathbf{w}, \mathbf{r}) = w(\mathbf{w} + \mathbf{r}) = w(\mathbf{w} + \mathbf{v} + \mathbf{e}_1) = w(\mathbf{e}_2)$$

If \mathbf{e}_1 contains more than t errors with $w(\mathbf{e}_1) > t$. Then

$$w(\mathbf{e}_2) \leq t+1$$

since $w(\mathbf{e}_1) + w(\mathbf{e}_2) = d_{\min}$ and $2t + 1 \le d_{\min} \le 2t + 2$

< □ > < □ > < □ > < □ > < □ > < □ >

3/8

Suppose \mathbf{v} is transmitted and is corrupted by error \mathbf{e}_1 . Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e}_1$$

$$d(\mathbf{v}, \mathbf{r}) = w(\mathbf{v} + \mathbf{r}) = w(\mathbf{e}_1)$$

$$d(\mathbf{w}, \mathbf{r}) = w(\mathbf{w} + \mathbf{r}) = w(\mathbf{w} + \mathbf{v} + \mathbf{e}_1) = w(\mathbf{e}_2)$$

If \mathbf{e}_1 contains more than t errors with $w(\mathbf{e}_1) > t$. Then

$$w(\mathbf{e}_2) \leq t+1$$

since $w(\mathbf{e}_1) + w(\mathbf{e}_2) = d_{\min}$ and $2t + 1 \le d_{\min} \le 2t + 2$ Thus $d(\mathbf{v}, \mathbf{r}) = w(\mathbf{e}_1) > t$ and $d(\mathbf{w}, \mathbf{r}) = w(\mathbf{e}_2) \le t + 1$, which implies

$$d(\mathbf{v},\mathbf{r}) \geq d(\mathbf{w},\mathbf{r})$$

This implies there exists an error pattern of l > t errors that results in a received vector that is closer to an incorrect codeword than the transmitted codeword

Based on maximum likelihood decoding scheme, an incorrect decoding would be performed.

э

Based on maximum likelihood decoding scheme, an incorrect decoding would be performed.

Conclusion A linear block code with minimum distance d_{\min} guarantees correction of all the error patterns of $t = \lfloor (d_{\min} - 1)/2 \rfloor$ or fewer errors. This parameter is called *random-error-correcting capability* of a code

Syndrome decoding through standard array

- \rightarrow Let $\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_{2^k}$ be the codewords of ${\it C}$, and \bm{r} be a received codeword
- → Partition 2ⁿ possible received codewords into 2^k disjoint subsets $D_1, D_2, \ldots, D_{2^k}$ such that the codeword $\mathbf{v}_i \in D_i, 1 \leq i \leq 2^k$

Syndrome decoding through standard array

- \rightarrow Let $\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_{2^k}$ be the codewords of ${\it C}$, and \bm{r} be a received codeword
- → Partition 2ⁿ possible received codewords into 2^k disjoint subsets $D_1, D_2, \ldots, D_{2^k}$ such that the codeword $\mathbf{v}_i \in D_i, 1 \leq i \leq 2^k$
- \rightarrow If $\mathbf{r} \in D_i$ then \mathbf{r} is decoded as \mathbf{v}_i

4 1 1 1 4 1 1 1

Syndrome decoding through standard array

- \rightarrow Let $\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_{2^k}$ be the codewords of C, and \bm{r} be a received codeword
- → Partition 2ⁿ possible received codewords into 2^k disjoint subsets $D_1, D_2, \ldots, D_{2^k}$ such that the codeword $\mathbf{v}_i \in D_i, 1 \leq i \leq 2^k$
- \rightarrow If $\mathbf{r} \in D_i$ then \mathbf{r} is decoded as \mathbf{v}_i

Partition method - standard array

 \rightarrow Place the 2^k codewords of C in a row with the zero vector codeword \mathbf{v}_1 as the first (leftmost)

Syndrome decoding through standard array

- \rightarrow Let $\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_{2^k}$ be the codewords of ${\it C},$ and \bm{r} be a received codeword
- → Partition 2ⁿ possible received codewords into 2^k disjoint subsets $D_1, D_2, \ldots, D_{2^k}$ such that the codeword $\mathbf{v}_i \in D_i, 1 \leq i \leq 2^k$
- \rightarrow If $\mathbf{r} \in D_i$ then \mathbf{r} is decoded as \mathbf{v}_i

Partition method - standard array

- \rightarrow Place the 2^k codewords of C in a row with the zero vector codeword \mathbf{v}_1 as the first (leftmost)
- \rightarrow Denote the set of $2^{n-k} 1$ error vectors of length *n* as $\mathbf{e}_2, \ldots, \mathbf{e}_{2^{n-k}}$

・ロット 御り とうりょうり しつ

Syndrome decoding through standard array

- \rightarrow Let $\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_{2^k}$ be the codewords of C, and \bm{r} be a received codeword
- → Partition 2ⁿ possible received codewords into 2^k disjoint subsets $D_1, D_2, \ldots, D_{2^k}$ such that the codeword $\mathbf{v}_i \in D_i, 1 \leq i \leq 2^k$
- \rightarrow If $\mathbf{r} \in D_i$ then \mathbf{r} is decoded as \mathbf{v}_i

Partition method - standard array

- \rightarrow Place the 2^k codewords of C in a row with the zero vector codeword \mathbf{v}_1 as the first (leftmost)
- \rightarrow Denote the set of $2^{n-k} 1$ error vectors of length *n* as $\mathbf{e}_2, \ldots, \mathbf{e}_{2^{n-k}}$
- \rightarrow Form the second row by adding e_2 to each codeword v_i in the first row and placing the sum $e_2 + v_i$ under v_i
- $\rightarrow\,$ Continue the process until all the error vectors are used

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Observation

1. The sum of any two vectors in the same row is a codeword in C

э

< □ > < 同 >

Observation

- 1. The sum of any two vectors in the same row is a codeword in C
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

Observation

- 1. The sum of any two vectors in the same row is a codeword in $\ensuremath{\mathcal{C}}$
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

More on standard array

 \rightarrow The 2^{*n*-*k*} rows are called the *cosets* of the code *C*

Observation

- 1. The sum of any two vectors in the same row is a codeword in $\ensuremath{\mathcal{C}}$
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

More on standard array

- \rightarrow The 2^{*n*-*k*} rows are called the *cosets* of the code *C*
- \rightarrow The first *n*-tuple \mathbf{e}_j of each coset is called a *coset leader*

Observation

- 1. The sum of any two vectors in the same row is a codeword in $\ensuremath{\mathcal{C}}$
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

More on standard array

- \rightarrow The 2^{*n*-*k*} rows are called the *cosets* of the code *C*
- \rightarrow The first *n*-tuple \mathbf{e}_j of each coset is called a *coset leader*
- \rightarrow There are 2^k columns and each column consists of 2^{n-k} vectors

Observation

- 1. The sum of any two vectors in the same row is a codeword in $\ensuremath{\mathcal{C}}$
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

More on standard array

- \rightarrow The 2^{*n*-*k*} rows are called the *cosets* of the code *C*
- \rightarrow The first *n*-tuple \mathbf{e}_j of each coset is called a *coset leader*
- \rightarrow There are 2^k columns and each column consists of 2^{n-k} vectors
- \rightarrow Let D_j denote the *j*th column and define

$$D_j = \{\mathbf{v}_j, \mathbf{e}_2 + \mathbf{v}_j, \dots, \mathbf{e}_{2^{n-k}} + \mathbf{v}_j\}, 1 \le j \le 2^k$$

Observation

- 1. The sum of any two vectors in the same row is a codeword in $\ensuremath{\mathcal{C}}$
- 2. No two *n*-tuples in the same row of a standard array are identical. Every *n*-tuple appears in one and only one row.

More on standard array

- \rightarrow The 2^{*n*-*k*} rows are called the *cosets* of the code *C*
- \rightarrow The first *n*-tuple \mathbf{e}_j of each coset is called a *coset leader*
- \rightarrow There are 2^k columns and each column consists of 2^{n-k} vectors
- \rightarrow Let D_j denote the *j*th column and define

$$D_j = \{\mathbf{v}_j, \mathbf{e}_2 + \mathbf{v}_j, \dots, \mathbf{e}_{2^{n-k}} + \mathbf{v}_j\}, 1 \le j \le 2^k$$

 \rightarrow If $r \in D_j$ then declare the codeword as \mathbf{v}_j and it will be decoded correctly if and only if the error vector is a corresponding coset leader

Conclusion Every (n, k) block code is capable of correcting 2^{n-k} error patterns.

- ∢ ⊒ →

< □ > < 同 >

Conclusion Every (n, k) block code is capable of correcting 2^{n-k} error patterns.

We have already seen that the code is capable of detecting $2^n - 2^k$ error patterns. Thus for large n, 2^{n-k} is a small fraction of $2^n - 2^k$.

Conclusion Every (n, k) block code is capable of correcting 2^{n-k} error patterns.

We have already seen that the code is capable of detecting $2^n - 2^k$ error patterns. Thus for large n, 2^{n-k} is a small fraction of $2^n - 2^k$.

Theorem All the 2^k *n*-tuples of a coset have the same syndrome. The syndromes for different cosets are different

Conclusion Every (n, k) block code is capable of correcting 2^{n-k} error patterns.

We have already seen that the code is capable of detecting $2^n - 2^k$ error patterns. Thus for large n, 2^{n-k} is a small fraction of $2^n - 2^k$.

Theorem All the 2^k *n*-tuples of a coset have the same syndrome. The syndromes for different cosets are different

Theorem For an (n, k) linear code C with minimum distance d_{\min} , all the *n*-tuples of weight $t = \lfloor (d_{\min} - 1)/2 \rfloor$ or less can be used as coset leaders of a standard array of C

Proof let \mathbf{x} and \mathbf{y} be two *n*-tuples of weight *t* or less. Then

$$w(\mathbf{x} + \mathbf{y}) \leq w(\mathbf{x}) + w(\mathbf{y}) \leq 2t < d_{\min}$$

If **x** and **y** are in the same coset then $\mathbf{x} + \mathbf{y}$ must be a codeword, which is impossile since $w(\mathbf{x} + \mathbf{y}) < d_{\min}$

イロト 不得 トイヨト イヨト 二日

Decoding algorithm

1. Compute the syndrome $\mathbf{r}H^T$

э

Decoding algorithm

- 1. Compute the syndrome $\mathbf{r}H^T$
- 2. Locate the coset leader \mathbf{e}_i whose syndrome is $\mathbf{r}H^T$. Then \mathbf{e}_i is assumed to be the error pattern caused by the channel

Decoding algorithm

- 1. Compute the syndrome $\mathbf{r}H^T$
- 2. Locate the coset leader \mathbf{e}_i whose syndrome is $\mathbf{r}H^T$. Then \mathbf{e}_i is assumed to be the error pattern caused by the channel
- 3. Decode the received vector **r** into the codeword $\mathbf{v}^* = \mathbf{r} + \mathbf{e}_i$