Information and Coding Theory MA41024/ MA60020/ MA60262

Bibhas Adhikari

Spring 2022-23, IIT Kharagpur

Lecture 12 February 28, 2023

Bibhas Adhikari (Spring 2022-23, IIT Kharag

Information and Coding Theory

Lecture 12 February 28, 2023 1 / 14

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Syndrome decoding Consider an (n, k) linear code corresponding to generator matrix **G** and parity-check matrix **H**. Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector at the output of a noisy channel corresponding to a codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$.

くぼう くさう くさう しき

Syndrome decoding Consider an (n, k) linear code corresponding to generator matrix **G** and parity-check matrix **H**. Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector at the output of a noisy channel corresponding to a codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$.

Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e} \Rightarrow \mathbf{e} = \mathbf{r} + \mathbf{v} = (e_0, e_1, \dots, e_{n-1})$$

is the error vector, where $e_i = 1$ for $r_i \neq v_i$, and $e_i = 0$ for $r_i = v_i$.

くぼう くさう くさう しき

Syndrome decoding Consider an (n, k) linear code corresponding to generator matrix **G** and parity-check matrix **H**. Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector at the output of a noisy channel corresponding to a codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$.

Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e} \Rightarrow \mathbf{e} = \mathbf{r} + \mathbf{v} = (e_0, e_1, \dots, e_{n-1})$$

is the *error vector*, where $e_i = 1$ for $r_i \neq v_i$, and $e_i = 0$ for $r_i = v_i$. Thus the 1's in **e** are the transmission errors caused by the channel noise.

くぼう くほう くほう しほ

Syndrome decoding Consider an (n, k) linear code corresponding to generator matrix **G** and parity-check matrix **H**. Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector at the output of a noisy channel corresponding to a codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$.

Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e} \Rightarrow \mathbf{e} = \mathbf{r} + \mathbf{v} = (e_0, e_1, \dots, e_{n-1})$$

is the *error vector*, where $e_i = 1$ for $r_i \neq v_i$, and $e_i = 0$ for $r_i = v_i$. Thus the 1's in **e** are the transmission errors caused by the channel noise. Note The receiver does not know both **v** and **e**

くぼう くほう くほう しほ

Syndrome decoding Consider an (n, k) linear code corresponding to generator matrix **G** and parity-check matrix **H**. Let $\mathbf{r} = (r_0, r_1, \dots, r_{n-1})$ be the received vector at the output of a noisy channel corresponding to a codeword $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$.

Then

$$\mathbf{r} = \mathbf{v} + \mathbf{e} \Rightarrow \mathbf{e} = \mathbf{r} + \mathbf{v} = (e_0, e_1, \dots, e_{n-1})$$

is the *error vector*, where $e_i = 1$ for $r_i \neq v_i$, and $e_i = 0$ for $r_i = v_i$. Thus the 1's in **e** are the transmission errors caused by the channel noise. Note The receiver does not know both **v** and **e**

Question How does the receiver detect, locate and correct the error?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On receiving \mathbf{r} , the decoder must first determine whether \mathbf{r} contains transmission errors. Thus the decoder computes

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^T = (s_0, s_1, \dots, s_{n-k-1})$$

which is called the *syndrome* of **r**.

(B)

On receiving \mathbf{r} , the decoder must first determine whether \mathbf{r} contains transmission errors. Thus the decoder computes

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^T = (s_0, s_1, \dots, s_{n-k-1})$$

which is called the *syndrome* of **r**.

Then s = 0 if and only if r is a codeword, and $s \neq 0$ if and only if r is not a codeword. Thus when s = 0, r is a codeword, and the receiver accepts r as the transmitted codeword.

On receiving \mathbf{r} , the decoder must first determine whether \mathbf{r} contains transmission errors. Thus the decoder computes

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^T = (s_0, s_1, \dots, s_{n-k-1})$$

which is called the *syndrome* of **r**.

Then s = 0 if and only if r is a codeword, and $s \neq 0$ if and only if r is not a codeword. Thus when s = 0, r is a codeword, and the receiver accepts r as the transmitted codeword.

Caution It is possible that the errors in certain error vectors are not detectable. For instance, if **e** is identical to a nonzero codeword. This kind of error patterns are called *undetectable* error patterns. There are $2^k - 1$ undetectable errors

< 回 > < 回 > < 回 >

However, note that

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^{T} = (\mathbf{v} + \mathbf{e}) \cdot \mathbf{H}^{T} = \mathbf{v} \cdot \mathbf{H}^{T} + \mathbf{e} \cdot \mathbf{H}^{T} = \mathbf{e} \cdot \mathbf{H}^{T}$$

A D N A B N A B N A B N

э

However, note that

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^{\mathcal{T}} = (\mathbf{v} + \mathbf{e}) \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{v} \cdot \mathbf{H}^{\mathcal{T}} + \mathbf{e} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{e} \cdot \mathbf{H}^{\mathcal{T}}$$

Thus the syndrome bits give information about error bits.

ヨト イヨト

э

However, note that

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^{\mathcal{T}} = (\mathbf{v} + \mathbf{e}) \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{v} \cdot \mathbf{H}^{\mathcal{T}} + \mathbf{e} \cdot \mathbf{H}^{\mathcal{T}} = \mathbf{e} \cdot \mathbf{H}^{\mathcal{T}}$$

Thus the syndrome bits give information about error bits. Question Can we solve the linear system and obtain **e**?

ヨト イヨト

э

4/14

However, note that

$$\mathbf{s} = \mathbf{r} \cdot \mathbf{H}^{T} = (\mathbf{v} + \mathbf{e}) \cdot \mathbf{H}^{T} = \mathbf{v} \cdot \mathbf{H}^{T} + \mathbf{e} \cdot \mathbf{H}^{T} = \mathbf{e} \cdot \mathbf{H}^{T}$$

Thus the syndrome bits give information about error bits.

Question Can we solve the linear system and obtain e?

Note that there are n - k linear equations and the system does not have a unique solution but can have 2^k solutions!!

Minimum distance of a block code Let $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be an *n*-tuple. Then the *Hamming weight* of \mathbf{v} , denotes as $w(\mathbf{v})$ is the number of nonzero entries of \mathbf{v} .

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

5/14

Minimum distance of a block code Let $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be an *n*-tuple. Then the *Hamming weight* of \mathbf{v} , denotes as $w(\mathbf{v})$ is the number of nonzero entries of \mathbf{v} .

The Hamming distance between two vectors \mathbf{v} and \mathbf{w} , denotes as $d_h(\mathbf{v}, \mathbf{w})$ is the number of places where \mathbf{v} and \mathbf{w} differ.

<日

<</p>

5/14

Minimum distance of a block code Let $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be an *n*-tuple. Then the *Hamming weight* of \mathbf{v} , denotes as $w(\mathbf{v})$ is the number of nonzero entries of \mathbf{v} .

The Hamming distance between two vectors \mathbf{v} and \mathbf{w} , denotes as $d_h(\mathbf{v}, \mathbf{w})$ is the number of places where \mathbf{v} and \mathbf{w} differ.

Question Show that Hamming distance is a metric.

< 回 > < 回 > < 回 >

Minimum distance of a block code Let $\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$ be an *n*-tuple. Then the *Hamming weight* of \mathbf{v} , denotes as $w(\mathbf{v})$ is the number of nonzero entries of \mathbf{v} .

The Hamming distance between two vectors \mathbf{v} and \mathbf{w} , denotes as $d_h(\mathbf{v}, \mathbf{w})$ is the number of places where \mathbf{v} and \mathbf{w} differ.

Question Show that Hamming distance is a metric.

The minimum distance of a code C is defined by

$$d_{\min} = \min\{d_h(\mathbf{v}, \mathbf{w}) : \mathbf{v}, \mathbf{w} \in C, \mathbf{v} \neq \mathbf{w}\}$$

3

く 目 ト く ヨ ト く ヨ ト

Note that

$$d_{\min} = \min\{w(\mathbf{v} + \mathbf{w}) : \mathbf{v}, \mathbf{w} \in C, \mathbf{v} \neq \mathbf{w}\}$$

= min{w(x) : x \in C, x \neq 0}

Thus minimum distance of a linear code is the minimum weight of the code.

★ ∃ ► < ∃ ►</p>

э

Theorem Let C be an (n, k) linear code with parity-check matrix **H**. Then for each codeword of Hamming weight *I*, there exists *I* columns of **H** such that the sum of these *I* columns is equal to the zero vector. Conversely, if there exist *I* columns of **H** whose sum is the zero vector then there exists a codeword of Hamming weight *I* in *C*.

<日

<</p>

3

7/14

Theorem Let C be an (n, k) linear code with parity-check matrix **H**. Then for each codeword of Hamming weight *I*, there exists *I* columns of **H** such that the sum of these *I* columns is equal to the zero vector. Conversely, if there exist *I* columns of **H** whose sum is the zero vector then there exists a codeword of Hamming weight *I* in *C*.

Corollary Let C be a linear block code with parity-check matrix **H**. Then

(a) If no d-1 or fewer columns of **H** add to **0**, the code has minimum weight at least d

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem Let C be an (n, k) linear code with parity-check matrix **H**. Then for each codeword of Hamming weight *I*, there exists *I* columns of **H** such that the sum of these *I* columns is equal to the zero vector. Conversely, if there exist *I* columns of **H** whose sum is the zero vector then there exists a codeword of Hamming weight *I* in *C*.

Corollary Let C be a linear block code with parity-check matrix **H**. Then

- (a) If no d-1 or fewer columns of **H** add to **0**, the code has minimum weight at least d
- (b) The minimum distance of C is equal to the smallest number of columns of **H** that sum to **0**.

3

< 回 > < 回 > < 回 >

Error detection and error correction Suppose a codeword **v** is transmitted over a noisy channel. Then a block code with minimum distance d_{\min} is capable of detecting all the error patterns of $d_{\min} - 1$ or fewer errors:

 \rightarrow If there are l errors in the corresponding received vector ${\bf r},$ then $d({\bf v},{\bf r})=l$

Error detection and error correction Suppose a codeword **v** is transmitted over a noisy channel. Then a block code with minimum distance d_{\min} is capable of detecting all the error patterns of $d_{\min} - 1$ or fewer errors:

- \rightarrow If there are l errors in the corresponding received vector ${\bf r},$ then $d({\bf v},{\bf r})=l$
- \rightarrow If the minimum distance of a block code C is d_{\min} , then any two distinct codewords in C differ at least in d_{\min} places

A B A A B A

Error detection and error correction Suppose a codeword **v** is transmitted over a noisy channel. Then a block code with minimum distance d_{\min} is capable of detecting all the error patterns of $d_{\min} - 1$ or fewer errors:

- \rightarrow If there are l errors in the corresponding received vector ${\bf r},$ then $d({\bf v},{\bf r})=l$
- \rightarrow If the minimum distance of a block code C is d_{\min} , then any two distinct codewords in C differ at least in d_{\min} places
- → Then for this code, no error pattern of $d_{\min} 1$ or fewer errors can change one codeword into another, hence any error pattern of $d_{\min} 1$ or few errors will result in a received vector **r** that is not a codeword in *C*

くぼう くほう くほう しほ

Error detection and error correction Suppose a codeword **v** is transmitted over a noisy channel. Then a block code with minimum distance d_{\min} is capable of detecting all the error patterns of $d_{\min} - 1$ or fewer errors:

- \rightarrow If there are l errors in the corresponding received vector ${\bf r},$ then $d({\bf v},{\bf r})=l$
- \rightarrow If the minimum distance of a block code C is d_{\min} , then any two distinct codewords in C differ at least in d_{\min} places
- → Then for this code, no error pattern of $d_{\min} 1$ or fewer errors can change one codeword into another, hence any error pattern of $d_{\min} 1$ or few errors will result in a received vector **r** that is not a codeword in *C*

Question Can it detect all the error patterns of d_{\min} errors?

医静脉 医黄疸 医黄疸 医黄疸

Observation (n, k) linear block code can detect $2^n - 2^k$ error patterns of length n

→ The number of nonzero error patterns is equal to $2^n - 1$, among which $2^k - 1$ error patterns are the $2^k - 1$ nonzero codewords.

9/14

Observation (n, k) linear block code can detect $2^n - 2^k$ error patterns of length n

- \rightarrow The number of nonzero error patterns is equal to $2^n 1$, among which $2^k 1$ error patterns are the $2^k 1$ nonzero codewords.
- → If any of these $2^k 1$ error patterns occurs, it alters **v** into another codeword **w**, and its syndrome is zero. Thus the decoder performs an incorrect decoding. Therefore there are $2^k 1$ undetectable error patterns

9/14

Observation (n, k) linear block code can detect $2^n - 2^k$ error patterns of length n

- \rightarrow The number of nonzero error patterns is equal to $2^n 1$, among which $2^k 1$ error patterns are the $2^k 1$ nonzero codewords.
- → If any of these $2^k 1$ error patterns occurs, it alters **v** into another codeword **w**, and its syndrome is zero. Thus the decoder performs an incorrect decoding. Therefore there are $2^k 1$ undetectable error patterns
- \rightarrow Note that there are exactly $2^n 2^k$ error patterns that are not identical to the codewords of the (n, k) block code, which are detectable

Observation (n, k) linear block code can detect $2^n - 2^k$ error patterns of length n

- \rightarrow The number of nonzero error patterns is equal to $2^n 1$, among which $2^k 1$ error patterns are the $2^k 1$ nonzero codewords.
- → If any of these $2^k 1$ error patterns occurs, it alters **v** into another codeword **w**, and its syndrome is zero. Thus the decoder performs an incorrect decoding. Therefore there are $2^k 1$ undetectable error patterns
- \rightarrow Note that there are exactly $2^n 2^k$ error patterns that are not identical to the codewords of the (n, k) block code, which are detectable
- \rightarrow For large $n, 2^k 1 \ll 2^n$ in general, hence only a small fraction of error patterns pass through the decoder without being detected

Maximum-Likelihood (ML) decoding

 $\rightarrow\,$ A decoder must determine \boldsymbol{w} to minimize

$$P(E|\mathbf{r}) = P(\mathbf{w} \neq \mathbf{v}|\mathbf{r})$$

 $\rightarrow\,$ The probability of error is

$$P(E) = \sum_{\mathbf{r}} P(E|\mathbf{r}) P(\mathbf{r})$$

→ ∃ →

10/14

Maximum-Likelihood (ML) decoding

 $\rightarrow\,$ A decoder must determine \boldsymbol{w} to minimize

$$P(E|\mathbf{r}) = P(\mathbf{w} \neq \mathbf{v}|\mathbf{r})$$

 $\rightarrow\,$ The probability of error is

$$P(E) = \sum_{\mathbf{r}} P(E|\mathbf{r}) P(\mathbf{r})$$

 $\rightarrow \text{ Memoryless channel: ML decoder}$ $\triangle \text{ Maximize } P(\mathbf{r} | \mathbf{v}) = \prod_{j} P(r_{j} | v_{j})$

Maximum-Likelihood (ML) decoding

 $\rightarrow\,$ A decoder must determine \boldsymbol{w} to minimize

$$P(E|\mathbf{r}) = P(\mathbf{w} \neq \mathbf{v}|\mathbf{r})$$

 $\rightarrow\,$ The probability of error is

$$P(E) = \sum_{\mathbf{r}} P(E|\mathbf{r}) P(\mathbf{r})$$

- $\rightarrow\,$ Memoryless channel: ML decoder
 - \triangle Maximize $P(\mathbf{r}|\mathbf{v}) = \prod_j P(r_j|v_j)$
 - riangle Alternatively, choose $ec{f v}$ to maximize log $P(f r|f v) = \sum_j \log P(r_j|f v_j)$

Maximum-Likelihood (ML) decoding

 $\rightarrow\,$ A decoder must determine \boldsymbol{w} to minimize

$$P(E|\mathbf{r}) = P(\mathbf{w} \neq \mathbf{v}|\mathbf{r})$$

 $\rightarrow\,$ The probability of error is

$$P(E) = \sum_{\mathbf{r}} P(E|\mathbf{r}) P(\mathbf{r})$$

- $\rightarrow\,$ Memoryless channel: ML decoder
 - \triangle Maximize $P(\mathbf{r}|\mathbf{v}) = \prod_j P(r_j|v_j)$
 - \triangle Alternatively, choose \mathbf{v} to maximize log $P(\mathbf{r} | \mathbf{v}) = \sum_{i} \log P(r_i | v_i)$
 - \triangle The ML decoder is optimal if and only if all **v** are equally likely as input vectors, otherwise $P(\mathbf{r}|\mathbf{v})$ must be weighted by the codeword probabilities $P(\mathbf{v})$

ML decoding on the BSC Suppose the noisy channel is BSC with bit-flip probability $\epsilon.$ Then

$$\rightarrow P(r_j | v_j) = 1 - \epsilon$$
 if $r_j = v_j$ and ϵ otherwise

э

(日) (四) (日) (日) (日)

ML decoding on the BSC Suppose the noisy channel is BSC with bit-flip probability $\epsilon.$ Then

$$\rightarrow P(r_j | v_j) = 1 - \epsilon \text{ if } r_j = v_j \text{ and } \epsilon \text{ otherwise}$$

$$\log P(\mathbf{r} | \mathbf{v}) = \sum_{j} \log P(r_{j} | v_{j})$$

= $d(\mathbf{r}, \mathbf{v}) \log \epsilon + (n - d(\mathbf{r}, \mathbf{v})) \log(1 - \epsilon)$
= $d(\mathbf{r}, \mathbf{v}) \log \frac{\epsilon}{1 - \epsilon} + n \log(1 - \epsilon)$

3

イロト イポト イヨト イヨト

ML decoding on the BSC Suppose the noisy channel is BSC with bit-flip probability $\epsilon.$ Then

$$\rightarrow P(r_j | v_j) = 1 - \epsilon \text{ if } r_j = v_j \text{ and } \epsilon \text{ otherwise}$$
$$\rightarrow$$

$$\log P(\mathbf{r} | \mathbf{v}) = \sum_{j} \log P(r_{j} | v_{j})$$

= $d(\mathbf{r}, \mathbf{v}) \log \epsilon + (n - d(\mathbf{r}, \mathbf{v})) \log(1 - \epsilon)$
= $d(\mathbf{r}, \mathbf{v}) \log \frac{\epsilon}{1 - \epsilon} + n \log(1 - \epsilon)$

 $\rightarrow \log \frac{\epsilon}{1-\epsilon} < 0$ for $\epsilon < 0.5$, so an ML decoder for a BSC must choose **v** to minimize $d(\mathbf{r}, \mathbf{v})$

<日

<</p>

Then for a linear block code, an ML decoder takes n received bits as input and returns the most likely k-bit message among the 2^k possible messages.

Then for a linear block code, an ML decoder takes n received bits as input and returns the most likely k-bit message among the 2^k possible messages. Implementing ML decoder

 \rightarrow Enumerate all 2^k valid codewords, each *n* bit in length

12/14

Then for a linear block code, an ML decoder takes n received bits as input and returns the most likely k-bit message among the 2^k possible messages. Implementing ML decoder

- \rightarrow Enumerate all 2^k valid codewords, each *n* bit in length
- $\rightarrow\,$ Compare the received word r to each of these valid codewords and find the one with smallest Hamming distance to r

Then for a linear block code, an ML decoder takes n received bits as input and returns the most likely k-bit message among the 2^k possible messages. Implementing ML decoder

- \rightarrow Enumerate all 2^k valid codewords, each *n* bit in length
- $\rightarrow\,$ Compare the received word r to each of these valid codewords and find the one with smallest Hamming distance to r
- \rightarrow However, it has exponential time complexity. What we would like is something a lot faster. Note that this comparing to all valid codewords method does not take advantage of the linearity of the code.

<日

<</p>

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer *t*.

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

 $2t+1 \le d_{\min} \le 2t+2$

for some positive integer t.

Claim C is capable of correcting all the error patterns of t or fewer errors.

 $\rightarrow\,$ Let ${\bf v}$ and ${\bf r}$ denote the transmitted codeword and the received vector respectively.

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t.

Claim C is capable of correcting all the error patterns of t or fewer errors.

- $\rightarrow\,$ Let ${\bf v}$ and ${\bf r}$ denote the transmitted codeword and the received vector respectively.
- \rightarrow Let ${\bf w}$ be any other codeword of C. Then

$$d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{r}) + d(\mathbf{w}, \mathbf{r})$$

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t.

Claim C is capable of correcting all the error patterns of t or fewer errors.

- $\rightarrow\,$ Let ${\bf v}$ and ${\bf r}$ denote the transmitted codeword and the received vector respectively.
- \rightarrow Let ${\bf w}$ be any other codeword of C. Then

$$d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{r}) + d(\mathbf{w}, \mathbf{r})$$

 \rightarrow Suppose an error pattern of t' errors occurs i.e. $d(\mathbf{v}, \mathbf{r}) = t'$

Correction of error Let C be an (n, k) linear code with minimum distance d_{\min} . Then

$$2t+1 \le d_{\min} \le 2t+2$$

for some positive integer t.

Claim C is capable of correcting all the error patterns of t or fewer errors.

- $\rightarrow\,$ Let ${\bf v}$ and ${\bf r}$ denote the transmitted codeword and the received vector respectively.
- \rightarrow Let ${\bf w}$ be any other codeword of C. Then

$$d(\mathbf{v},\mathbf{w}) \leq d(\mathbf{v},\mathbf{r}) + d(\mathbf{w},\mathbf{r})$$

- ightarrow Suppose an error pattern of t' errors occurs i.e. $d(\mathbf{v},\mathbf{r})=t'$
- ightarrow Obviously, $d(\mathbf{v},\mathbf{w}) \geq d_{\min} \geq 2t+1$, and hence $d(\mathbf{w},\mathbf{r}) \geq 2t+1-t'$

A B b A B b

- ightarrow If t' < t then $d(\mathbf{w}, \mathbf{r}) > t$
- \rightarrow Thus if an error pattern of t or fewer errors occurs, the received vector ${\bf r}$ is closer in Hamming distance to the transmitted codeword ${\bf v}$ than any other codeword ${\bf w}$ in C

14/14

- \rightarrow If t' < t then $d(\mathbf{w}, \mathbf{r}) > t$
- \rightarrow Thus if an error pattern of t or fewer errors occurs, the received vector ${\bf r}$ is closer in Hamming distance to the transmitted codeword ${\bf v}$ than any other codeword ${\bf w}$ in C
- $\rightarrow\,$ According to ML decoding scheme, it is a correct transmitted codeword, thus the errors are corrected.